
CSCB58 - Lab 3
Latches, Flip-flops, and Registers

Learning Objectives
The purpose of this exercise is to investigate the fundamental synchronous logic elements: latches, flip-flops, and
registers.

Prelab /3
Part I (in-lab) /2
Part II (in-lab) /2
Clean work-space with all materials returned to their original state /1
TOTAL /8

1

Write your name, UTorID, and student ID:

Name:

Student ID:

UTorID:

Write your partner’s name, UTorID, and student ID:

Partner name:

Partner student ID:

Partner UTorID:

2

Note: Latches in Verilog
In modern digital circuit design, latches are rarely used, and only in very special circumstances. On FPGAs
especially, we seldom use latches except in very specific designs. Most of the time, if we create a latch in Verilog
in a design for an FPGA, we have created the latch in error. In Verilog, when we use always @(*) to create
combinational logic, we sometimes create latches by mistake. These latches are created when the output of your
always block does not get assigned a value.

For example in the following code:

reg w;
always @(*)
begin

if (x) // when x is true (i.e., logic 1)
w = 1; // w gets set to 1

end

w does not get a new value when x is 0. In this instance a latch would be created. To “fix” this latch, w would need
a default value. From now on, you should check your compilation log in Quartus and look out for warnings
that latches have been created.

Part I
The most common storage element today is the edge-triggered D flip flop. One way to build an edge-triggered D
flip flop is to connect two D latches in series with the two D latches using opposite edges of the clock. This is
called a master-slave flip flop. The output of the master-slave flip flop changes on a clock edge, unlike the latch,
which changes according to the level of the clock. For a positive edge-triggered flip flop, the output changes when
the clock edge rises, i.e., clock transitions from 0 to 1. The Verilog code for a positive edge-triggered flip flop
is shown below in Figure 1. This flip flop also has an active-low, synchronous reset, meaning that the reset only
happens when reset n = 0 on the rising clock edge. If q is declared as reg q, then you get a single flip flop.
If q is declared as reg[7:0] q, then you get eight parallel flip flops, which is called an 8-bit register. Of course,
d should have the same width as q.

always @(posedge clock) // Triggered every time clock rises
begin

if (reset_n == 1'b0) /* when reset_n is 0 (note this is tested on
every rising clock edge) */

q <= 0; // q is set to 0. Note these assignments use <=
else // when reset n is not 0

q <= d; // value of d passes through to output q
end

Figure 1: Verilog for a positive edge-triggered flip flop with active-low, synchronous reset1.

Starting with the circuit you built for Lab 2 Part III, build an ALU with the eight operations as shown in the
pseudo-code in Figure 2. The output of the ALU is to be stored in an 8-bit register and the four least-significant
bits of the register output are to be connected to the B input of the ALU. Figure 3 shows the required connections.

1For a negative edge-triggered flip-flop, substitute the posedge keyword with negedge.

3

always @(*) // declare always block
begin

case (function) // start case statement
0: A + B using the adder from Lab 2 Part II
1: A + B using the Verilog ‘+’ operator
2: A XOR B in the lower four bits and A OR B in the upper four bits
3: Output 1 (8’b00000001) if at least 1 of the 8 bits in the two inputs is 1 using a single OR operation
4: Output 1 (8’b00000001) if all of the 8 bits in the two inputs are 1 using a single AND operation
5: Left shift B by A bits using the Verliog left shift operator ‘<<’
6: Right shift B by A bits (logical) using the Verliog right shift operator ‘>>’
7: A×B using the Verilog multiplication operator ‘*’
default: . . . // default case

endcase
end

Figure 2: Pseudo-code for ALU.

Figure 3: Simple ALU with register circuit for Part II.

Perform the following steps.

1. Create a Verilog module for the simple ALU with register. Use the code in Figure 1 as the model for
your register code. Connect the Data input to switches SW3−0. Connect KEY0 to the Clock input for the
register, SW9 to reset b and use KEY3−1 for the ALU function inputs. Display the outputs on LEDR7−0;
have HEX0 display the value of Data in hexadecimal. HEX4 and HEX5 should display the least-significant
and most-significant four bits of Register respectively, also in hexadecimal. (PRELAB)

2. Create a new Quartus II project for your circuit. Make sure to select the correct chip and import the pin
assignments.

3. Compile the project.

4. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit and show the TA.

Note: some boards have faulty buttons (for example, KEY0 might constantly flip between 0 and 1 when pressed).
If that happens, try to use other keys, or use a switch instead of a key.

4

Part II
In this part of the lab, you will create an 8-bit right-shift register that has an optional arithmetic shift. A shift register
is a collection of flip-flops that move values sequentially between each other on each clock edge. Figure 4 shows
one part (one bit) of our right-shift register. It contains a positive edge-triggered flip-flop and several multiplexers.
To accommodate 8-bits, you will use eight instances of the circuit in Figure 4 to design you right-shift register
with optional arithmetic shift and parallel load shown in Figure 5.

When bits are shifted in this register, it means that the bits are copied to the next flip flop on the right. For example,
to shift the bits right, each flip flop loads the value of the flip flop to its left when the clock edge occurs. In the
right-shift, the flip flop at the left end of the register has no left neighbour. One option is to load a zero, but
what if the value in the register is signed? In this case we should perform sign-extension. When we perform the
sign-extension, this shift operation is called an arithmetic shift right (ASR). In arithmetic shift right, instead of
loading a zero to the left-most bit, we replicate its old value: if it was 1, we load a 1. If it was 0, we load a 0. (The
“regular” right shift where we load a zero is called logical shift right.)

D Q

ShifterBit
l
o
a
d
_
n

s
h
i
f
t

0

1
0

1in
out

c
l
k

load_val

reset_n

reset_n

Figure 4: Sub-circuit for Part III.

In the Shifter module, create an 8-bit-wide register input LoadVal, whose individual wires (bits) are tied to each
load val input of each ShifterBit instance. Likewise, create an 8-bit-wide output Q, whose individual wires stem
from each out port of each ShifterBit instance. The shift input of all eight instances of the circuit in Figure 4
should be tied to the single input ShiftRight. The load n input of all eight instances should be tied to the
input Load n. This allows an 8-bit value to be loaded into all eight flip-flops on the same clock cycle. The clk
input of all eight instances should be tied to the single input clk. Likewise for reset n. The in input of all
eight instances, should be connected to the out port of the instance to its left, because when you want to shift the
bits right, you have to load the bit to the left - except for the leftmost ShifterBit instance. In this special case, you
should design a circuit that will perform sign-extension when the signal ASR is high (arithmetic right shift) and
will load zeros if ASR is low (logic right shift).

5

LoadVal
Load_n
ShiftRight
ASR
clk
reset_n

Q[0]

Shifter

ShifterBitShifterBitShifterBit

8

Q[1]Q[7]

…

Figure 5: Shifter circuit for Part III. All required internal connections are not shown.

Here is an example of the circuit operation:

1. When Load n = 0, the value on LoadVal is stored in the flip-flops on the next positive clock edge (i.e.,
parallel load behaviour).

2. When Load n = 1, ShiftRight = 1 and ASR = 0, the bits of the register shift to the right on each positive
clock edge:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Cycle 0: Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

Cycle 1: 0 Q7 Q6 Q5 Q4 Q3 Q2 Q1

Cycle 2: 0 0 Q7 Q6 Q5 Q4 Q3 Q2

Cycle 3: 0 0 0 Q7 Q6 Q5 Q4 Q3

. . .

3. When Load n = 1, ShiftRight = 1 and ASR = 1, the bits of the register shift to the right on each positive
clock edge but the most significant bit is replicated. This is called an Arithmetic shift right:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Cycle 0: Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

Cycle 1: Q7 Q7 Q6 Q5 Q4 Q3 Q2 Q1

Cycle 2: Q7 Q7 Q7 Q6 Q5 Q4 Q3 Q2

Cycle 3: Q7 Q7 Q7 Q7 Q6 Q5 Q4 Q3

. . .

Do the following steps:

1. What is the behaviour of the 8-bit shift register shown in Figure 5 when Load n = 1 and ShiftRight = 0?
Briefly explain. (PRELAB)

2. Draw a schematic for the 8-bit shift register shown in Figure 5 including the necessary connections. Your
schematic should contain eight instances of the sub-circuit in Figure 4 and all the wiring required to imple-
ment the desired behaviour. Label the signals on your schematic with the same names you will use in your
Verilog code. (PRELAB)

3. Starting with the code in Figure 1 for a flip flop, use this D flip flop with instances of the mux2to1 module
from Lab 1 to build the ShifterBit sub-circuit shown in Figure 4. To get you started, Figure 6 is a sample of
hierarchical code showing the D flip flop with one of the 2-to-1 multiplexers connected to it. (PRELAB)

6

mux2to1 M1(// instantiates 2nd multiplexer
.x(load_val), // the parallel load value
.y(data_from_other mux),
.s(load_n),
.m(data_to_dff) // outputs to flip flop

);

flipflop F0(// instantiates flip flop
.d(data_to_dff), // input to flip flop
.q(out), // output from flip flop
.clock(clk), // clock signal
.reset_n(reset_n) // synchronous active low reset

);

Figure 6: Part of the code for the sub-circuit in Figure 4.

4. Create a new Quartus II project and write a Verilog module for the shift register that instantiates eight
instances of your Verilog module for Figure 4. This Verilog module should match with the schematic in
your lab book. Use SW7−0 as the inputs LoadVal7−0, and SW9 as a synchronous active low reset. Use
KEY1 as the Load n input, KEY2 as the ShiftRight input and KEY3 as the ASR input. Use KEY0 as the
clock, but read the important note below about switch bouncing. The outputs Q7−0 should be displayed
on the LEDs (LEDR7−0).

5. Download your circuit on the DE2 board, and demonstrate its functionality to your TA.

Note: You may run into bounce problems using KEY0 for your clock, (you are welcome to try using any of the keys
if you find they preform better). All mechanical switches, such as a push/toggle button, will often make contact
several times due the electrical contacts bouncing. This happens quickly in human time, but not in electrical time.
With a bouncing switch you can observe multiple high-frequency toggles making it difficult to create single clock
edges.

7

