
CSCE 212: Computer Architecture
Lecture 2: Von Neumann Model,

ISA, LC-3 and MIPS

Prof. Pooyan Jamshidi

University of South Carolina

[These slides are mostly based on those of Onur Mutlu for the Computer Architecture Course at CMU]

Agenda for Today & Next Few Lectures

n The von Neumann model
n LC-3: An example of von Neumann machine

n LC-3 and MIPS Instruction Set Architectures

n LC-3 and MIPS assembly and programming

n Introduction to microarchitecture and single-cycle
microarchitecture

n Multi-cycle microarchitecture

2

What Will We Learn Today?
n The von Neumann model

q LC-3: An example von Neumann machine

n Instruction Set Architectures: LC-3 and MIPS
q Operate instructions
q Data movement instructions
q Control instructions

n Instruction formats

n Addressing modes

3

The Von Neumann Model

4

Basic Elements of a Computer
n Basic elements of a computer

q Decision elements
q Storage elements

n Remember these from digital design course?
q Combinational circuits
q Sequential circuits

n To get a task done by a computer we need
q Computer
q Data
q Program: A set of instructions

n Instruction: the smallest piece of work in a computer

5

The Von Neumann Model
n Let’s start building the computer

n In order to build a computer we need a model

n John von Neumann proposed a fundamental model in 1946
n It consists of 5 parts

q Memory
q Processing unit
q Input
q Output
q Control unit

n Throughout this lecture, we consider two examples of the von
Neumann model
q LC-3
q MIPS

6

Burks, Goldstein, von Neumann,
“Preliminary discussion of the logical design
of an electronic computing instrument,” 1946.

The Von Neumann Model

7

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The Von Neumann Model

8

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

Memory
n The memory stores

q Data
q Programs

n The memory contains bits
q Bits are grouped into bytes (8 bits) and words (e.g., 8, 16, 32 bits)

n How the bits are accessed determines the addressability
q E.g., word-addressable
q E.g., 8-bit addressable (or byte-addressable)

n The total number of addresses is the address space
q In LC-3, the address space is 216

n 16-bit addresses
q In MIPS, the address space is 232

n 32-bit addresses
q In x86-64, the address space is (up to) 248

n 48-bit addresses

9

Word-Addressable Memory
n Each data word has a unique address

q In MIPS, a unique address for each 32-bit data word
q In LC-3, a unique address for each 16-bit data word

10

00000000

00000001

00000002

00000003

.
.

.
Word Address

8 9 A B C D E F
F 2 F 1 F 0 F 7
1 3 C 8 1 7 5 5
D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0

.
.

.

.
.

.

Data MIPS memory

n Each byte has a unique address
q Actually, MIPS is byte-addressable
q LC-3b (updated version of LC-3) is byte-addressable, too

Word 3

Word 2

Word 1

Word 0

.
.

.

.
.

.

Data

8 9 A B C D E F

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C

MIPS memory

Byte-Addressable Memory

11

00000000

00000004

00000008

0000000C

.
.

.
Byte Address
of the Word

How are these four bytes
addressed?

Big Endian vs Little Endian
n Jonathan Swift’s Gulliver’s Travels

q Little Endians broke their eggs on the little end of the egg
q Big Endians broke their eggs on the big end of the egg

12

Big Endian vs Little Endian

13

0

4

8

C

.
.

.

Address
of the
Word

.
.

.

Byte
Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C.
.

.
Byte

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB
(Most Significant Byte)

LSB
(Least Significant Byte)

MSB LSB

Big Endian vs Little Endian

14

0

4

8

C

.
.

.

Word
Address

.
.

.

Byte
Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.
.

.
Byte

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSB

Does this really matter?

Answer: No, it is a convention

Qualified answer: No, except when one big-
endian system and one little-endian system
have to share data
MSB

(Most Significant Byte)
LSB

(Least Significant Byte)

Accessing Memory: MAR and MDR
n There are two ways of accessing memory

q Reading or loading
q Writing or storing

n Two registers are necessary to access memory
q Memory Address Register (MAR)
q Memory Data Register (MDR)

n To read
q Step 1: Load the MAR with the address
q Step 2: Data is placed in MDR

n To write
q Step 1: Load the MAR with the address and the MDR with the data
q Step 2: Activate Write Enable signal

15

The Von Neumann Model

16

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

Processing Unit
n The processing unit can consist of many functional units

n We start with a simple Arithmetic and Logic Unit (ALU),
which executes computations
q LC-3: ADD, AND, NOT (XOR in LC-3b)
q MIPS: add, sub, mult, and, nor, sll, srl, slt…

n The ALU processes quantities that are referred to as words
q Word length in LC-3 is 16 bits
q In MIPS it is 32 bits

n Temporary storage: Registers
q E.g., to calculate (A+B)*C, the intermediate result of A+B is

stored in a register

17

Registers
n Memory is big but slow

n Registers
q Ensure fast access to operands
q Typically one register contains one word

n Register set or file
q LC-3 has 8 general purpose registers (GPR)

n R0 to R7: 3-bit register number
n Register size = Word length = 16 bits

q MIPS has 32 registers
n Register size = Word length = 32 bits

18

MIPS Register File

19

Name Register Number Usage
$0 0 the constant value 0
$at 1 assembler temporary
$v0-$v1 2-3 function return value
$a0-$a3 4-7 function arguments
$t0-$t7 8-15 temporary variables
$s0-$s7 16-23 saved variables
$t8-$t9 24-25 temporary variables
$k0-$k1 26-27 OS temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 function return address

The Von Neumann Model

20

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

Input and Output
n Many devices can be used for input and output

n They are called peripherals
q Input

n Keyboard
n Mouse
n Scanner
n Disks
n Etc.

q Output
n Monitor
n Printer
n Disks
n Etc.

q In LC-3, we consider keyboard and monitor

21

The Von Neumann Model

22

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

Control Unit
n The control unit is similar to the conductor of an orchestra

n It conducts the step-by-step process of executing (every
instruction in) a program

n It keeps track of the instruction being executed with an
instruction register (IR), which contains the instruction

n Another register contains the address of the next
instruction to execute. It is called program counter (PC) or
instruction pointer (IP)

23

Programmer Visible (Architectural) State

24

M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current instruction

Registers
- given special names in the ISA

(as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state

The Von Neumann Model

25

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

Von Neumann Model: Two Key Properties
n Von Neumann model is also called stored program computer

(instructions in memory). It has two key properties:

n Stored program
q Instructions stored in a linear memory array
q Memory is unified between instructions and data

n The interpretation of a stored value depends on the control signals

n Sequential instruction processing
q One instruction processed (fetched, executed, completed) at a time
q Program counter (instruction pointer) identifies the current instruction
q Program counter is advanced sequentially except for control transfer

instructions

26

LC-3: A Von Neumann Machine

27

LC-3: A Von Neumann Machine

28

Scanned by CamScanner

Control signals

Data

ALU: 2 inputs, 1 output

Memory Data
Register

Memory Address
Register

16-bit
addressable

Keyboard
KBDR (data), KBSR (status)

Monitor
DDR (data), DSR (status)

8 General Purpose
Registers (GPR)

Finite State Machine
(for Generating Control Signals)

Instruction
Register

Program
Counter

ALU operation

GateALU

Stored Program & Sequential Execution
n Instructions and data are stored in memory

q Typically the instruction length is the word length

n The processor fetches instructions from memory sequentially
q Fetches one instruction
q Decodes and executes the instruction
q Continues with the next instruction

n The address of the current instruction is stored in the program
counter (PC)

q If word-addressable memory, the processor increments the PC by 1
(in LC-3)

q If byte-addressable memory, the processor increments the PC by the
word length (4 in MIPS)
n In MIPS the OS typically sets the PC to 0x00400000 (start of a

program)

29

n A sample MIPS program
q 4 instructions stored in consecutive words in memory

n No need to understand the program now. We will get back to it

A Sample Program Stored in Memory

30

.
.

.

Instructions

8 C 0 A 0 0 2 0

0 2 3 2 8 0 2 0

2 2 6 8 F F F 4

0 1 6 D 4 0 2 2

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Address

.
.

.

lw $t2, 32($0)
add $s0, $s1, $s2
addi $t0, $s3, -12
sub $t0, $t3, $t5

MIPS assembly

0x8C0A0020
0x02328020
0x2268FFF4
0x016D4022

Machine code

← PC

The Instruction
n An instruction the most basic unit of computer processing

q Instructions are words in the language of a computer
q Instruction Set Architecture (ISA) is the vocabulary

n The language of the computer can be written as

q Machine language: Computer-readable representation (that is,
0’s and 1’s)

q Assembly language: Human-readable representation

n We will look at LC-3 instructions and MIPS instructions

n Let us start with some example instructions
31

Instruction Types
n There are three main types of instructions

n Operate instructions
q Execute instructions in the ALU

n Data movement instructions
q Read from or write to memory

n Control flow instructions
q Change the sequence of execution

32

An Example Operate Instruction
n Addition

q add: mnemonic to indicate the operation to perform

q b, c: source operands

q a: destination operand

q a ← b + c

33

a = b + c; add a, b, c

High-level code Assembly

Registers
n We map variables to registers

34

add a, b, c b = R1
c = R2
a = R0

Assembly LC-3 registers

b = $s1
c = $s2
a = $s0

MIPS registers

n Addition

From Assembly to Machine Code in LC-3

35

ADD R0, R1, R2

LC-3 assembly

Field Values

Machine Code

0x1042
Machine Code, in short (hexadecimal)

1 0 1 0 00 2

OP DR SR1 SR2

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

OP DR SR1 SR2

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

Instruction Format (or Encoding)
n LC-3

q OP = opcode (what the instruction does)
n E.g., ADD = 0001

q Semantics: DR ← SR1 + SR2
n E.g., AND = 0101

q Semantics: DR ← SR1 AND SR2

q SR1, SR2 = source registers

q DR = destination register
36

OP DR SR1 0 00 SR2
4 bits 3 bits 3 bits 3 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

n Addition

From Assembly to Machine Code in MIPS

37

0 17 18 16 0 32

op rs rt rd shamt funct

add $s0, $s1, $s2

MIPS assembly

Field Values

0x02328020

000000 10001 10010 10000 00000 100000

op rs rt rd shamt funct
Machine Code

15 11 10 6 05162021252631

rd ← rs + rt

Instruction Formats: R-Type in MIPS
n R-type

q 3 register operands
n MIPS

q 0 = opcode

q rs, rt = source registers

q rd = destination register

q shamt = shift amount (only shift operations)

q funct = operation in R-type instructions

38

0 rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Reading Operands from Memory
n With the operate instructions, such as addition, we tell the

computer to execute arithmetic (or logic) computations in
the ALU

n We also need instructions to access the operands from
memory

n Next, we see how to read (or load) from memory

n Writing (or storing) is performed in a similar way, but we
will talk about that later

39

Reading Word-Addressable Memory
n Load word

q load: mnemonic to indicate the load word operation

q A: base address

q i: offset
n E.g., immediate or literal (a constant)

q a: destination operand

q Semantics: a ← Memory[A + i]

40

a = A[i]; load a, A, i

High-level code Assembly

Load Word in LC-3 and MIPS
n LC-3 assembly

n MIPS assembly

41

a = A[2]; LDR R3, R0, #2

High-level code LC-3 assembly

R3 ← Memory[R0 + 2]

a = A[2]; lw $s3, 2($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 2]

These instructions use a particular addressing mode
(i.e., the way the address is calculated), called base+offset

Load Word in Byte-Addressable MIPS
n MIPS assembly

n Byte address is calculated as: word_address * bytes/word

q 4 bytes/word in MIPS

q If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word

42

a = A[2]; lw $s3, 8($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 8]

n LC-3

n MIPS

Instruction Format With Immediate

43

6 3 0 4

OP DR BaseR offset6

LDR R3, R0, #4

LC-3 assembly

Field Values

35 16 19 8

op rs rt imm

lw $s3, 8($s0)

MIPS assembly

Field Values

I-Type
15 0162021252631

5 0689111215

How are These Instructions Executed?
n By using instructions we can speak the language of the

computer

n Thus, we now know how to tell the computer to

q Execute computations in the ALU by using, for instance, an
addition

q Access operands from memory by using the load word
instruction

n But, how are these instructions executed on the computer?

q The process of executing an instruction is called is the
instruction cycle

44

The Instruction Cycle
n The instruction cycle is a sequence of steps or phases, that an

instruction goes through to be executed
q FETCH
q DECODE
q EVALUATE ADDRESS
q FETCH OPERANDS
q EXECUTE
q STORE RESULT

n Not all instructions have the six phases
q LDR does not require EXECUTE

q ADD does not require EVALUATE ADDRESS

q Intel x86 instruction ADD [eax], edx is an example of instruction
with six phases

45

After STORE RESULT, a New FETCH

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT

46

FETCH
n The FETCH phase obtains the instruction from memory and

loads it into the instruction register

n This phase is common to every instruction type

n Complete description
q Step 1: Load the MAR with the contents of the PC, and

simultaneously increment the PC

q Step 2: Interrogate memory. This results the instruction to be
placed in the MDR

q Step 3: Load the IR with the contents of the MDR

47

FETCH in LC-3

48

Scanned by CamScanner

Step 1: Load
MAR and

increment PC

Step 2: Access
memory

Step 3: Load IR
with the content

of MDR

Digital Buffer and Tri-State Buffer

49

A master/slave flip-flop

50

DECODE
n The DECODE phase identifies the instruction

n Recall the decoder

q A 4-to-16 decoder identifies which of the 16 opcodes is going
to be processed

n The input is the four bits IR[15:12]

n The remaining 12 bits identify what else is needed to
process the instruction

51

Decoder
n “Input pattern detector”
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output

corresponding to the input pattern that the logic circuit is
expected to detect

n Example: 2-to-4 decoder

52

Decoder (I)
n n inputs and 2n outputs
n Exactly one of the outputs is 1 and all the rest are 0s
n The one output that is logically 1 is the output

corresponding to the input pattern that the logic circuit is
expected to detect
A 1 if A,B is 00B

1 if A,B is 01

1 if A,B is 10

1 if A,B is 11

A = 1 0B = 0

0

1

0

Decoder (II)
n The decoder is useful in determining how to interpret a bit

pattern

54

A = 1 0B = 0

0

1

0

q It could be the
address of a row in
DRAM, that the
processor intends to
read from

q It could be an
instruction in the
program and the
processor has to
decide what action to
do! (based on
instruction opcode)

DECODE in LC-3

55

Scanned by CamScanner

DECODE
identifies the

instruction to be
processed

EVALUATE ADDRESS
n The EVALUATE ADDRESS phase computes the address of

the memory location that is needed to process the
instruction

n This phase is necessary in LDR

q It computes the address of the data word that is to be read
from memory

q By adding an offset to the content of a register

n But not necessary in ADD

56

EVALUATE ADDRESS in LC-3

57

Scanned by CamScanner

LDR calculates
the address by

adding a
register and an

immediate

ADD

FETCH OPERANDS
n The FETCH OPERANDS phase obtains the source operands

needed to process the instruction

n In LDR
q Step 1: Load MAR with the address calculated in EVALUATE

ADDRESS

q Step 2: Read memory, placing source operand in MDR

n In ADD
q Obtain the source operands from the register file

q In most current microprocessors, this phase can be done at
the same time the instruction is being decoded

58

FETCH OPERANDS in LC-3

59

Scanned by CamScanner

LDR loads MAR
(step 1), and

places the
results in MDR

(step 2)

EXECUTE

n The EXECUTE phase executes the instruction

q In ADD, it performs addition in the ALU

60

EXECUTE in LC-3

61

Scanned by CamScanner

ADD adds SR1
and SR2

STORE RESULT
n The STORE RESULT phase writes to the designated

destination

n Once STORE RESULT is completed, a new instruction cycle
starts (with the FETCH phase)

62

STORE RESULT in LC-3

63

Scanned by CamScanner

LDR loads MDR
into DR

The Instruction Cycle

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT

64

Changing the Sequence of Execution
n A computer program executes in sequence (i.e., in program

order)
q First instruction, second instruction, third instruction and so on

n Unless we change the sequence of execution

n Control instructions allow a program to execute out of
sequence

q They can change the PC by loading it during the EXECUTE
phase

q That wipes out the incremented PC (loaded during the FETCH
phase)

65

Jump in LC-3
n Unconditional branch or jump

n LC-3

q BaseR = Base register
q PC ← R2 (Register identified by BaseR)

q Variations
n RET: special case of JMP where BaseR = R7
n JSR, JSRR: jump to subroutine

66

JMP R2

1100 000 000000
4 bits

BaseR

3 bits

This is register
addressing mode

Jump in MIPS
n Unconditional branch or jump

n MIPS

q 2 = opcode
q target = target address

q PC ← PC✝[31:28] | sign-extend(target) * 4

q Variations
n jal: jump and link (function calls)

n jr: jump register

67

2 target
6 bits 26 bits

j target

J-Type

jr $s0

j uses pseudo-
direct addressing

mode

✝This is the incremented PC

jr uses register
addressing mode

LC-3 Data Path

68

Scanned by CamScanner

The Instruction Cycle

q FETCH
q DECODE
q EVALUATE ADDRESS

q FETCH OPERANDS
q EXECUTE
q STORE RESULT

70

Control of the Instruction Cycle
n State 1

q The FSM asserts GatePC and
LD.MAR

q It selects input (+1) in PCMUX
and asserts LD.PC

n State 2
q MDR is loaded with the

instruction

n State 3
q The FSM asserts GateMDR and

LD.IR

n State 4
q The FSM goes to next state

depending on opcode

n State 63
q JMP loads register into PC

71

4.3 Instruction Processing 109

PC <– Register

State 1

State 2

State 3

State 4

MAR <– PC�
PC <– PC + 1

MDR <– M[MAR]

IR <– MDR

JMP
LDR

ADD

[opcode]

Last state�
to carry out�

ADD instruction

Last state�
to carry out�

LDR instruction

To state 1 To state 1 To state 1

State 63

FETCH

First state after�
DECODE for�

ADD instruction

First state after�
DECODE for�

LDR instruction

First state after�
DECODE for�

JMP instruction

DECODE

Figure 4.4 An abbreviated state diagram of the LC-3

the IR to be latched at the end of the clock cycle, concluding the FETCH phase
of the instruction.

The DECODE phase takes one cycle. In state 4, using the external input
IR, and in particular the opcode bits of the instruction, the finite state machine
can go to the appropriate next state for processing instructions depending on
the particular opcode in IR[15:12]. Processing continues cycle by cycle until the
instruction completes execution, and the next state logic returns the finite state
machine to state 1.

As we mentioned earlier in this section, it is sometimes necessary not to
execute the next sequential instruction but rather to jump to another location to
find the next instruction to execute. As we have said, instructions that change the
flow of instruction processing in this way are called control instructions. This can
be done very easily by loading the PC during the EXECUTE phase of the control
instruction, as in state 63 of Figure 4.4, for example.

72

Finite State Machines

73

Finite State Machines
n What is a Finite State Machine (FSM)?

q A discrete-time model of a stateful system
q Each state represents a snapshot of the system at a given time

n An FSM pictorially shows
1. the set of all possible states that a system can be in
2. how the system transitions from one state to another

n An FSM can model
q A traffic light, an elevator, fan speed, a microprocessor, etc.

n An FSM enables us to pictorially think of a stateful
system using simple diagrams

74

Finite State Machines (FSMs) Consist of:
n Five elements:

1. A finite number of states
n State: snapshot of all relevant elements of the

system at the time of the snapshot
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions

n How to get from one state to another
5. An explicit specification of what determines

each external output value

75

Finite State Machines (FSMs)
n Each FSM consists of three separate parts:

q next state logic
q state register
q output logic

76

CLK
M Nk knext

state
logic

output
logic

inputs outputsstate
next
state

state register

At the beginning of the clock cycle, next state is latched into the state register

Changing State: The Notion of Clock (I)

n When should the light change from one state to another?
n We need a clock to dictate when to change state

q Clock signal alternates between 0 & 1

n At the start of a clock cycle (), system state changes
q During a clock cycle, the state stays constant
q In this traffic light example, we are assuming the traffic light stays in

each state an equal amount of time
77

A B C D

CLK: 0
1

LC-3 and MIPS
Instruction Set Architectures

78

The Instruction Set
n It defines opcodes, data types, and addressing modes
n ADD and LDR have been our first examples

79

ADD

1 0 1 0 00 2

OP DR SR1 SR2

6 3 0 4

OP DR BaseR offset6
LDR

Register mode

Base+offset mode

The Instruction Set Architecture
n The ISA is the interface between what the software commands

and what the hardware carries out

n The ISA specifies
q The memory organization

n Address space (LC-3: 216, MIPS: 232)
n Addressability (LC-3: 16 bits, MIPS: 32 bits)
n Word- or Byte-addressable

q The register set
n R0 to R7 in LC-3
n 32 registers in MIPS

q The instruction set
n Opcodes
n Data types
n Addressing modes

80

Microarchitecture
ISA
Program
Algorithm
Problem

Circuits
Electrons

Opcodes
n Large or small sets of opcodes could be defined

q E.g, HP Precision Architecture: an instruction for A*B+C
q E.g, x86 ISA: multimedia extensions (MMX), later SSE and AVX
q E.g, VAX ISA: opcode to save all information of one program

prior to switching to another program

n Tradeoffs are involved
q Hardware complexity vs. software complexity

n In LC-3 and in MIPS there are three types of opcodes
q Operate
q Data movement
q Control

81

Opcodes in LC-3

82

5.1 The ISA: Overview 119

BaseR� 000000�

DR�

DR� SR� 111111�

000000000000�

SR�

BaseR� offset6�

0000� trapvect8�

0 0 �0� BaseR� 000000�

1� PCoffset11�

PCoffset9�

PCoffset9�

PCoffset9�

PCoffset9�STI�

STR�

TRAP�

reserved�

0�1�2�3�4�5�6�7�8�9�10�11�12�13�14�15�

z�n p �

DR� SR1� 1� imm5�0101�

0000�

000�

DR� SR1� 0 0 �0� SR2�0101�

0001� DR� SR1� 1� imm5�

0001� DR� SR1� 0 0 �0� SR2�

DR�

DR�

1100�

1010�

0110�

1110�

1001�

1100�

1000�

0011�

BaseR� offset6�

000� 111� 000000�

SR�1011�

0111�

1111�

1101�

SR�

0100�

DR�0010�

0100�

PCoffset9�

PCoffset9�

BR�

AND+�

ADD+�

ADD+�

AND+�

JMP�

LD+�

LDI+�

LDR+�

LEA+�

NOT+�

RET�

RTI�

ST�

JSRR�

JSR�

Figure 5.3 Formats of the entire LC-3 instruction set. NOTE: + indicates instructions
that modify condition codes

Opcodes in LC-3b

83

Funct in MIPS R-Type Instructions (I)

84

Table B.1 Instructions, sorted by opcode—Cont’d

Opcode Name Description Operation

101000 (40) sb rt, imm(rs) store byte [Address]7:0 = [rt]7:0

101001 (41) sh rt, imm(rs) store halfword [Address]15:0 = [rt]15:0

101011 (43) sw rt, imm(rs) store word [Address] = [rt]

110001 (49) lwc1 ft, imm(rs) load word to FP coprocessor 1 [ft] = [Address]

111001 (56) swc1 ft, imm(rs) store word to FP coprocessor 1 [Address] = [ft]

Table B.2 R-type instructions, sorted by funct field

Funct Name Description Operation

000000 (0) sll rd, rt, shamt shift left logical [rd] = [rt] << shamt

000010 (2) srl rd, rt, shamt shift right logical [rd] = [rt] >> shamt

000011 (3) sra rd, rt, shamt shift right arithmetic [rd] = [rt] >>> shamt

000100 (4) sllv rd, rt, rs shift left logical variable [rd] = [rt] << [rs]4:0

000110 (6) srlv rd, rt, rs shift right logical variable [rd] = [rt] >> [rs]4:0

000111 (7) srav rd, rt, rs shift right arithmetic variable [rd] = [rt] >>> [rs]4:0

001000 (8) jr rs jump register PC = [rs]

001001 (9) jalr rs jump and link register $ra = PC + 4, PC = [rs]

001100 (12) syscall system call system call exception

001101 (13) break break break exception

010000 (16) mfhi rd move from hi [rd] = [hi]

010001 (17) mthi rs move to hi [hi] = [rs]

010010 (18) mflo rd move from lo [rd] = [lo]

010011 (19) mtlo rs move to lo [lo] = [rs]

011000 (24) mult rs, rt multiply {[hi], [lo]} = [rs] × [rt]

011001 (25) multu rs, rt multiply unsigned {[hi], [lo]} = [rs] × [rt]

011010 (26) div rs, rt divide [lo] = [rs]/[rt],
[hi] = [rs]%[rt]

011011 (27) divu rs, rt divide unsigned [lo] = [rs]/[rt],
[hi] = [rs]%[rt]

(continued)

APPENDIX B 621

Harris and Harris, Appendix B: MIPS Instructions

Opcode is 0
in MIPS R-

Type
instructions.
Funct defines
the operation

Funct in MIPS R-Type Instructions (II)

85Harris and Harris, Appendix B: MIPS Instructions

Table B.2 R-type instructions, sorted by funct field—Cont’d

Funct Name Description Operation

100000 (32) add rd, rs, rt add [rd] = [rs] + [rt]

100001 (33) addu rd, rs, rt add unsigned [rd] = [rs] + [rt]

100010 (34) sub rd, rs, rt subtract [rd] = [rs] – [rt]

100011 (35) subu rd, rs, rt subtract unsigned [rd] = [rs] – [rt]

100100 (36) and rd, rs, rt and [rd] = [rs] & [rt]

100101 (37) or rd, rs, rt or [rd] = [rs] | [rt]

100110 (38) xor rd, rs, rt xor [rd] = [rs] ^ [rt]

100111 (39) nor rd, rs, rt nor [rd] = ~([rs] | [rt])

101010 (42) slt rd, rs, rt set less than [rs] < [rt] ? [rd] = 1 : [rd] = 0

101011 (43) sltu rd, rs, rt set less than unsigned [rs] < [rt] ? [rd] = 1 : [rd] = 0

Table B.3 F-type instructions (fop = 16/17)

Funct Name Description Operation

000000 (0) add.s fd, fs, ft /
add.d fd, fs, ft

FP add [fd] = [fs] + [ft]

000001 (1) sub.s fd, fs, ft /
sub.d fd, fs, ft

FP subtract [fd] = [fs] – [ft]

000010 (2) mul.s fd, fs, ft /
mul.d fd, fs, ft

FP multiply [fd] = [fs] × [ft]

000011 (3) div.s fd, fs, ft /
div.d fd, fs, ft

FP divide [fd] = [fs]/[ft]

000101 (5) abs.s fd, fs /
abs.d fd, fs

FP absolute value [fd] = ([fs] < 0) ? [–fs]
: [fs]

000111 (7) neg.s fd, fs /
neg.d fd, fs

FP negation [fd] = [–fs]

111010 (58) c.seq.s fs, ft /
c.seq.d fs, ft

FP equality comparison fpcond = ([fs] == [ft])

111100 (60) c.lt.s fs, ft /
c.lt.d fs, ft

FP less than comparison fpcond = ([fs] < [ft])

111110 (62) c.le.s fs, ft /
c.le.d fs, ft

FP less than or equal comparison fpcond = ([fs] ≤ [ft])

622 APPENDIX B MIPS Instructions

n Find the complete list of instructions in the appendix

Data Types
n An ISA supports one or several data types

n LC-3 only supports 2’s complement integers

n MIPS supports
q 2’s complement integers
q Unsigned integers
q Floating point

n Again, tradeoffs are involved

87

Data Type Tradeoffs
n What is the benefit of having more or high-level data types

in the ISA?
n What is the disadvantage?

n Think compiler/programmer vs. microarchitect

n Concept of semantic gap
q Data types coupled tightly to the semantic level, or complexity

of instructions

n Example: Early RISC architectures vs. Intel 432
q Early RISC (e.g., MIPS): Only integer data type
q Intel 432: Object data type, capability based machine

88

Addressing Modes
n An addressing mode is a mechanism for specifying where

an operand is located

n There five addressing modes in LC-3
q Immediate or literal (constant)

n The operand is in some bits of the instruction
q Register

n The operand is in one of R0 to R7 registers
q Three of them are memory addressing modes

n PC-relative
n Indirect
n Base+offset

n In addition, MIPS has pseudo-direct addressing (for j and
jal), but does not have indirect addressing

89

Operate Instructions

90

Operate Instructions
n In LC-3, there are three operate instructions

q NOT is a unary operation (one source operand)
n It executes bitwise NOT

q ADD and AND are binary operations (two source operands)
n ADD is 2’s complement addition
n AND is bitwise SR1 & SR2

n In MIPS, there are many more
q Most of R-type instructions (they are binary operations)

n E.g., add, and, nor, xor…
q I-type versions (i.e., with one immediate operand) of the R-

type operate instructions
q F-type operations, i.e., floating-point operations

91

n NOT assembly and machine code

NOT in LC-3

92

NOT R3, R5

LC-3 assembly

Field Values

Machine Code

9 3 5 1 1 1 1 1 1

OP DR SR

1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1

OP DR SR

15 12 11 9 8 6 05

5.2 Operate Instructions 121

1616

R0

R1

R2

R3

R4

R5

R6

R7

A

ALU
NOT

B

0101000011110000

1010111100001111

Figure 5.4 Data path relevant to the execution of NOT R3, R5

Figure 5.4 shows the key parts of the data path that are used to perform the
NOT instruction shown here. Since NOT is a unary operation, only the A input
of the ALU is relevant. It is sourced from R5. The control signal to the ALU
directs the ALU to perform the bit-wise complement operation. The output of the
ALU (the result of the operation) is stored into R3.

The ADD (opcode = 0001) and AND (opcode = 0101) instructions both
perform binary operations; they require two 16-bit source operands. The ADD
instruction performs a 2’s complement addition of its two source operands. The
AND instruction performs a bit-wise AND of each pair of bits in its two 16-bit
operands. Like the NOT, the ADD and AND use the register addressing mode for
one of the source operands and for the destination operand. Bits [8:6] specify the
source register and bits [11:9] specify the destination register (where the result
will be written).

The second source operand for both ADD and AND instructions can be
specified by either register mode or as an immediate operand. Bit [5] determines
which is used. If bit [5] is 0, then the second source operand uses a register, and
bits [2:0] specify which register. In that case, bits [4:3] are set to 0 to complete
the specification of the instruction.

Register file

SR

DR

From
FSM

There is no NOT in MIPS. How is it implemented?

Operate Instructions
n We are already familiar with LC-3’s ADD and AND with

register mode (R-type in MIPS)

n Now let us see the versions with one literal (i.e., immediate)
operand

n Subtraction is another necessary operation
q How is it implemented in LC-3 and MIPS?

93

Operate Instr. with one Literal in LC-3
n ADD and AND

q OP = operation
n E.g., ADD = 0001 (same OP as the register-mode ADD)

q DR ← SR1 + sign-extend(imm5)

n E.g., AND = 0101 (same OP as the register-mode AND)
q DR ← SR1 AND sign-extend(imm5)

q SR1 = source register

q DR = destination register

q imm5 = Literal or immediate (sign-extend to 16 bits)

94

OP DR SR1 1 imm5
4 bits 3 bits 3 bits 5 bits

n ADD assembly and machine code

ADD with one Literal in LC-3

95

ADD R1, R4, #-2

LC-3 assembly

Field Values

Machine Code

1 1 4 1 -2

OP DR SR imm5

0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0

OP DR SR imm5

15 12 11 9 8 6 05 4

122 chapter 5 The LC-3

For example, if R4 contains the value 6 and R5 contains the value−18, then
after the following instruction is executed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

ADD R1 R4 R5

R1 will contain the value −12.
If bit [5] is 1, the second source operand is contained within the instruction.

In fact, the second source operand is obtained by sign-extending bits [4:0] to 16
bits before performing the ADD or AND. Figure 5.5 shows the key parts of the
data path that are used to perform the instruction ADD R1, R4, #−2.

Since the immediate operand in an ADD or AND instruction must fit in
bits [4:0] of the instruction, not all 2’s complement integers can be imme-
diate operands. Which integers are OK (i.e., which integers can be used as
immediate operands)?

16

1 0

0001 001 100 1 11110

ADD R1 R4 –2

16

5

0000000000000100

AB

ALU

Bit[5]

ADD

IR

1111111111111110

SEXT

R0

R1

R2

R3

R4

R5

R6

R7

0000000000000110

Figure 5.5 Data path relevant to the execution of ADD R1, R4, #-2

Register file

SR

DR

From
FSM

Instruction register

Sign-
extend

Instructions with one Literal in MIPS
n I-type

q 2 register operands and immediate
n Some operate and data movement instructions

q opcode = operation

q rs = source register

q rt =
n destination register in some instructions (e.g., addi, lw)
n source register in others (e.g., sw)

q imm = Literal or immediate

96

opcode rs rt imm
6 bits 5 bits 5 bits 16 bits

n Add immediate

Add with one Literal in MIPS

97

0 17 16 5

op rs rt imm

addi $s0, $s1, 5

MIPS assembly

Field Values

001000 10001 10010 0000 0000 0000 0101

op rs rt imm
Machine Code

0x22300005

rt ← rs + sign-extend(imm)

Subtract in LC-3
n MIPS assembly

n LC-3 assembly

n Tradeoff in LC-3
q More instructions
q But, simpler control logic

98

a = b + c - d; add $t0, $s0, $s1
sub $s3, $t0, $s2

High-level code MIPS assembly

a = b + c - d; ADD R2, R0, R1
NOT R4, R3
ADD R5, R4, #1
ADD R6, R2, R5

High-level code LC-3 assembly

2’s
complement
of R4

Subtract Immediate
n MIPS assembly

n LC-3

99

a = b - 3; subi $s1, $s0, 3

High-level code MIPS assembly

Is subi necessary in MIPS?

addi $s1, $s0, -3

MIPS assembly

a = b - 3; ADD R1, R0, #-3

High-level code LC-3 assembly

Data Movement Instructions
and Addressing Modes

100

Data Movement Instructions
n In LC-3, there are seven data movement instructions

q LD, LDR, LDI, LEA, ST, STR, STI

n Format of load and store instructions
q Opcode (bits [15:12])
q DR or SR (bits [11:9])
q Address generation bits (bits [8:0])
q Four ways to interpret bits, called addressing modes

n PC-Relative Mode
n Indirect Mode
n Base+offset Mode
n Immediate Mode

n In MIPS, there are only Base+offset and immediate modes
for load and store instructions

101

PC-Relative Addressing Mode
n LD (Load) and ST (Store)

q OP = opcode
n E.g., LD = 0010
n E.g., ST = 0011

q DR = destination register in LD
q SR = source register in ST

q LD: DR ← Memory[PC✝ + sign-extend(PCoffset9)]

q ST: Memory[PC✝ + sign-extend(PCoffset9)] ← SR

102

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

n LD assembly and machine code

LD in LC-3

103

LD R2, 0x1AF

LC-3 assembly

Field Values

Machine Code

2 2 0x1AF

OP DR PCoffset9

0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1

OP DR PCoffset9

15 12 11 9 8 0

5.3 Data Movement Instructions 125

16

16

1616

1

R0

R1

R2

R3

R4

R5

R6

R7

0010 010 110101111

15 0

IR[8:0]

PC

IR

0100 0000 0001 1001 SEXT

MAR MDR
MEMORY

0000000000000101

ADD

LD R2 x1AF

1111111110101111

3

2

Figure 5.6 Data path relevant to execution of LD R2, x1AF

incremented PC (x4019) is added to the sign-extended value contained in IR[8:0]
(xFFAF), and the result (x3FC8) is loaded into the MAR. In step 2, memory is
read and the contents of x3FC8 are loaded into theMDR. Suppose the value stored
in x3FC8 is 5. In step 3, the value 5 is loaded into R2, completing the instruction
cycle.

Note that the address of the memory operand is limited to a small range of the
total memory. That is, the address can only be within +256 or−255 locations of
the LD or ST instruction since the PC is incremented before the offset is added.
This is the range provided by the sign-extended value contained in bits [8:0] of
the instruction.

5.3.2 Indirect Mode

LDI (opcode = 1010) and STI (opcode = 1011) specify the indirect address-
ing mode. An address is first formed exactly the same way as with LD and ST.
However, instead of this address being the address of the operand to be loaded or
stored, it contains the address of the operand to be loaded or stored. Hence the
name indirect. Note that the address of the operand can be anywhere in the com-
puter’s memory, not just within the range provided by bits [8:0] of the instruction
as is the case for LD and ST. The destination register for the LDI and the source

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

3. DR is
loaded

The memory address is only +256 to -255
locations away of the LD or ST instruction

Limitation: The PC-relative addressing mode
cannot address far away from the

instruction

Indirect Addressing Mode
n LDI (Load Indirect) and STI (Store Indirect)

q OP = opcode
n E.g., LDI = 1010
n E.g., STI = 1011

q DR = destination register in LDI
q SR = source register in STI

q LDI: DR ← Memory[Memory[PC✝ + sign-extend(PCoffset9)]]

q STI: Memory[Memory[PC✝ + sign-extend(PCoffset9)]] ← SR

104

OP DR/SR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

n LDI assembly and machine code

LDI in LC-3

105

LDI R3, 0x1CC

LC-3 assembly

Field Values

Machine Code

A 3 0x1CC

OP DR PCoffset9

1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

OP DR PCoffset9

15 12 11 9 8 0

Now the address of the operand can be anywhere in the memory

126 chapter 5 The LC-3

register for STI, like all the other loads and stores, are specified in bits [11:9] of
the instruction.

If the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0

LDI R3 x1CC

is in x4A1B, and the contents of x49E8 is x2110, execution of this instruction
results in the contents of x2110 being loaded into R3.

Figure 5.7 shows the relevant parts of the data path required to execute this
instruction. As is the case with the LD and ST instructions, the first step consists
of adding the incremented PC (x4A1C) to the sign-extended value contained in
IR[8:0] (xFFCC), and the result (x49E8) loaded into theMAR. In step 2, memory
is read and the contents of x49E8 (x2110) is loaded into theMDR. In step 3, since
x2110 is not the operand, but the address of the operand, it is loaded into theMAR.
In step 4, memory is again read, and the MDR again loaded. This time the MDR
is loaded with the contents of x2110. Suppose the value −1 is stored in memory
location x2110. In step 5, the contents of the MDR (i.e.,−1) are loaded into R3,
completing the instruction cycle.

16

16

1616
1

2
3 x2110

R0

R1

R2

R3

R4

R5

R6

R7

15 0

IR[8:0]

PC

IR

SEXT

MAR MDR
MEMORY

ADD

1111111111111111

1010 011 111001100

x1CCR3

xFFCC

0100 1010 0001 1100

LDI

4

5

Figure 5.7 Data path relevant to the execution of LDI R3, x1CC

Register file

DR

Instruction register

Sign-
extend

Incremented PC

1. Address
calculation

2. Memory
read

5. DR is
loaded

4. Memory
read

3. Loaded
address
from MDR
to MAR

Base+Offset Addressing Mode
n LDR (Load Register) and STR (Store Register)

q OP = opcode
n E.g., LDR = 0110
n E.g., STR = 0111

q DR = destination register in LDR
q SR = source register in STR

q LDR: DR ← Memory[BaseR + sign-extend(offset6)]

q STR: Memory[BaseR + sign-extend(offset6)] ← SR

106

OP DR/SR offset6
4 bits 3 bits 6 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

BaseR
3 bits

n LDR assembly and machine code

LDR in LC-3

107

LDR R1, R2, 0x1D

LC-3 assembly

Again, the address of the operand can be anywhere in the memory

1. Address
calculation

2. Memory
read

3. DR is
loaded

Field Values

6 1 0x1D

OP DR offset6

2

BaseR

Machine Code

0 1 1 0 0 0 1 0 1 1 1 0 1

OP DR offset6

15 12 11 9 8 0

0 1 0

BaseR

6 5

5.3 Data Movement Instructions 127

5.3.3 Base+offset Mode

LDR (opcode = 0110) and STR (opcode = 0111) specify the Base+offset
addressing mode. The Base+offset mode is so named because the address of the
operand is obtained by adding a sign-extended 6-bit offset to a base register. The
6-bit offset is literally taken from the instruction, bits [5:0]. The base register is
specified by bits [8:6] of the instruction.

The Base+offset addressing uses the 6-bit value as a 2’s complement integer
between −32 and +31. Thus it must first be sign-extended to 16 bits before it is
added to the base register.

If R2 contains the 16-bit quantity x2345, the instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1

LDR R1 R2 x1D
loads R1 with the contents of x2362.

Figure 5.8 shows the relevant parts of the data path required to execute this
instruction. First the contents of R2 (x2345) are added to the sign-extended value
contained in IR[5:0] (x001D), and the result (x2362) is loaded into the MAR.
Second, memory is read, and the contents of x2362 are loaded into the MDR.
Suppose the value stored in memory location x2362 is x0F0F. Third, and finally,
the contents of the MDR (in this case, x0F0F) are loaded into R1.

1616

1

16

2

R0

R1

R2

R3

R4

R5

R6

R7

MAR MDRMEMORY

ADD

0000111100001111

0010001101000101

15 0

IR 1010 011 011

x1D

011101

SEXT

x001D

IR[5:0]

3

LDR R1 R2

Figure 5.8 Data path relevant to the execution of LDR R1, R2, x1D

Register file

DR

Instruction register

Sign-
extend

BaseR
001 0100110

Base+Offset Addressing Mode in MIPS
n In MIPS, lw and sw use base+offset mode (or base

addressing mode)

n imm is the 16-bit offset, which is sign-extended to 32 bits

108

A[2] = a; sw $s3, 8($s0)

High-level code MIPS assembly

Memory[$s0 + 8] ← $s3

43 16 19 8

op rs rt imm
Field Values

An Example Program in MIPS and LC-3

109

a = A[0];
c = a + b - 5;
B[0] = c;

A = $s0
b = $s2
B = $s1

High-level code MIPS registers

LDR R5, R0, #0
ADD R6, R5, R2
ADD R7, R6, #-5
STR R7, R1, #0

LC-3 assembly
lw $t0, 0($s0)
add $t1, $t0, $s2
addi $t2, $t1, -5
sw $t2, 0($s1)

MIPS assembly

A = R0
b = R2
B = R1

LC-3 registers

Immediate Addressing Mode
n LEA (Load Effective Address)

q OP = 1110

q DR = destination register

q LEA: DR ← PC✝ + sign-extend(PCoffset9)

110

OP DR PCoffset9
4 bits 3 bits 9 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

✝This is the incremented PC

What is the difference from PC-Relative addressing mode?

Answer: Instructions with PC-Relative mode access memory,
but LEA does not à Hence the name Load Effective Address

n LEA assembly and machine code

LEA in LC-3

111

LEA R5, #-3

LC-3 assembly

Field Values

Machine Code

E 5 0x1FD

OP DR PCoffset9

1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

OP DR PCoffset9

15 12 11 9 8 0

128 chapter 5 The LC-3

Note that the Base+offset addressing mode also allows the address of the
operand to be anywhere in the computer’s memory.

5.3.4 Immediate Mode

The fourth and last addressing mode used by the data movement instructions is
the immediate (or, literal) addressing mode. It is used only with the load effective
address (LEA) instruction. LEA (opcode = 1110) loads the register specified by
bits [11:9] of the instruction with the value formed by adding the incremented
program counter to the sign-extended bits [8:0] of the instruction. The immediate
addressing mode is so named because the operand to be loaded into the desti-
nation register is obtained immediately, that is, without requiring any access of
memory.

The LEA instruction is useful to initialize a register with an address that
is very close to the address of the instruction doing the initializing. If memory
location x4018 contains the instruction LEAR5, #−3, and the PC contains x4018,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1

LEA R5 −3

R5 will contain x4016 after the instruction at x4018 is executed.
Figure 5.9 shows the relevant parts of the data path required to execute the

LEA instruction. Note that no access to memory is required to obtain the value
to be loaded.

16

16

16

R0

R1

R2

R3

R4

R5

R6

R7

15 0

IR[8:0]

PC

IR

0100 0000 0001 1001 SEXT

ADD

1111111111111101

0100000000010110

LEA R5 x1FD

111111101 1011110

Figure 5.9 Data path relevant to the execution of LEA R5, #−3

Register file

DR

Instruction register

Sign-
extend

Incremented PC

Immediate Addressing Mode in MIPS
n In MIPS, lui (load upper immediate) loads a 16-bit

immediate into the upper half of a register and sets the
lower half to 0

n It is used to assign 32-bit constants to a register

112

a = 0x6d5e4f3c; # $s0 = a
lui $s0, 0x6d5e
ori $s0, 0x4f3c

High-level code MIPS assembly

Addressing Example in LC-3
n What is the final value of R3?

113

5.3 Data Movement Instructions 129

Again, LEA is the only load instruction that does not accessmemory to obtain
the information it will load into the DR. It loads into the DR the address formed
from the incremented PC and the address generation bits of the instruction.

5.3.5 An Example

We conclude our study of addressing modes with a comprehensive example.
Assume the contents of memory locations x30F6 through x30FC are as shown in
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying
out the instruction cycle seven consecutive times.

The PC points initially to location x30F6. That is, the content of the PC is
the address x30F6. Therefore, the first instruction to be executed is the one stored
in location x30F6. The opcode of that instruction is 1110, which identifies the
load effective address instruction (LEA). LEA loads the register specified by bits
[11:9] with the address formed by sign-extending bits [8:0] of the instruction
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7.
Therefore, at the end of execution of the LEA instruction, R1 contains x30F4,
and the PC contains x30F7.

The second instruction to be executed is the one stored in location x30F7.
The opcode 0001 identifies the ADD instruction, which stores the result of adding
the contents of the register specified in bits [8:6] to the sign-extended immediate
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since
the previous instruction loaded x30F4 into R1, and the sign-extended immediate
value is x000E, the value to be loaded into R2 is x3102. At the end of execution of
this instruction, R2 contains x3102, and the PC contains x30F8. R1 still contains
x30F4.

The third instruction to be executed is stored in x30F8. The opcode 0011
specifies the ST instruction, which stores the contents of the register specified by
bits [11:9] of the instruction into the memory location whose address is computed
using the PC-relative addressingmode. That is, the address is computed by adding
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1<- PC-3
x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2<- R1+14
x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[x30F4]<- R2
x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2<- 0
x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2<- R2+5
x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14]<- R2
x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 R3<- M[M[x3F04]]

Figure 5.10 Addressing mode example

x30F4

P&P, Chapter 5.3.5

n What is the final value of R3?

n The final value of R3 is 5

5.3 Data Movement Instructions 129

Again, LEA is the only load instruction that does not accessmemory to obtain
the information it will load into the DR. It loads into the DR the address formed
from the incremented PC and the address generation bits of the instruction.

5.3.5 An Example

We conclude our study of addressing modes with a comprehensive example.
Assume the contents of memory locations x30F6 through x30FC are as shown in
Figure 5.10, and the PC contains x30F6. We will examine the effects of carrying
out the instruction cycle seven consecutive times.

The PC points initially to location x30F6. That is, the content of the PC is
the address x30F6. Therefore, the first instruction to be executed is the one stored
in location x30F6. The opcode of that instruction is 1110, which identifies the
load effective address instruction (LEA). LEA loads the register specified by bits
[11:9] with the address formed by sign-extending bits [8:0] of the instruction
and adding the result to the incremented PC. The 16-bit value obtained by sign-
extending bits [8:0] of the instruction is xFFFD. The incremented PC is x30F7.
Therefore, at the end of execution of the LEA instruction, R1 contains x30F4,
and the PC contains x30F7.

The second instruction to be executed is the one stored in location x30F7.
The opcode 0001 identifies the ADD instruction, which stores the result of adding
the contents of the register specified in bits [8:6] to the sign-extended immediate
in bits [4:0] (since bit [5] is 1) in the register specified by bits [11:9]. Since
the previous instruction loaded x30F4 into R1, and the sign-extended immediate
value is x000E, the value to be loaded into R2 is x3102. At the end of execution of
this instruction, R2 contains x3102, and the PC contains x30F8. R1 still contains
x30F4.

The third instruction to be executed is stored in x30F8. The opcode 0011
specifies the ST instruction, which stores the contents of the register specified by
bits [11:9] of the instruction into the memory location whose address is computed
using the PC-relative addressingmode. That is, the address is computed by adding
the incremented PC to the 16-bit value obtained by sign-extending bits [8:0] of
the instruction. The 16-bit value obtained by sign-extending bits [8:0] of the
instruction is xFFFB. The incremented PC is x30F9. Therefore, at the end of

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1<- PC-3
x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2<- R1+14
x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[x30F4]<- R2
x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2<- 0
x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2<- R2+5
x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14]<- R2
x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 R3<- M[M[x3F04]]

Figure 5.10 Addressing mode example

x30F4

Addressing Example in LC-3

114

LEA
ADD
ST
AND
ADD
STR
LDI

-3
14

-5

5
14

-9

0

R3 = M[M[PC – 9]] = M[M[0x30FD – 9]] =

R1 = PC – 3 = 0x30F7 – 3 = 0x30F4
R2 = R1 + 14 = 0x30F4 + 14 = 0x3102

M[PC - 5] = M[0x030F4] = 0x3102
R2 = 0
R2 = R2 + 5 = 5

M[R1 + 14] = M[0x30F4 + 14] = M[0x3102] = 5

M[M[0x30F4]] = M[0x3102] = 5

P&P, Chapter 5.3.5

Control Flow Instructions

115

Control Flow Instructions
n Allow a program to execute out of sequence

n Conditional branches and jumps

q Conditional branches are used to make decisions
n E.g., if-else statement

q In LC-3, three condition codes are used

q Jumps are used to implement
n Loops
n Function calls

q JMP in LC-3 and j in MIPS

116

Condition Codes in LC-3
n Each time one GPR (R0-R7) is written, three single-bit registers

are updated

n Each of these condition codes are either set (set to 1) or cleared
(set to 0)

q If the written value is negative
n N is set, Z and P are cleared

q If the written value is zero
n Z is set, N and P are cleared

q If the written value is positive
n P is set, N and P are cleared

n SPARC and x86 are examples of ISAs that use condition codes
117

Conditional Branches in LC-3
n BRz (Branch if Zero)

q n, z, p = which condition code is tested (N, Z, and/or P)
n n, z, p: instruction bits to identify the condition codes to be tested
n N, Z, P: values of the corresponding condition codes

q PCoffset9 = immediate or constant value

q if ((n AND N) OR (p AND P) OR (z AND Z))
n then PC ← PC✝ + sign-extend(PCoffset9)

q Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

118

BRz PCoffset9

0000 n PCoffset9
4 bits 9 bits

z p

✝This is the incremented PC

Conditional Branches in LC-3
n BRz

119

BRz 0x0D9

What if n = z = p = 1?*
(i.e., BRnzp)

And what if n = z = p = 0?

132 chapter 5 The LC-3

16

SEXT

16 16

PCMUX

ADD

0000000011011001

IR 010

N Z P PCoffset9BR

0000 011011001

9

Yes!

PZN

0 1 0

PC 0100 0000 0010 1000

0100 0001 0000 0001

Figure 5.11 Data path relevant to the execution of BRz x0D9

the instruction flow is changed unconditionally, that is, independent of the data
that is being processed.

For example, if the following instruction,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1

BR n z p x185

located at x507B, is executed, the PC is loaded with x5001.
What happens if all three bits [11:9] in the BR instruction are 0?

5.4.2 An Example

We are ready to show by means of a simple example the value of having control
instructions in the instruction set.

Suppose we know that the 12 locations x3100 to x310B contain integers, and
we wish to compute the sum of these 12 integers.

Instruction
register

Program
Counter

Condition
registers

n z p

*n, z, p are the instruction bits to identify the condition codes to be tested

Conditional Branches in MIPS
n beq (Branch if Equal)

q 4 = opcode

q rs, rt = source registers

q offset = immediate or constant value

q if rs == rt
n then PC ← PC✝ + sign-extend(offset) * 4

q Variations: beq, bne, blez, bgtz

120

4 rs rt offset
6 bits 5 bits 5 bits 16 bits

beq $s0, $s1, offset

✝This is the incremented PC

n This is an example of tradeoff in the instruction set

q The same functionality requires more instructions in LC-3

q But, the control logic requires more complexity in MIPS

beq $s0, $s1, offset

Branch If Equal in MIPS and LC-3

121

LC-3 assemblyMIPS assembly
NOT R2, R1
ADD R3, R2, #1
ADD R4, R3, R0
BRz offset

Subtract
(R0 - R1)

Lecture Summary
n The von Neumann model

q LC-3: An example of von Neumann machine

n Instruction Set Architectures: LC-3 and MIPS
q Operate instructions
q Data movement instructions
q Control instructions

n Instruction formats

n Addressing modes

122

