CSCE 212: Computer Architecture Lecture 2: Von Neumann Model, ISA, LC-3 and MIPS

Prof. Pooyan Jamshidi

University of South Carolina

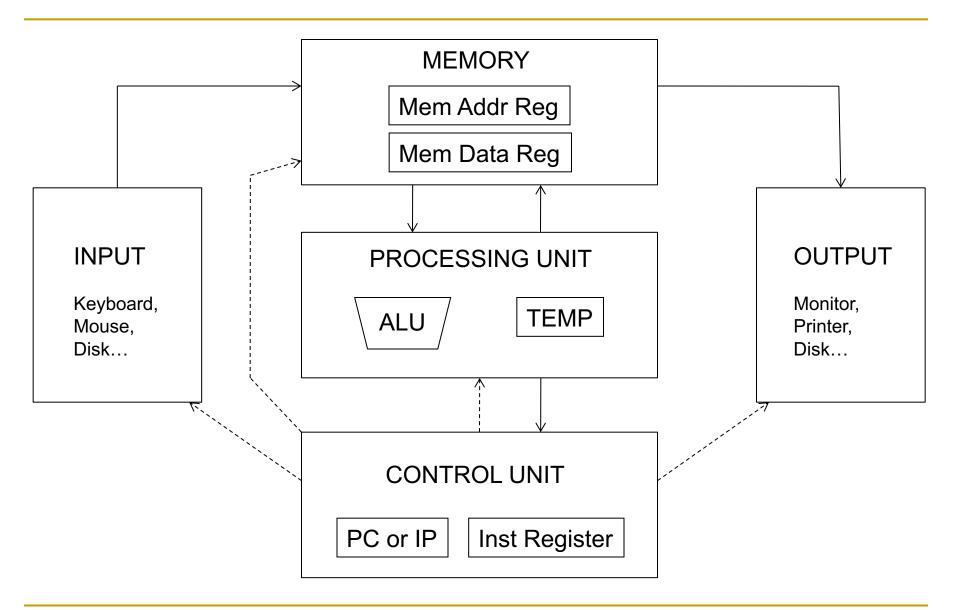
Agenda for Today & Next Few Lectures

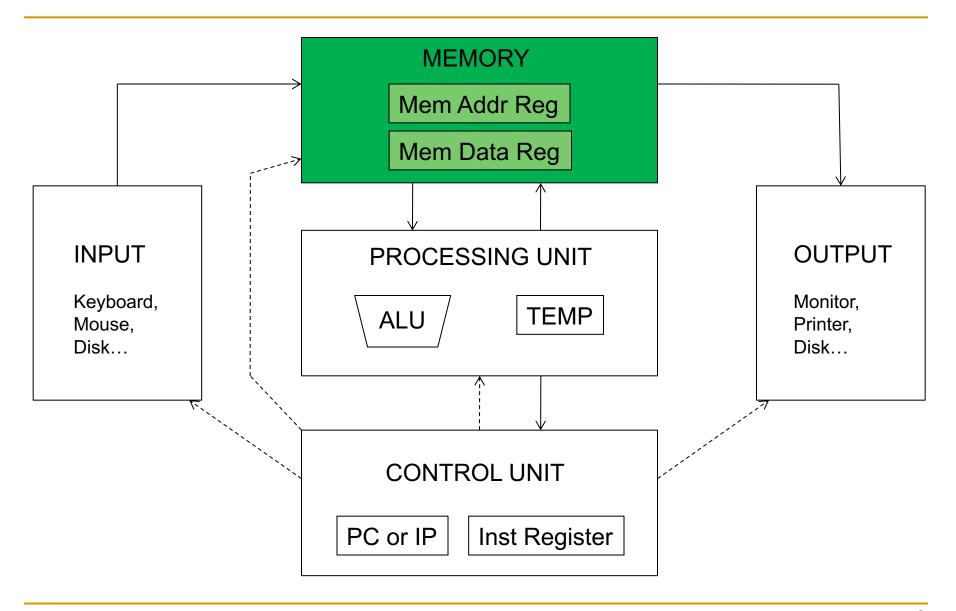
- The von Neumann model
- LC-3: An example of von Neumann machine
- LC-3 and MIPS Instruction Set Architectures
- LC-3 and MIPS assembly and programming
- Introduction to microarchitecture and single-cycle microarchitecture
- Multi-cycle microarchitecture

What Will We Learn Today?

- The von Neumann model
 - LC-3: An example von Neumann machine
- Instruction Set Architectures: LC-3 and MIPS
 - Operate instructions
 - Data movement instructions
 - Control instructions
- Instruction formats
- Addressing modes

Basic Elements of a Computer


- Basic elements of a computer
 - Decision elements
 - Storage elements
- Remember these from digital design course?
 - Combinational circuits
 - Sequential circuits
- To get a task done by a computer we need
 - Computer
 - Data
 - Program: A set of instructions
 - Instruction: the smallest piece of work in a computer


- Let's start building the computer
- In order to build a computer we need a model
- John von Neumann proposed a fundamental model in 1946
- It consists of 5 parts
 - Memory
 - Processing unit
 - Input
 - Output
 - Control unit

- Throughout this lecture, we consider two examples of the von Neumann model
 - □ LC-3
 - MIPS

Burks, Goldstein, von Neumann, "Preliminary discussion of the logical design of an electronic computing instrument," 1946.

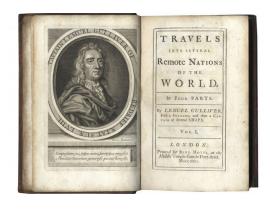
Memory

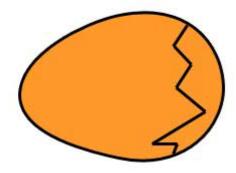
- The memory stores
 - Data
 - Programs
- The memory contains bits
 - Bits are grouped into bytes (8 bits) and words (e.g., 8, 16, 32 bits)
- How the bits are accessed determines the addressability
 - E.g., word-addressable
 - E.g., 8-bit addressable (or byte-addressable)
- The total number of addresses is the address space
 - \Box In LC-3, the address space is 2^{16}
 - 16-bit addresses
 - \Box In MIPS, the address space is 2^{32}
 - 32-bit addresses
 - \Box In x86-64, the address space is (up to) 2^{48}
 - 48-bit addresses

Word-Addressable Memory

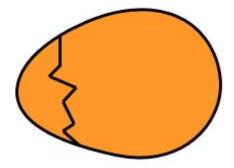
- Each data word has a unique address
 - In MIPS, a unique address for each 32-bit data word
 - □ In LC-3, a unique address for each 16-bit data word

Vord Address	Data MI	PS memory
•		•
•	•	•
•	•	•
0000003	D1617A1C	Word 3
0000002	13C81755	Word 2
0000001	F2F1F0F7	Word 1
0000000	89ABCDEF	Word 0


Byte-Addressable Memory


- Each byte has a unique address
 - Actually, MIPS is byte-addressable
 - LC-3b (updated version of LC-3) is byte-addressable, too

Byte Address	Data MIP			'S memory	
of the Word			•		•
•			_		•
-			-		- h
000000C	D 1	6 1	7 A	1 C	Word 3
8000000	13	C 8	17	5 5	Word 2
0000004	F 2	F 1	F 0	F 7	Word 1
0000000	How are these four bytes addressed?				Word 0


Big Endian vs Little Endian

- Jonathan Swift's Gulliver's Travels
 - Little Endians broke their eggs on the little end of the egg
 - Big Endians broke their eggs on the big end of the egg

BIG ENDIAN - The way people always broke their eggs in the Lilliput land

LITTLE ENDIAN - The way the king then ordered the people to break their eggs

Big Endian vs Little Endian

Big Endian

Byte Address

•

 C
 D
 E
 F

 8
 9
 A
 B

 4
 5
 6
 7

 0
 1
 2
 3

Address of the Word

C

8

4

 $\mathbf{0}$

Little Endian

•

F	Ш	D	С
В	Α	9	8
7	6	5	4
3	2	1	0

MSB

LSB

MSB

LSB

Big Endian vs Little Endian

Big Endian

Little Endian

Does this really matter?

Answer: No, it is a convention

Qualified answer: No, except when one bigendian system and one little-endian system have to share data

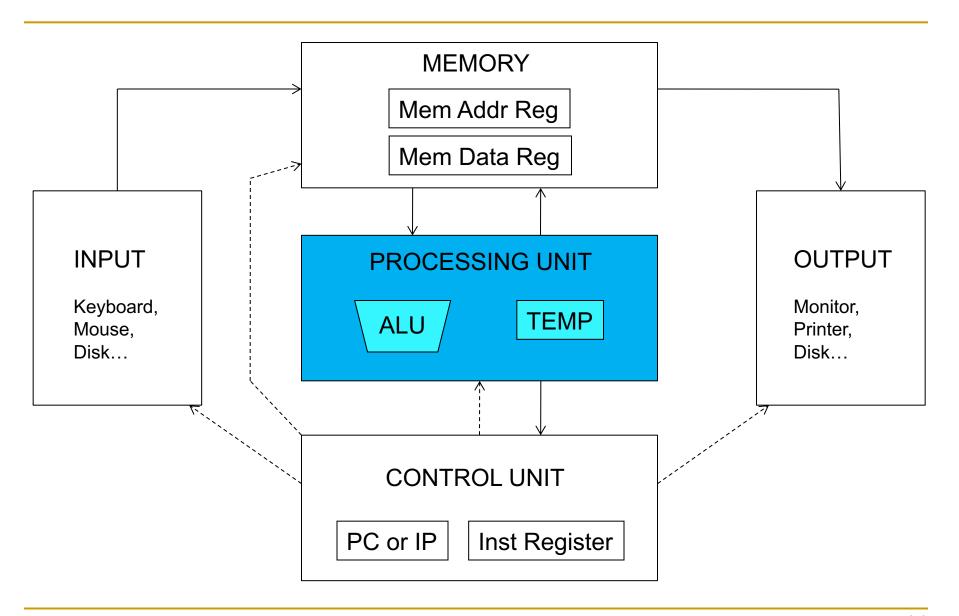
MSB

LSB

MSB

LSB

Accessing Memory: MAR and MDR


- There are two ways of accessing memory
 - Reading or loading
 - Writing or storing
- Two registers are necessary to access memory
 - Memory Address Register (MAR)
 - Memory Data Register (MDR)

To read

- Step 1: Load the MAR with the address
- Step 2: Data is placed in MDR

To write

- Step 1: Load the MAR with the address and the MDR with the data
- Step 2: Activate Write Enable signal

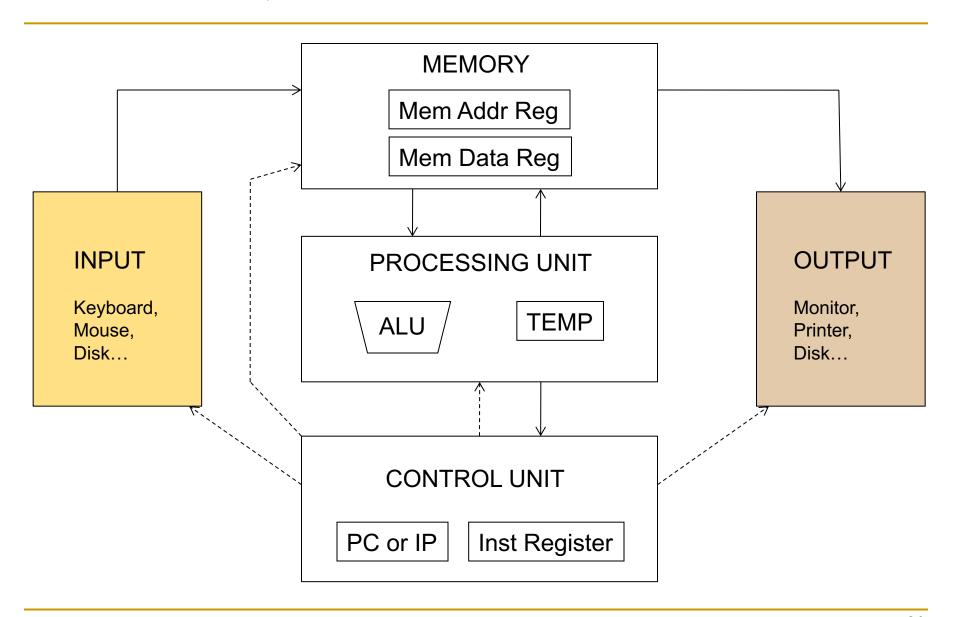
Processing Unit

- The processing unit can consist of many functional units
- We start with a simple Arithmetic and Logic Unit (ALU), which executes computations
 - LC-3: ADD, AND, NOT (XOR in LC-3b)
 - MIPS: add, sub, mult, and, nor, sll, srl, slt...
- The ALU processes quantities that are referred to as words
 - Word length in LC-3 is 16 bits
 - In MIPS it is 32 bits
- Temporary storage: Registers
 - E.g., to calculate (A+B)*C, the intermediate result of A+B is stored in a register

Registers

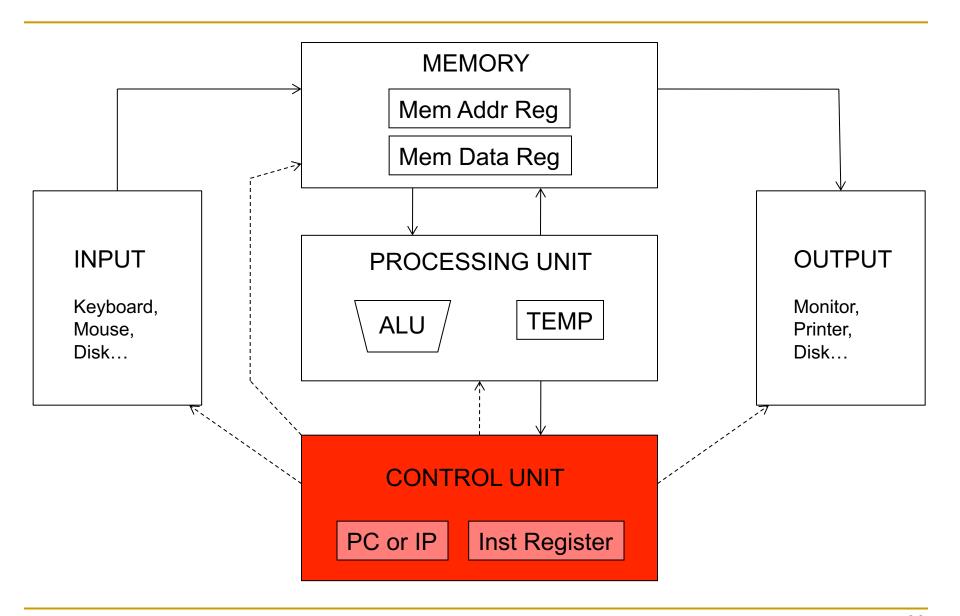
Memory is big but slow

Registers


- Ensure fast access to operands
- Typically one register contains one word

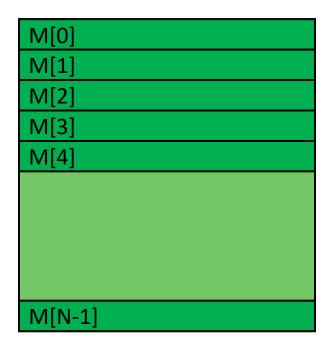
Register set or file

- LC-3 has 8 general purpose registers (GPR)
 - R0 to R7: 3-bit register number
 - Register size = Word length = 16 bits
- MIPS has 32 registers
 - Register size = Word length = 32 bits


MIPS Register File

Name	Register Number	Usage
\$0	0	the constant value 0
\$at	1	assembler temporary
\$v0-\$v1	2-3	function return value
\$a0-\$a3	4-7	function arguments
\$t0-\$t7	8-15	temporary variables
\$s0-\$s7	16-23	saved variables
\$t8-\$t9	24-25	temporary variables
\$k0-\$k1	26-27	OS temporaries
\$gp	28	global pointer
\$sp	29	stack pointer
\$fp	30	frame pointer
\$ra	31	function return address

Input and Output


- Many devices can be used for input and output
- They are called peripherals
 - Input
 - Keyboard
 - Mouse
 - Scanner
 - Disks
 - Etc.
 - Output
 - Monitor
 - Printer
 - Disks
 - Etc.
 - □ In LC-3, we consider keyboard and monitor

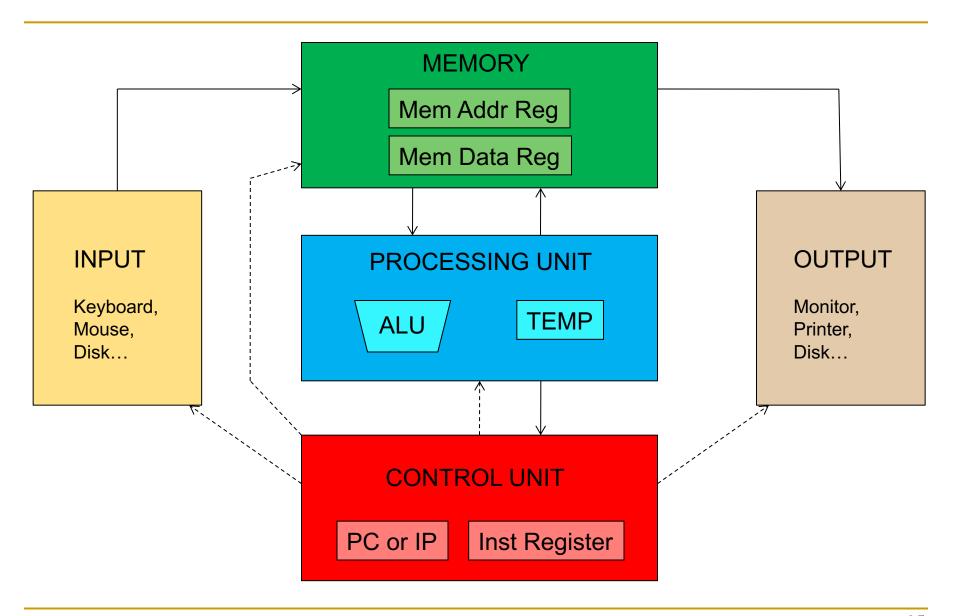
Control Unit

- The control unit is similar to the conductor of an orchestra
- It conducts the step-by-step process of executing (every instruction in) a program
- It keeps track of the instruction being executed with an instruction register (IR), which contains the instruction
- Another register contains the address of the next instruction to execute. It is called program counter (PC) or instruction pointer (IP)

Programmer Visible (Architectural) State

Memory

array of storage locations indexed by an address


Registers

- given special names in the ISA (as opposed to addresses)
- general vs. special purpose

Program Counter

memory address of the current instruction

Instructions (and programs) specify how to transform the values of programmer visible state

Von Neumann Model: Two Key Properties

 Von Neumann model is also called stored program computer (instructions in memory). It has two key properties:

Stored program

- Instructions stored in a linear memory array
- Memory is unified between instructions and data
 - The interpretation of a stored value depends on the control signals

Sequential instruction processing

- One instruction processed (fetched, executed, completed) at a time
- Program counter (instruction pointer) identifies the current instruction
- Program counter is advanced sequentially except for control transfer instructions

LC-3: A Von Neumann Machine

LC-3: A Von Neumann Machine

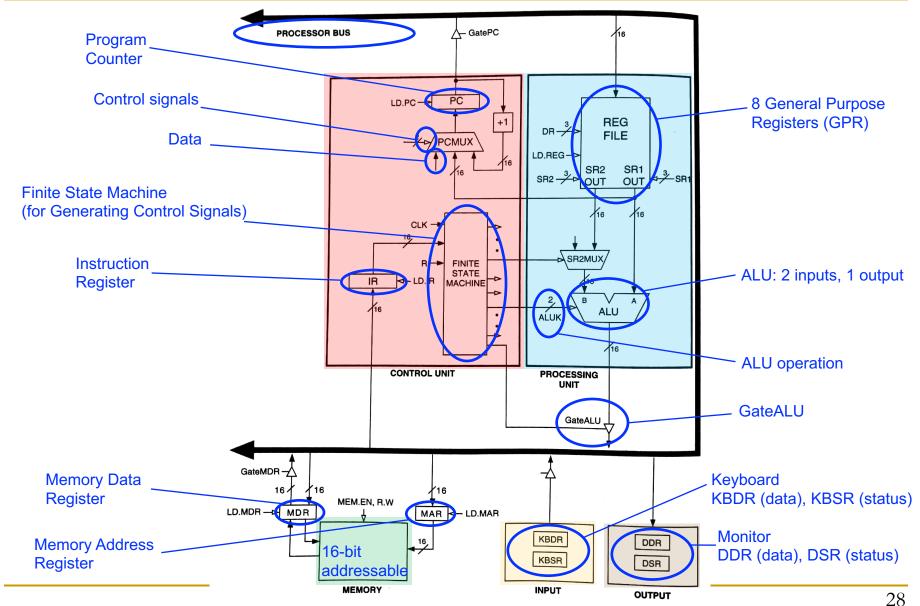
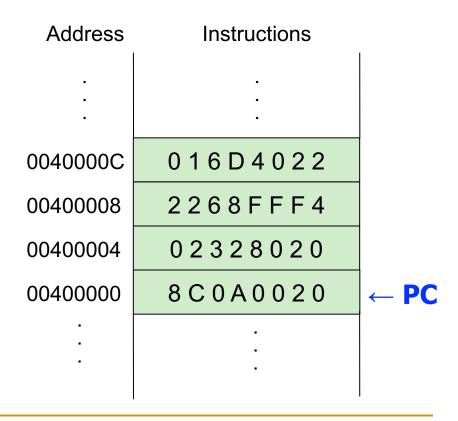


Figure 4.3 The LC-3 as an example of the von Neumann model

Stored Program & Sequential Execution

- Instructions and data are stored in memory
 - Typically the instruction length is the word length
- The processor fetches instructions from memory sequentially
 - Fetches one instruction
 - Decodes and executes the instruction
 - Continues with the next instruction
- The address of the current instruction is stored in the program counter (PC)
 - If word-addressable memory, the processor increments the PC by 1 (in LC-3)
 - If byte-addressable memory, the processor increments the PC by the word length (4 in MIPS)
 - In MIPS the OS typically sets the PC to 0x00400000 (start of a program)

A Sample Program Stored in Memory


- A sample MIPS program
 - 4 instructions stored in consecutive words in memory
 - No need to understand the program now. We will get back to it

MIPS assembly

lw	\$t2,	32(\$0))	
add	\$s0,	\$s1,	\$s2	
addi	\$t0,	\$s3,	-12	
sub	\$t0,	\$t3,	\$t5	

Machine code

0x8C0A0020	
0x02328020	
0x2268FFF4	
0x016D4022	

The Instruction

- An instruction the most basic unit of computer processing
 - Instructions are words in the language of a computer
 - Instruction Set Architecture (ISA) is the vocabulary
- The language of the computer can be written as
 - Machine language: Computer-readable representation (that is, 0's and 1's)
 - Assembly language: Human-readable representation
- We will look at LC-3 instructions and MIPS instructions
- Let us start with some example instructions

Instruction Types

- There are three main types of instructions
- Operate instructions
 - Execute instructions in the ALU
- Data movement instructions
 - Read from or write to memory
- Control flow instructions
 - Change the sequence of execution

An Example Operate Instruction

Addition

High-level code

Assembly

$$a = b + c;$$

add a, b, c

- add: mnemonic to indicate the operation to perform
- b, c: source operands
- a: destination operand
- $a \leftarrow b + c$

Registers

We map variables to registers

Assembly

add a, b, c

LC-3 registers

$$b = R1$$

$$c = R2$$

$$a = R0$$

MIPS registers

$$b = \$s1$$

$$c = $s2$$

$$a = $s0$$

From Assembly to Machine Code in LC-3

Addition

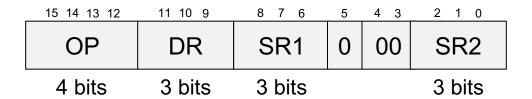
LC-3 assembly

ADD R0, R1, R2

Field Values

OP	DR	SR1			SR2
1	0	1	0	00	2

Machine Code


OP	DR	SR1		SR2
0001	000	0 0 1	0 0 0	010
15 14 13 12	11 10 9	8 7 6	5 4 3	2 1 0

0x1042

Machine Code, in short (hexadecimal)

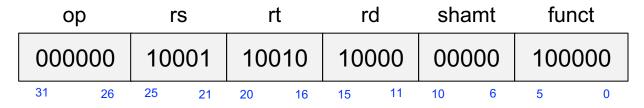
Instruction Format (or Encoding)

■ LC-3

- OP = opcode (what the instruction does)
 - E.g., ADD = 0001
 - □ Semantics: DR ← SR1 + SR2
 - E.g., AND = 0101
 - □ Semantics: DR ← SR1 AND SR2
- □ SR1, SR2 = source registers
- DR = destination register

From Assembly to Machine Code in MIPS

Addition


MIPS assembly

Field Values

op	rs	rt	rd	shamt	funct
0	17	18	16	0	32

$$rd \leftarrow rs + rt$$

Machine Code

0x02328020

Instruction Formats: R-Type in MIPS

- R-type
 - 3 register operands
- MIPS

0	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- \bigcirc 0 = opcode
- rs, rt = source registers
- □ rd = destination register
- shamt = shift amount (only shift operations)
- funct = operation in R-type instructions

Reading Operands from Memory

- With the operate instructions, such as addition, we tell the computer to execute arithmetic (or logic) computations in the ALU
- We also need instructions to access the operands from memory
- Next, we see how to read (or load) from memory
- Writing (or storing) is performed in a similar way, but we will talk about that later

Reading Word-Addressable Memory

Load word

High-level code

Assembly

```
a = A[i];
```

load a, A, i

- load: mnemonic to indicate the load word operation
- A: base address
- i: offset
 - E.g., immediate or literal (a constant)
- a: destination operand
- □ Semantics: a ← Memory[A + i]

Load Word in LC-3 and MIPS

LC-3 assembly

High-level code

$$a = A[2];$$

LC-3 assembly

$$R3 \leftarrow Memory[R0 + 2]$$

MIPS assembly

High-level code

$$a = A[2];$$

MIPS assembly

$$$s3 \leftarrow Memory[$s0 + 2]$$

These instructions use a particular addressing mode (i.e., the way the address is calculated), called base+offset

Load Word in Byte-Addressable MIPS

MIPS assembly

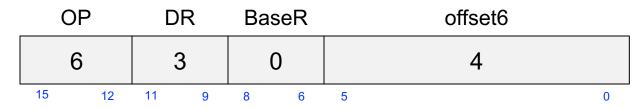
High-level code

$$a = A[2];$$

MIPS assembly

```
lw $s3, 8($s0)
$s3 ← Memory[$s0 + 8]
```

- Byte address is calculated as: word_address * bytes/word
 - 4 bytes/word in MIPS
 - □ If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word

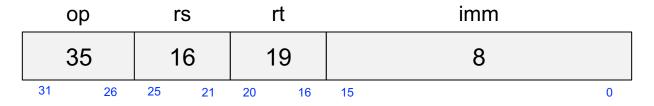

Instruction Format With Immediate

LC-3

LC-3 assembly

LDR R3, R0, #4

Field Values



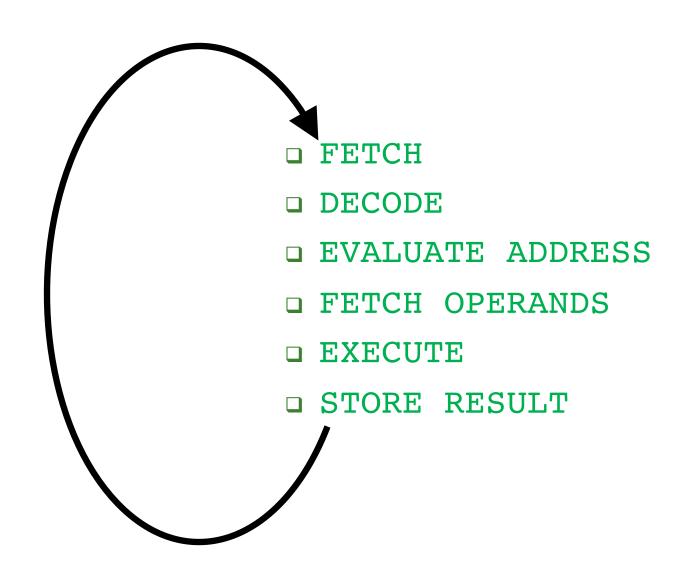
MIPS

MIPS assembly

lw \$s3, 8(\$s0)

Field Values

I-Type


How are These Instructions Executed?

- By using instructions we can speak the language of the computer
- Thus, we now know how to tell the computer to
 - Execute computations in the ALU by using, for instance, an addition
 - Access operands from memory by using the load word instruction
- But, how are these instructions executed on the computer?
 - The process of executing an instruction is called is the instruction cycle

The Instruction Cycle

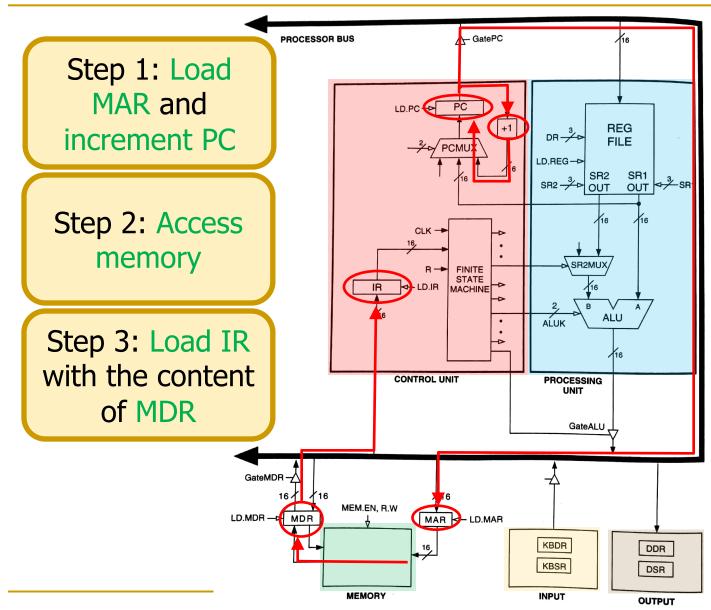
- The instruction cycle is a sequence of steps or phases, that an instruction goes through to be executed
 - □ FETCH
 - DECODE
 - EVALUATE ADDRESS
 - □ FETCH OPERANDS
 - □ EXECUTE
 - □ STORE RESULT
- Not all instructions have the six phases
 - LDR does not require EXECUTE
 - ADD does not require EVALUATE ADDRESS
 - Intel x86 instruction ADD [eax], edx is an example of instruction with six phases

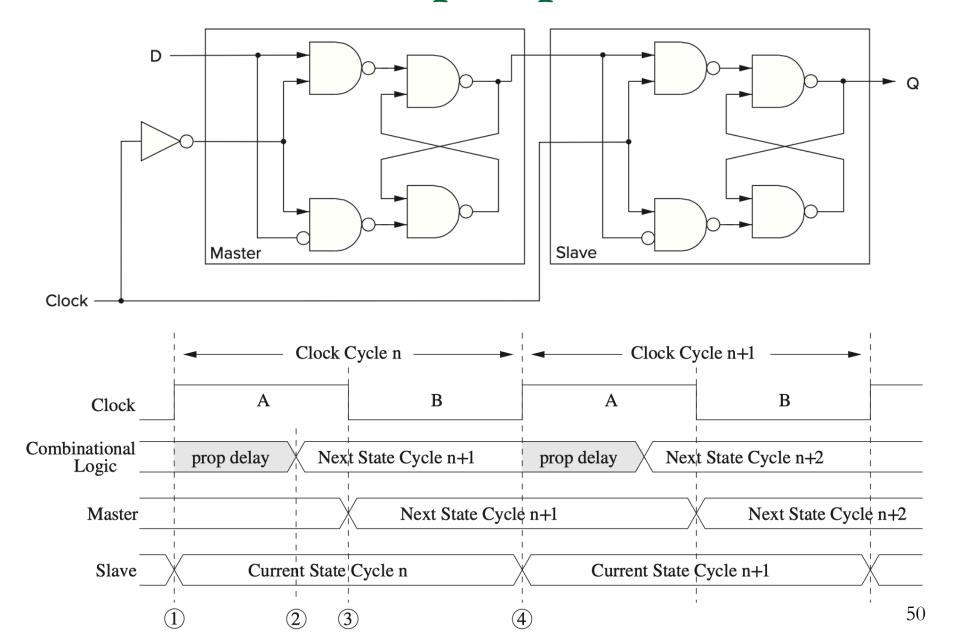
After STORE RESULT, a New FETCH

FETCH

- The FETCH phase obtains the instruction from memory and loads it into the instruction register
- This phase is common to every instruction type
- Complete description
 - Step 1: Load the MAR with the contents of the PC, and simultaneously increment the PC
 - Step 2: Interrogate memory. This results the instruction to be placed in the MDR
 - Step 3: Load the IR with the contents of the MDR

FETCH in LC-3



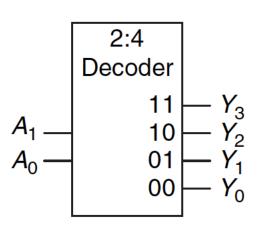

Figure 4.3 The LC-3 as an example of the von Neumann model

Digital Buffer and Tri-State Buffer

Symbol	Truth Table	
	А	Q
A • 1 • Q	0	0
The Digital Buffer	1	1
Boolean Expression Q = A	Read as: A gives Q	

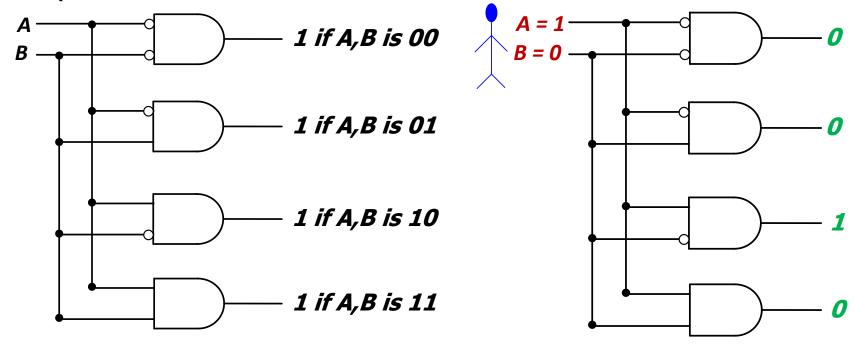
Symbol		Truth Table	
	Enable	IN	OUT
Enable -	0	0	Hi-Z
Data IN Output	0	1	Hi-Z
Tri-state Buffer	1	0	0
	1	1	1
Read as Output = Input if Enable is equal to "1"			

A master/slave flip-flop

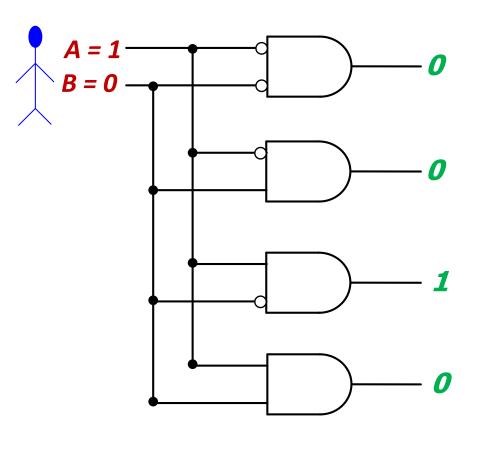

DECODE

- The DECODE phase identifies the instruction
- Recall the decoder
 - A 4-to-16 decoder identifies which of the 16 opcodes is going to be processed
- The input is the four bits IR[15:12]
- The remaining 12 bits identify what else is needed to process the instruction

Decoder


- "Input pattern detector"
- n inputs and 2ⁿ outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect
- Example: 2-to-4 decoder

<i>A</i> ₁	A_0	<i>Y</i> ₃	Y_2	<i>Y</i> ₁	<i>Y</i> ₀
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	0 0 0 1	0	0	0


Decoder (I)

- n inputs and 2ⁿ outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect

Decoder (II)

- The decoder is useful in determining how to interpret a bit pattern
 - It could be the address of a row in DRAM, that the processor intends to read from
 - It could be an instruction in the program and the processor has to decide what action to do! (based on instruction opcode)

DECODE in LC-3

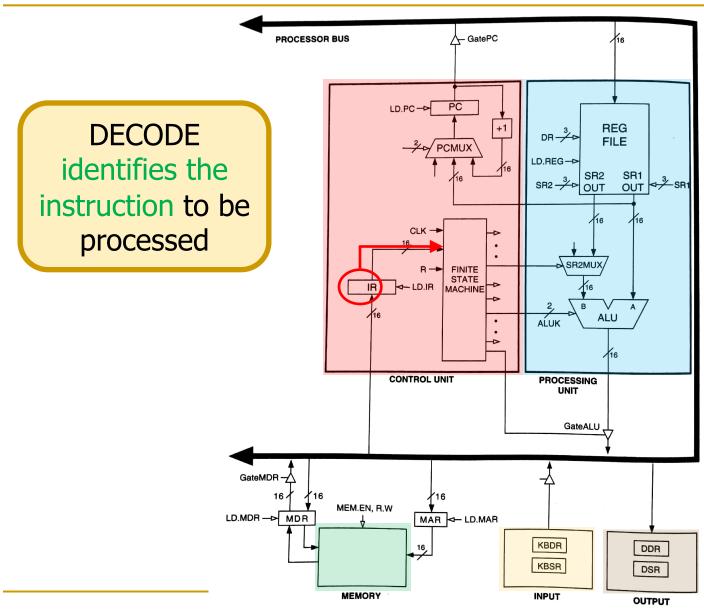


Figure 4.3 The LC-3 as an example of the von Neumann model

EVALUATE ADDRESS

- The EVALUATE ADDRESS phase computes the address of the memory location that is needed to process the instruction
- This phase is necessary in LDR
 - It computes the address of the data word that is to be read from memory
 - By adding an offset to the content of a register
- But not necessary in ADD

EVALUATE ADDRESS in LC-3

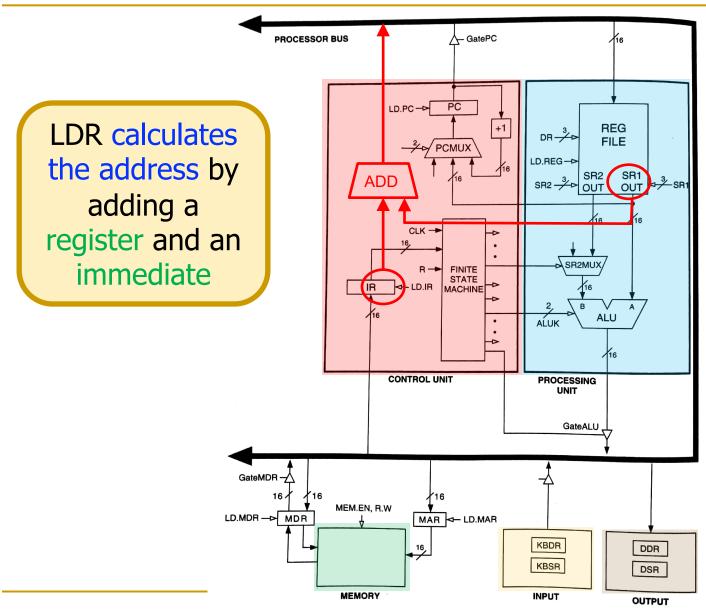


Figure 4.3 The LC-3 as an example of the von Neumann model

FETCH OPERANDS

 The FETCH OPERANDS phase obtains the source operands needed to process the instruction

In LDR

- Step 1: Load MAR with the address calculated in EVALUATE ADDRESS
- Step 2: Read memory, placing source operand in MDR
- In ADD
 - Obtain the source operands from the register file
 - In most current microprocessors, this phase can be done at the same time the instruction is being decoded

FETCH OPERANDS in LC-3

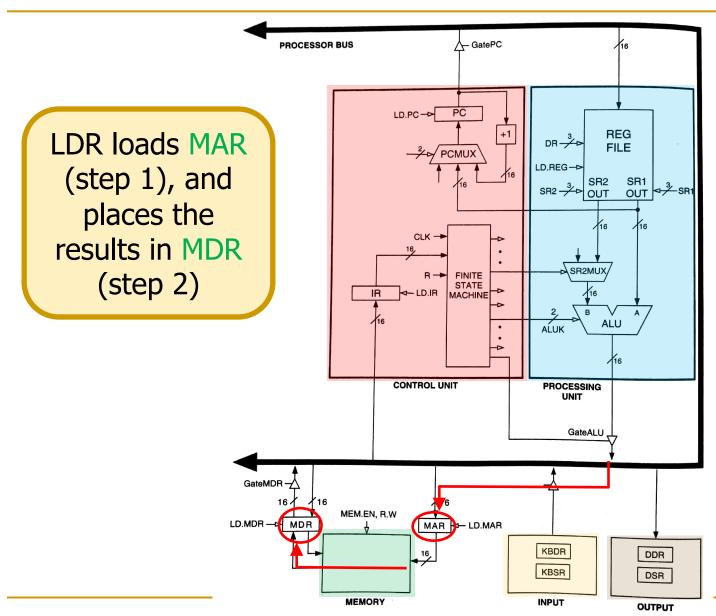


Figure 4.3 The LC-3 as an example of the von Neumann model

EXECUTE

- The EXECUTE phase executes the instruction
 - In ADD, it performs addition in the ALU

EXECUTE in LC-3

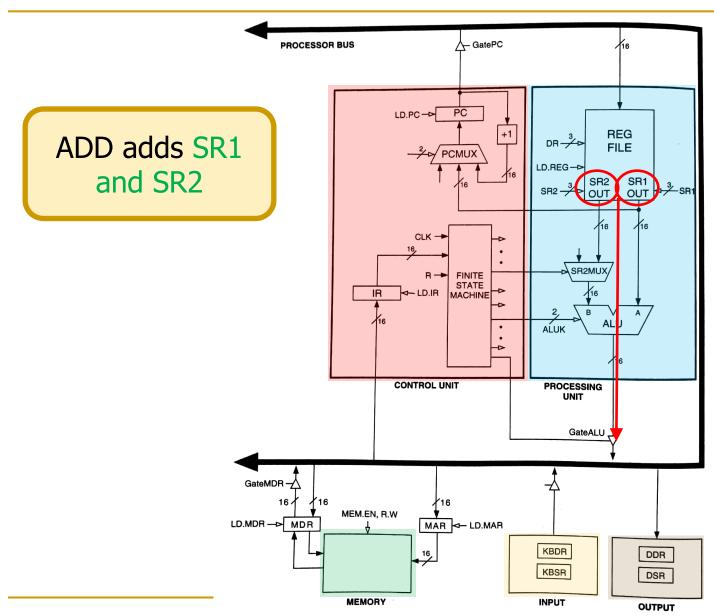


Figure 4.3 The LC-3 as an example of the von Neumann model

STORE RESULT

The STORE RESULT phase writes to the designated destination

 Once STORE RESULT is completed, a new instruction cycle starts (with the FETCH phase)

STORE RESULT in LC-3

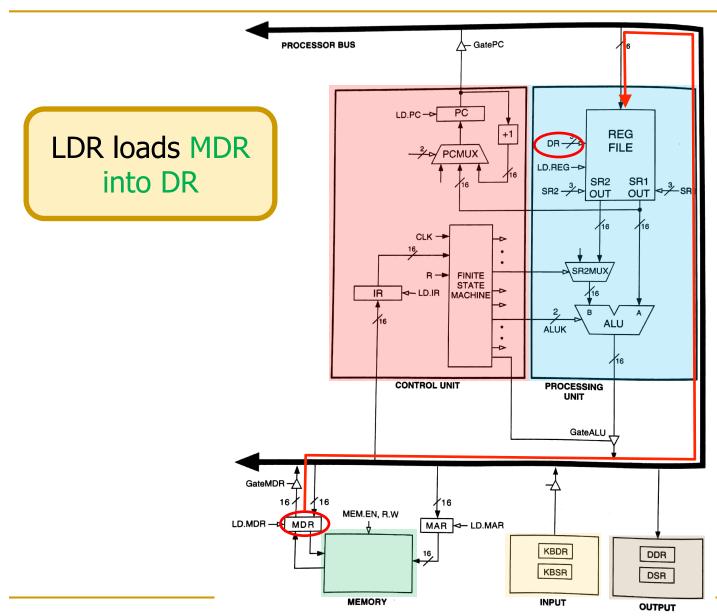
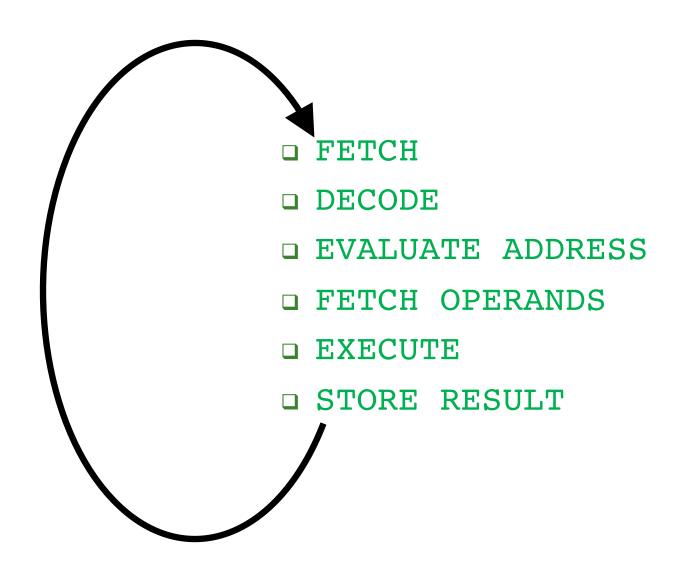
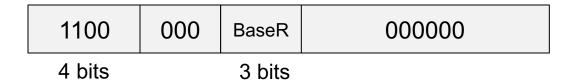



Figure 4.3 The LC-3 as an example of the von Neumann model

The Instruction Cycle


Changing the Sequence of Execution

- A computer program executes in sequence (i.e., in program order)
 - First instruction, second instruction, third instruction and so on
- Unless we change the sequence of execution
- Control instructions allow a program to execute out of sequence
 - They can change the PC by loading it during the EXECUTE phase
 - That wipes out the incremented PC (loaded during the FETCH phase)

Jump in LC-3

- Unconditional branch or jump
- LC-3

JMP R2

- □ BaseR = Base register
- □ PC ← R2 (Register identified by BaseR)

This is register addressing mode

- Variations
 - RET: special case of JMP where BaseR = R7
 - JSR, JSRR: jump to subroutine

Jump in MIPS

- Unconditional branch or jump
- MIPS

j target	
----------	--

2	target
6 bits	26 bits

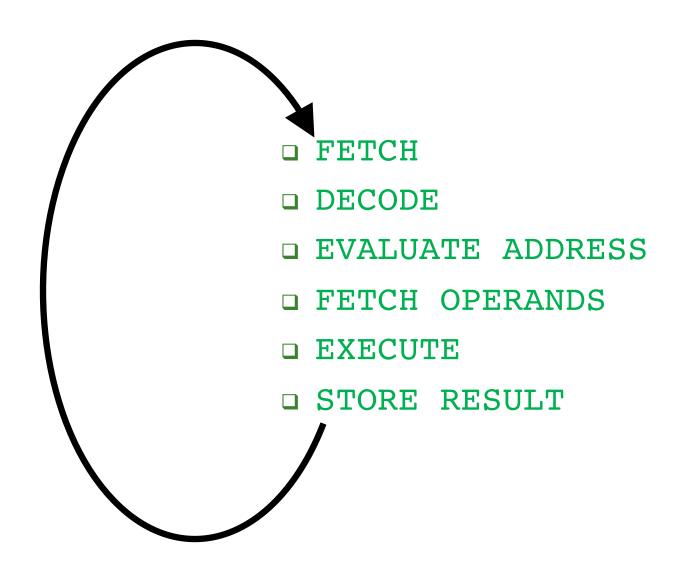
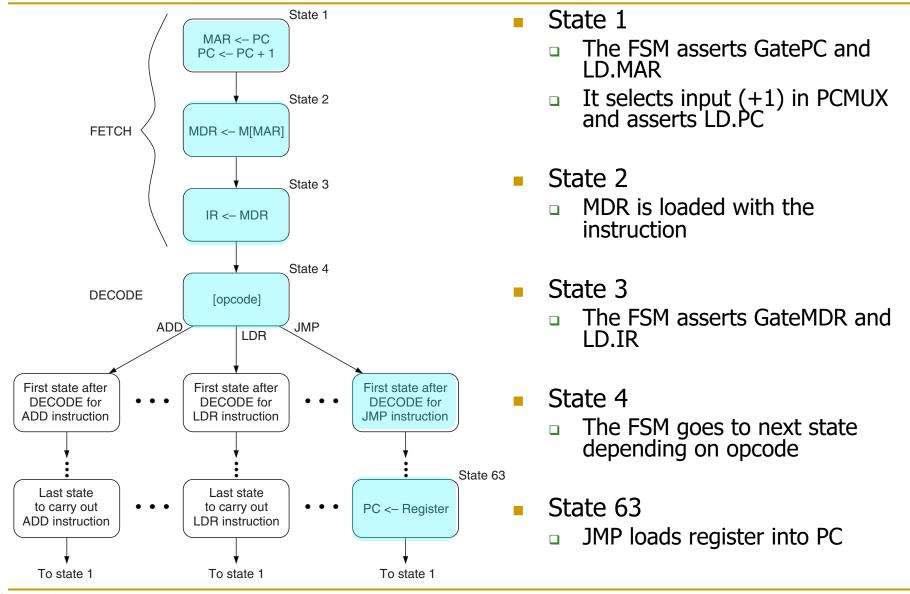
- \square 2 = opcode
- target = target address
- □ PC ← PC[†][31:28] | sign-extend(target) * 4
- Variations
 - jal: jump and link (function calls)
 - jr: jump register

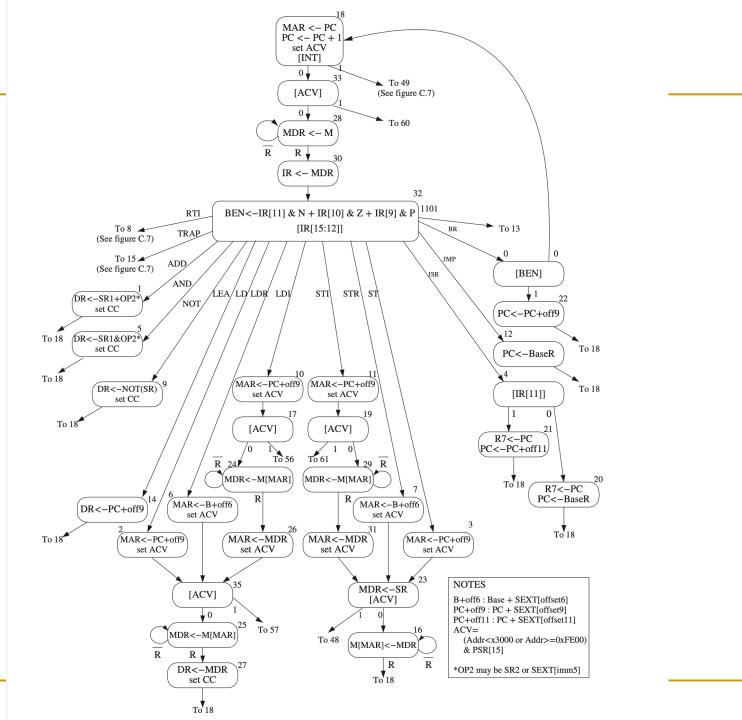
jr \$s0

j uses pseudodirect addressing mode

jr uses register addressing mode

LC-3 Data Path


Figure 4.3 The LC-3 as an example of the von Neumann model

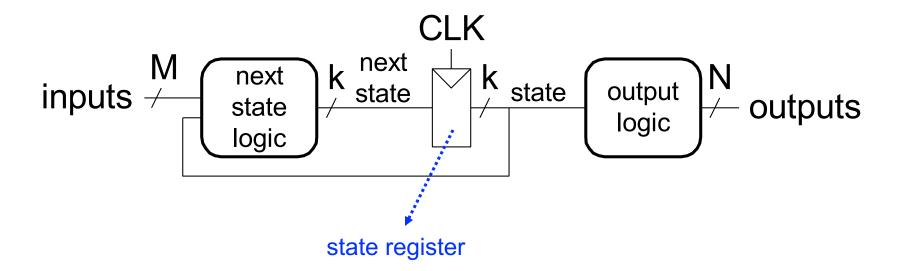
The Instruction Cycle

Control of the Instruction Cycle

Finite State Machines

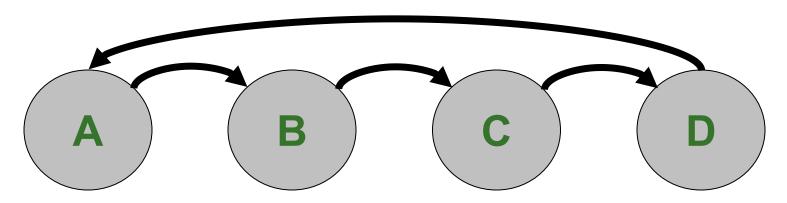
Finite State Machines

- What is a Finite State Machine (FSM)?
 - A discrete-time model of a stateful system
 - Each state represents a snapshot of the system at a given time
- An FSM pictorially shows
 - 1. the set of all possible **states** that a system can be in
 - 2. how the system transitions from one state to another
- An FSM can model
 - A traffic light, an elevator, fan speed, a microprocessor, etc.
- An FSM enables us to pictorially think of a stateful system using simple diagrams


Finite State Machines (FSMs) Consist of:

Five elements:

- 1. A finite number of states
 - State: snapshot of all relevant elements of the system at the time of the snapshot
- 2. A finite number of external inputs
- 3. A finite number of external outputs
- 4. An explicit specification of all state transitions
 - How to get from one state to another
- 5. An explicit specification of what determines each external output value


Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
 - next state logic
 - state register
 - output logic

At the beginning of the clock cycle, next state is latched into the state register

Changing State: The Notion of Clock (I)

- When should the light change from one state to another?
- We need a clock to dictate when to change state
 - Clock signal alternates between 0 & 1

CLK: 0

- At the start of a clock cycle (), system state changes
 - During a clock cycle, the state stays constant
 - In this traffic light example, we are assuming the traffic light stays in each state an equal amount of time

LC-3 and MIPS Instruction Set Architectures

The Instruction Set

- It defines opcodes, data types, and addressing modes
- ADD and LDR have been our first examples

ADD					
OP	DR	SR1			SR2
1	0	1	0	00	2

Register mode

LDR			
OP	DR	BaseR	offset6
6	3	0	4

Base+offset mode

The Instruction Set Architecture

- The ISA is the interface between what the software commands and what the hardware carries out
- The ISA specifies
 - The memory organization
 - Address space (LC-3: 2¹⁶, MIPS: 2³²)
 - Addressability (LC-3: 16 bits, MIPS: 32 bits)
 - Word- or Byte-addressable
 - The register set
 - R0 to R7 in LC-3
 - 32 registers in MIPS
 - The instruction set
 - Opcodes
 - Data types
 - Addressing modes

Problem
Algorithm
Program
ISA
Microarchitecture
Circuits
Electrons

Opcodes

- Large or small sets of opcodes could be defined
 - E.g, HP Precision Architecture: an instruction for A*B+C
 - E.g, x86 ISA: multimedia extensions (MMX), later SSE and AVX
 - E.g, VAX ISA: opcode to save all information of one program prior to switching to another program
- Tradeoffs are involved
 - Hardware complexity vs. software complexity
- In LC-3 and in MIPS there are three types of opcodes
 - Operate
 - Data movement
 - Control

Opcodes in LC-3

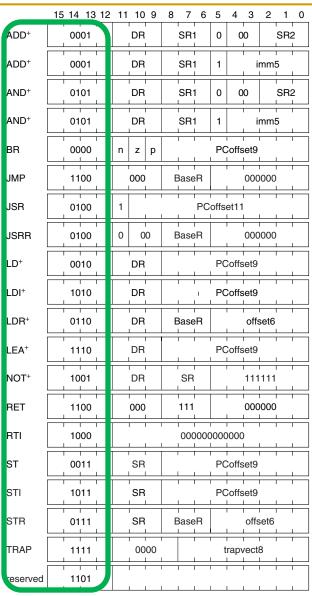
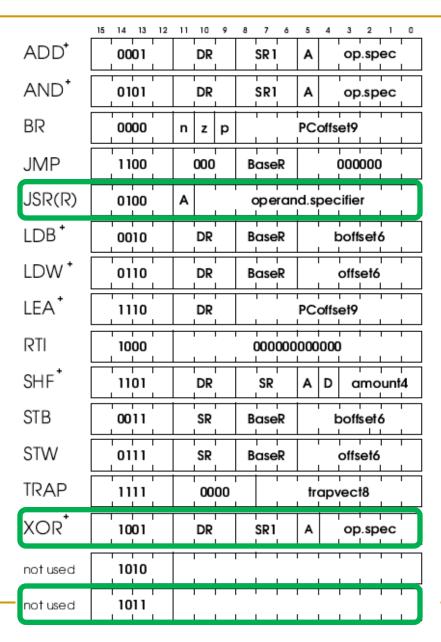



Figure 5.3 Formats of the entire LC-3 instruction set. NOTE: $^{+}$ indicates instructions that modify condition codes

Opcodes in LC-3b

Funct in MIPS R-Type Instructions (I)

Opcode is 0
in MIPS RType
instructions.
Funct defines
the operation

Table B.2 R-type instructions, sorted by funct field

Funct	Name	Description	Operation
000000 (0)	sll rd, rt, shamt	shift left logical	[rd] = [rt] << shamt
000010 (2)	srl rd, rt, shamt	shift right logical	[rd] = [rt] >> shamt
000011 (3)	sra rd, rt, shamt	shift right arithmetic	[rd] = [rt] >>> shamt
000100 (4)	sllv rd, rt, rs	shift left logical variable	[rd] = [rt] << [rs] _{4:0}
000110 (6)	srlv rd, rt, rs	shift right logical variable	[rd] = [rt] >> [rs] _{4:0}
000111 (7)	srav rd, rt, rs	shift right arithmetic variable	[rd] = [rt] >>> [rs] _{4:0}
001000 (8)	jr rs	jump register	PC = [rs]
001001 (9)	jalr rs	jump and link register	<pre>\$ra = PC + 4, PC = [rs]</pre>
001100 (12)	syscall	system call	system call exception
001101 (13)	break	break	break exception
010000 (16)	mfhi rd	move from hi	[rd] = [hi]
010001 (17)	mthi rs	move to hi	[hi] = [rs]
010010 (18)	mflo rd	move from lo	[rd] = [lo]
010011 (19)	mtlo rs	move to lo	[]o] = [rs]
011000 (24)	mult rs, rt	multiply	{[hi],[]o]} = [rs] × [rt]
011001 (25)	multurs,rt	multiply unsigned	{[hi],[]o]} = [rs] × [rt]
011010 (26)	div rs, rt	divide	[lo] = [rs]/[rt], [hi] = [rs]%[rt]
011011 (27)	divu rs, rt	divide unsigned	[lo] = [rs]/[rt], [hi] = [rs]%[rt]

(continued)

Funct in MIPS R-Type Instructions (II)

Table B.2 R-type instructions, sorted by funct field—Cont'd

Funct	Name	Description	Operation
100000 (32)	add rd, rs, rt	add	[rd] = [rs] + [rt]
100001 (33)	addu rd, rs, rt	add unsigned	[rd] = [rs] + [rt]
100010 (34)	sub rd, rs, rt	subtract	[rd] = [rs] - [rt]
100011 (35)	subu rd, rs, rt	subtract unsigned	[rd] = [rs] - [rt]
100100 (36)	and rd, rs, rt	and	[rd] = [rs] & [rt]
100101 (37)	or rd, rs, rt	or	[rd] = [rs] [rt]
100110 (38)	xor rd, rs, rt	xor	[rd] = [rs] ^ [rt]
100111 (39)	nor rd, rs, rt	nor	[rd] = ~([rs] [rt])
101010 (42)	slt rd, rs, rt	set less than	[rs] < [rt] ? [rd] = 1 : [rd] = 0
101011 (43)	slturd,rs,rt	set less than unsigned	[rs] < [rt] ? [rd] = 1 : [rd] = 0

Find the complete list of instructions in the appendix

Data Types

- An ISA supports one or several data types
- LC-3 only supports 2's complement integers
- MIPS supports
 - 2's complement integers
 - Unsigned integers
 - Floating point
- Again, tradeoffs are involved

Data Type Tradeoffs

- What is the benefit of having more or high-level data types in the ISA?
- What is the disadvantage?
- Think compiler/programmer vs. microarchitect
- Concept of semantic gap
 - Data types coupled tightly to the semantic level, or complexity of instructions
- Example: Early RISC architectures vs. Intel 432
 - Early RISC (e.g., MIPS): Only integer data type
 - Intel 432: Object data type, capability based machine

Addressing Modes

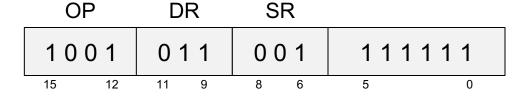
- An addressing mode is a mechanism for specifying where an operand is located
- There five addressing modes in LC-3
 - Immediate or literal (constant)
 - The operand is in some bits of the instruction
 - Register
 - The operand is in one of R0 to R7 registers
 - Three of them are memory addressing modes
 - PC-relative
 - Indirect
 - Base+offset
- In addition, MIPS has pseudo-direct addressing (for j and jal), but does not have indirect addressing

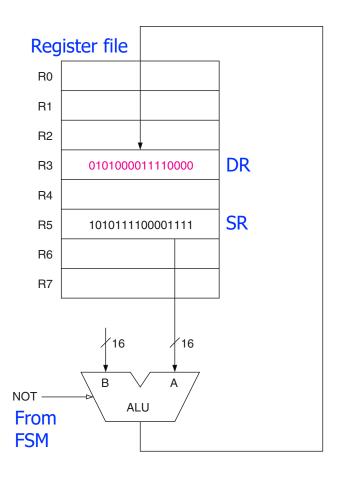
Operate Instructions

Operate Instructions

- In LC-3, there are three operate instructions
 - NOT is a unary operation (one source operand)
 - It executes bitwise NOT
 - ADD and AND are binary operations (two source operands)
 - ADD is 2's complement addition
 - AND is bitwise SR1 & SR2
- In MIPS, there are many more
 - Most of R-type instructions (they are binary operations)
 - E.g., add, and, nor, xor...
 - I-type versions (i.e., with one immediate operand) of the Rtype operate instructions
 - F-type operations, i.e., floating-point operations

NOT in LC-3

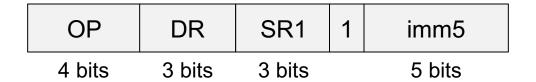

NOT assembly and machine code
 LC-3 assembly


```
NOT R3, R5
```

Field Values

OP	DR	SR	
9	3	5	111111

Machine Code


There is no NOT in MIPS. How is it implemented?

Operate Instructions

- We are already familiar with LC-3's ADD and AND with register mode (R-type in MIPS)
- Now let us see the versions with one literal (i.e., immediate) operand
- Subtraction is another necessary operation
 - How is it implemented in LC-3 and MIPS?

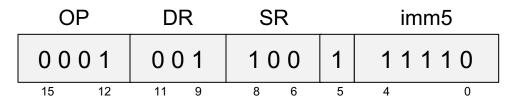
Operate Instr. with one Literal in LC-3

ADD and AND

- □ OP = operation
 - E.g., ADD = 0001 (same OP as the register-mode ADD)
 □ DR ← SR1 + sign-extend(imm5)
 - E.g., AND = 0101 (same OP as the register-mode AND)
 □ DR ← SR1 AND sign-extend(imm5)
- □ SR1 = source register
- DR = destination register
- imm5 = Literal or immediate (sign-extend to 16 bits)

ADD with one Literal in LC-3

ADD assembly and machine code


LC-3 assembly

ADD R1, R4, #-2

Field Values

OP	DR	SR		imm5
1	1	4	1	-2

Machine Code

Instructions with one Literal in MIPS

- I-type
 - 2 register operands and immediate
- Some operate and data movement instructions

opcode	rs	rt	imm
6 bits	5 bits	5 bits	16 bits

- opcode = operation
- □ rs = source register
- □ rt =
 - destination register in some instructions (e.g., addi, lw)
 - source register in others (e.g., sw)
- imm = Literal or immediate

Add with one Literal in MIPS

Add immediate

MIPS assembly

Field Values

ор	rs	rt	imm
0	17	16	5

rt ← rs + sign-extend(imm)

Machine Code

ор	rs	rt	imm
001000	10001	10010	0000 0000 0000 0101

0x22300005

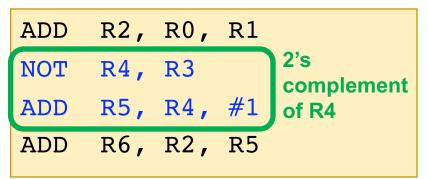
Subtract in LC-3

MIPS assembly

High-level code

$$a = b + c - d;$$

MIPS assembly

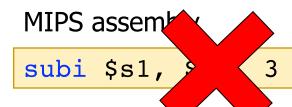

LC-3 assembly

High-level code

$$a = b + c - d;$$

- Tradeoff in LC-3
 - More instructions
 - But, simpler control logic

LC-3 assembly



Subtract Immediate

MIPS assembly

High-level code

$$a = b - 3;$$

Is subi necessary in MIPS?

MIPS assembly

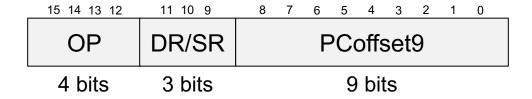
LC-3

High-level code

$$a = b - 3;$$

LC-3 assembly

ADD R1, R0, #-3


Data Movement Instructions and Addressing Modes

Data Movement Instructions

- In LC-3, there are seven data movement instructions
 - LD, LDR, LDI, LEA, ST, STR, STI
- Format of load and store instructions
 - Opcode (bits [15:12])
 - DR or SR (bits [11:9])
 - Address generation bits (bits [8:0])
 - Four ways to interpret bits, called addressing modes
 - PC-Relative Mode
 - Indirect Mode
 - Base+offset Mode
 - Immediate Mode
- In MIPS, there are only Base+offset and immediate modes for load and store instructions

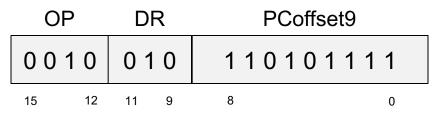
PC-Relative Addressing Mode

LD (Load) and ST (Store)

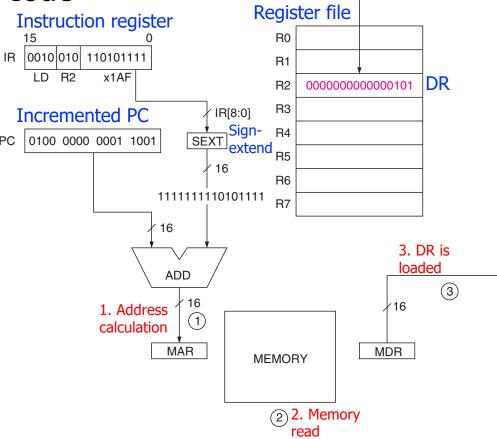
- \Box OP = opcode
 - E.g., LD = 0010
 - E.g., ST = 0011
- DR = destination register in LD
- SR = source register in ST
- □ LD: DR ← Memory[PC[†] + sign-extend(PCoffset9)]
- ST: Memory[PC[†] + sign-extend(PCoffset9)] ← SR

LD in LC-3

LD assembly and machine code

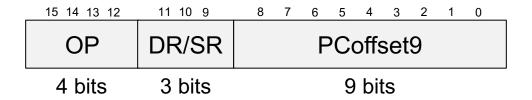

LC-3 assembly

LD R2, 0x1AF


Field Values

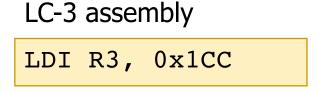
OP	DR	PCoffset9
2	2	0x1AF

Machine Code


The memory address is only +256 to -255 locations away of the LD or ST instruction

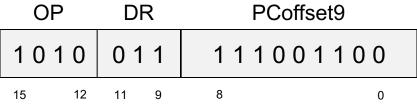
Limitation: The PC-relative addressing mode cannot address far away from the instruction

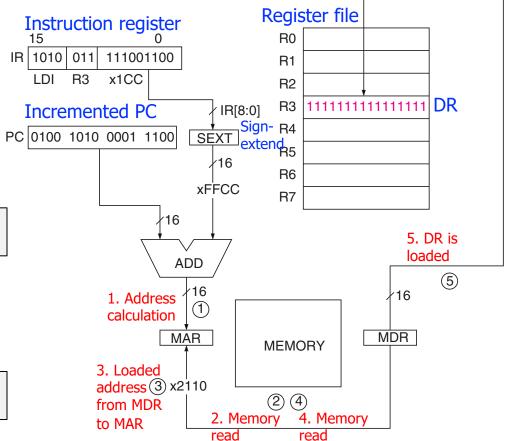
Indirect Addressing Mode


LDI (Load Indirect) and STI (Store Indirect)


- \Box OP = opcode
 - E.g., LDI = 1010
 - E.g., STI = 1011
- DR = destination register in LDI
- SR = source register in STI
- □ LDI: DR ← Memory[Memory[PC[†] + sign-extend(PCoffset9)]]
- STI: Memory[Memory[PC[†] + sign-extend(PCoffset9)]] ← SR

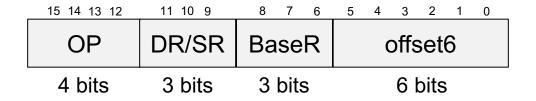
LDI in LC-3


LDI assembly and machine code



Field Values

Machine Code



Now the address of the operand can be anywhere in the memory

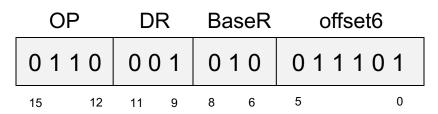
Base+Offset Addressing Mode

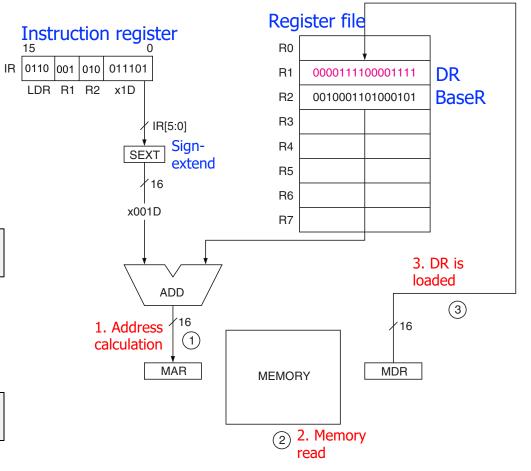
LDR (Load Register) and STR (Store Register)

- \Box OP = opcode
 - E.g., LDR = 0110
 - E.g., STR = 0111
- DR = destination register in LDR
- SR = source register in STR
- □ LDR: DR ← Memory[BaseR + sign-extend(offset6)]
- □ STR: Memory[BaseR + sign-extend(offset6)] ← SR

LDR in LC-3

LDR assembly and machine code


LC-3 assembly


LDR R1, R2, 0x1D

Field Values

OP	DR	BaseR	offset6
6	1	2	0x1D

Machine Code

Again, the address of the operand can be anywhere in the memory

Base+Offset Addressing Mode in MIPS

 In MIPS, lw and sw use base+offset mode (or base addressing mode)

High-level code

$$A[2] = a;$$

MIPS assembly

Memory[
$$\$$$
s0 + 8] \leftarrow $\$$ s3

Field Values

ор	rs	rt	imm
43	16	19	8

imm is the 16-bit offset, which is sign-extended to 32 bits

An Example Program in MIPS and LC-3

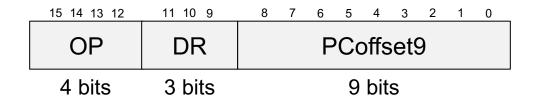
High-level code

```
a = A[0];
c = a + b - 5;
B[0] = c;
```

MIPS registers

LC-3 registers

MIPS assembly


```
lw $t0, 0($s0)
add $t1, $t0, $s2
addi $t2, $t1, -5
sw $t2, 0($s1)
```

LC-3 assembly

```
LDR R5, R0, #0
ADD R6, R5, R2
ADD R7, R6, #-5
STR R7, R1, #0
```

Immediate Addressing Mode

LEA (Load Effective Address)

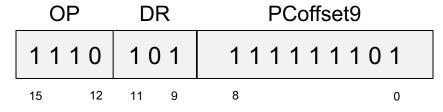
- □ OP = 1110
- □ DR = destination register
- □ LEA: DR ← PC[†] + sign-extend(PCoffset9)

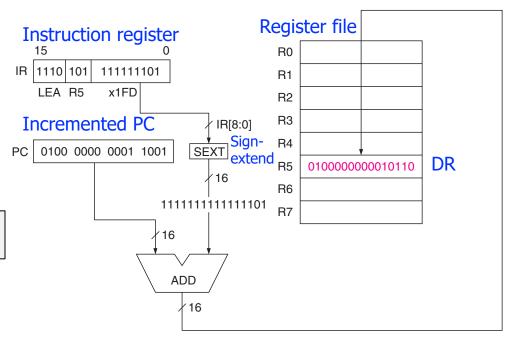
What is the difference from PC-Relative addressing mode?

Answer: Instructions with PC-Relative mode access memory, but LEA does not → Hence the name *Load Effective Address*

LEA in LC-3

LEA assembly and machine code


LC-3 assembly


LEA R5, #-3

Field Values

OP DR PCoffset9
E 5 0x1FD

Machine Code

Immediate Addressing Mode in MIPS

- In MIPS, lui (load upper immediate) loads a 16-bit immediate into the upper half of a register and sets the lower half to 0
- It is used to assign 32-bit constants to a register

High-level code

```
a = 0x6d5e4f3c;
```

MIPS assembly

```
# $s0 = a
lui $s0, 0x6d5e
ori $s0, 0x4f3c
```

Addressing Example in LC-3

What is the final value of R3?

P&P, Chapter 5.3.5

Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
x30F6	1	1	1	0	0	0	1	1	1	1	1	1	1	1	0	1	R1<- PC-3
x30F7	0	0															R2<- R1+14
x30F8	0	0	1	1	0	1	0	1	1	1	1	1	1	0	1	1	M[x30F4] < - R2
x30F9	0	1	0	1	0	1	0	0	1	0	1	0	0	0	0	0	R2<- 0
x30FA	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	1	R2<- R2+5
x30FB	0	1	1	1													M[R1+14] < - R2
x30FC	1	0	1	0	0	1	1	1	1	1	1	1	0	1	1	1	R3<- M[M[x30F4]]

Addressing Example in LC-3

What is the final value of R3?

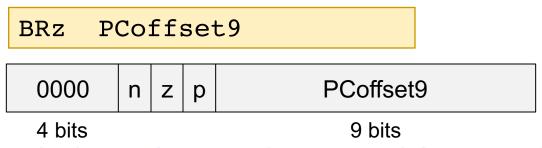
P&P, Chapter 5.3.5

Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
x30F6	L É A	1	1	0	0	0	1	43	1	1	1	1	1	1	Ŕ:	1 1=	PC - 3 = 0x30F7 - 3 = 0x30F4
x30F7	ADD	0	0	1	0	1	0	0	0	1	1	94	1	R2	1=	R1	+ 14 = 0x30F4 + 14 = 0x3102
x30F8	SÛ	0	1	1	0	1	0	-15	1	1	1	1	1	0	1	M[F	PC - 5] = M[0x030F4] = 0x3102
x30F9	AND	1	0	1	0	1	0	0	1	0	1	0	0	0	0	0	R2 = 0
x30FA	ADD	0	0	1	0	1	0	0	1	0	1	9	0	1	0	1	R2 = R2 + 5 = 5
x30FB	STR	1	1	1	0	1	0	0	0	1	M[R1	4	14]	‡	M[(0x30F4 + 14] = M[0x3102] = 5
x30FC	LDI	0	1	0	0	1	1	-19	1	1	1	1	R3	1	4 [N	4[P	C - 9]] = M[M[0x30FD - 9]] =
													M[I	M[0	x3(0F4	A = M[0x3102] = 5

The final value of R3 is 5

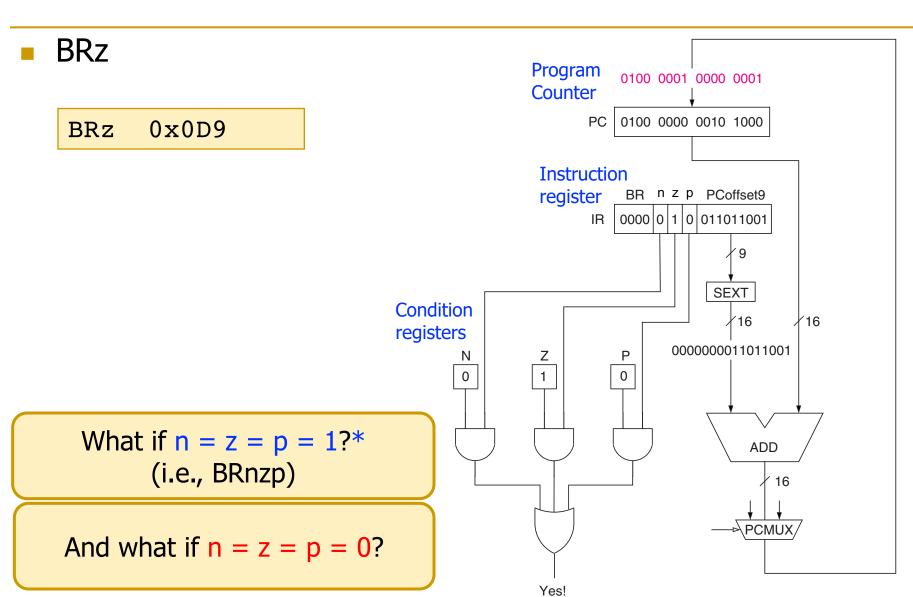
Control Flow Instructions

Control Flow Instructions

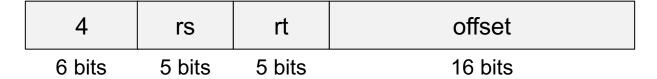

- Allow a program to execute out of sequence
- Conditional branches and jumps
 - Conditional branches are used to make decisions
 - E.g., if-else statement
 - In LC-3, three condition codes are used
 - Jumps are used to implement
 - Loops
 - Function calls
 - JMP in LC-3 and j in MIPS

Condition Codes in LC-3

- Each time one GPR (R0-R7) is written, three single-bit registers are updated
- Each of these condition codes are either set (set to 1) or cleared (set to 0)
 - If the written value is negative
 - N is set, Z and P are cleared
 - If the written value is zero
 - Z is set, N and P are cleared
 - If the written value is positive
 - P is set, N and P are cleared
- SPARC and x86 are examples of ISAs that use condition codes


Conditional Branches in LC-3

BRz (Branch if Zero)


- n, z, p = which condition code is tested (N, Z, and/or P)
 - n, z, p: instruction bits to identify the condition codes to be tested
 - N, Z, P: values of the corresponding condition codes
- PCoffset9 = immediate or constant value
- if ((n AND N) OR (p AND P) OR (z AND Z))
 - then PC ← PC[†] + sign-extend(PCoffset9)
- Variations: BRn, BRz, BRp, BRzp, BRnp, BRnz, BRnzp

Conditional Branches in LC-3

Conditional Branches in MIPS

beq (Branch if Equal)

- \Box 4 = opcode
- □ rs, rt = source registers
- offset = immediate or constant value
- if rs == rt
 then PC ← PC[†] + sign-extend(offset) * 4
- Variations: beq, bne, blez, bgtz

Branch If Equal in MIPS and LC-3

MIPS assembly

```
beq $s0, $s1, offset
```

LC-3 assembly

```
NOT R2, R1
ADD R3, R2, #1
ADD R4, R3, R0

BRz offset

Subtract (R0 - R1)
```

- This is an example of tradeoff in the instruction set
 - The same functionality requires more instructions in LC-3
 - But, the control logic requires more complexity in MIPS

Lecture Summary

- The von Neumann model
 - LC-3: An example of von Neumann machine
- Instruction Set Architectures: LC-3 and MIPS
 - Operate instructions
 - Data movement instructions
 - Control instructions
- Instruction formats
- Addressing modes