CSCI-1010.M01: Introduction to Computer Science

Credits: 3 Semester: Fall, 2019 Times: MWF 12:30-1:15 Prerequisite: MATH-120 or 3 years of high school math Curriculum: Core science requirement, computer science

I. Course Description and Objectives

A broad survey of the computer science discipline, focusing on the computer's role in representing, storing, manipulating, organizing, and communicating information. Topics include hardware, software, algorithms, operating systems, networks.

The main objective of this course is to provide a basic understanding of the role, activities (design, analysis, and implementation [programming] of algorithms) by the computer scientist in the modern computer. The interface of hardware, software, operating systems, and programs will be the center of study.

II. Learning Outcomes:

The student upon completion of this course will be able to:

- Explain the organization of the classical von Neumann and Turing machines and their major functional units, including logic circuits and the CPU.
- Understand binary data representation in the modern computer, including the representation of non-numeric data, and standardized file structures. Understand how fixed-length number representations affect accuracy and precision in computing.
- Identify the necessary properties of good algorithms. Discuss the importance of algorithms in the problem solving process. Understand the software development cycle, good coding style, and algorithm development.
- Introduce the syntax of the Python programming language and develop small algorithmic programs in Python.
- Knowledge of typical algorithms used by computer scientists (for example, searching, sorting, and data compression) and O () factors.
- Evaluate the choice of Abstract Data Structures Queues, Lists, Arrays, etc. and their Python-specific implementation.

III. Textbooks and Readings

Recommended: For a centralized location of introductory topic material, the textbook available in the library:

Computer Science Illuminated, by Nell Dale and John Lewis, 5th Edition.

IV. Instructor Information

Name	Anas Abbood	
E-mail:	anas.abbood@slu.edu	
Office Hours	Tuesday & Thursday 2:00 – 3:30	
Biography	 PhD: Computer Science and Information Technology (Computer Graphics) MSc: Computer Science and Information Technology (Information Security) High Diploma: Computer Science and Information Technology (Information Security) Degree: Operation Research Area of Interest: Human-Computer interaction, Vision and Visualization, Computer Integrated System in Health, Geometric Modelling and Augmented Reality. 	

V. Course Outline (5 sections)

i. Introduction to Computing

Week 1: Welcome to the Digital Age, Num	ber Systems: Base Arithmetic, Computer
Mathematics, Artificial Intelligen	ce.

- Week 2: Data, Information, and It's Computer Representation/ Project #1
- **Week 3:** Working with Computer Information and Physical Implementation of Data and Information in Computers.

Week 4: Computer Hardware and Architecture.

- Week 5: Operating Systems; What is an Operating System? Parts of an Operating Systems; Basic Linux and Windows Commands/ Project #2
- Week 6: Introduction to Networking.

ii. -Introduction to Computer Programming

- Week 7: Universal Abstract Data Types/ Midterm Exam
- Week 8: Introduction to Python Programming Language.

Week 9: Problem Solving and Algorithm Implementation in Python.

iii. Understanding, Encryption Algorithms and File and Network Security Week 10: Data Representation - Binary Trees /Huffman Coding/ Week 11: Advanced Encryption Algorithms/Project #3

iv. Introduction to Simulation and Modelling LanguagesWeek 12: Using Excel in Engineering SimulationsWeek 13: Advanced Engineering Simulations/Project #4

v. Android Applications and Programming

Week 14: Using GPS Location Devices and Implementing an Android App in AppInventor2/Project #5

Week 15: Using GPS Location Devices and Implementing an Android App in AppInventor2/Final Exam

VI. Grading System

The grade will be obtained from the following areas:

Homework (6):	30%
Projects (5):	30%
First Mid-Term Exam:	20%
Final Exam:	20%

Both Homework and Project assignments are made to be completed by the next week.

Any late work will be penalized at 5% per day late. If for example homework was due on Tuesday, but not submitted until Thursday the maximum grade for a 100% correct paper will be 90%.

 $\begin{array}{l} \mbox{Grading scale} \\ 100 < A < 95\%, \\ 95\% < A - < 90\% \\ 90\% < B + < 87\% \\ 87\% < B < 83\% \\ 83\% < B - < 80\% \\ 80\% < C + < 77\% \\ 77\% < C < 73\% \\ 73\% < C - < 70\% \\ 70\% < D < 50\% \\ F < 50\% \end{array}$

IX. Specific Course Policies

(1) Students are encouraged to participate in class discussions and to ask questions.

(2) Announcements may be made during the semester which alter the course content.

(3) Syllabus, reading and homework problems are subject to change.

(4) Students are responsible for all lecture material, handouts, homework and assigned reading.

(5) It is mandatory to attend all classes unless a reasonable excuse is given.

(6) Make up exams are not given. Students who legitimately miss an exam, due to a doctor's visit or family emergency must provide written documentation of the circumstances. A letter from the university counselor is accepted. Exams that are missed illegitimately result in a score of F. Grades for these students will be based on the remaining exams. Missing more than one exam always results in an F grade.

Detailed Course Outline

Day	Date	Торіс	Web Sites/Readings
		Introduction to Number	
		Systems/Artificial Intelligence	
		• Introduction to Digital	
		Age/Information	
		Positional notation	
		• Finite number sequences –	
		single binary digit (bit), four	http://courses.cs.vt.edu/~csonline/NumberSystem
		binary digits (nibble), eight	s/Lessons/HexAndOctalNumbers/index.html
		binary digits (Byte)	
1	1/9	• Use of different number	http://www.howstuffworks.com/mp3.htm
1	1/9	systems – specifically base 2,	
		Base 8, Base 16 with	http://courses.cs.vt.edu/~csonline/NumberSystem
		reference to Base 10	s/Lessons/index.html
		Addition, Subtraction,	
		Multiplication, Division in ALL	
		Bases	
		• Fractions with Bases	
		• Finite representation errors	
		generated by Base	
		Conversion	
		Introduction to Number Systems	
	3/9	• Integer Representation	HOMEWORK #1 ASSIGNED
2		• Floating-point	http://courses.cs.vt.edu/~csonline/NumberSys
		Representation (Decimal	tems/Lessons/index.html
		point = radix point)	

		• Multiplication, Division in ALL	
	Bases		
		• Problems with negative	
		numbers	
		• One's Complement Math	
		• Two's Complement Math	
		Understanding What Constitutes	
		Information	Chapter 7 of The Information, History
		Introduction to Information	Chapter 7 of <i>The Information: History,</i> <i>Theory, Flood</i>
		• Representing Text	Тпеоту, Гюба
		ASCII Character Set	https://users.dcc.uchile.cl/~hsarmien/libros/T
3	8/9	Unicode Character Set	he_Information_%20A_History.pdf
	019	Text Compression	
		Keyword encoding	
		Run-length encoding	http://www.fieggen.com/ian/g_formats.ht
		(extension to graphic files -	m
		JPG)	
		Understanding What Constitutes	
		Information	
		Huffman Coding Schemes	PROJECT #1 ASSIGNED
		(variable length binary encoding)	http://sinus.if.pw.edu.pl/podziemski/wp
		• Audio Formats – WAV, AU,	content/uploads/downloads/2012/05/jpegto
		AIFF, VQF, MP3, MP4	ol.pdf
	10/0	• Images and Graphics - JPG,GIF,	
4	10/9	TIFF, PNG	http://www
		• Representing Color RGB,	msp.ece.mcgill.ca/documents/audioformats
		СҮМК	/index.html
		• Vector Images - Illustrator, Flash	
		• Video Formats – CODECS	https://ccrma.stanford.edu/courses/
		(Compressor/Decompression) Real	
		Video or MPEG2, MPEG4	
		Translating Information to the	
		Physical Computer	
5		• Introduction to Gates (Only 2	http://www.ee.surrey.ac.uk/Projects/Labvi
	15/9	inputs)	ew/gatesfunc/index.html
		• Half-Adder Circuit	http://inst.eecs.berkeley.edu/~ee42/sp04/le
		• Full-Adder Circuit	ctures/lecture14student.pdf
		Memory Circuits	
		• CPU and GPU Chips	

6	17/ 9	Translating Information to the Physical Computer • Using Circuit Design Software		FIRST MIDTERM ASSIGNED http://www.ee.surre y.ac.uk/Projects/La bview/gatesfunc/in dex.html http://home.anadolu .edu.tr/~atdogan/EE M232/06- CombCktDesign.pp t
7	22/ 9	Understanding Computer Architecture and Components • CPU • Memory • BIOS • Motherboard • Ports and Slots		http://mathworld.w olfram.com/Turing Machine.html
8	24/ 9	Understanding Computer Architecture and Components • How the CPU Works • Machine Language • Assembler Language • High-Level Languages – Interpreted or Compiled • Super Simple CPU Software • Implementing Simple Algorithms (GCM, LCM)	PROJECT #2 ASSIGNED http://www.youtube.com/wa UA	tch?v=cNN_tTXAB
9	29/ 9	Introduction to Operating http://courses.cs.vt.edu/~csonline/OS/Lessons/In Systems oduction/index.html http://ocw.uc3m.es/ingenieria- informatica/operating-systems/lecture-notes- 1/Mt_t1_L1.pdf 1/Mt		-
10	1/1 0	Introduction to Operating Systemshttp://courses.cs.vt.edu/~csonline/OS/Lessons/In oduction/index.html		nline/OS/Lessons/Intr

			http://www.cmpe.boun.edu.tr/~uskudarli/courses
			/cmpe235/os.pdf
11	6/1	Introduction to	
	0	Networking	
		Hardware	
	8/1	Introduction to	
12	0	Networking	
		Software and Protocols	
		Understanding Abstract	HOMEWORK #3 ASSIGNED
		Data	http://www.idevelopment.info/data/Programmin
		Types	g/data_structures/overview/Data_Structures_Alg
13	13/	• Queues	orithms_Introduction.shtml
15	10	• Arrays	http://cslibrary.stanford.edu/103/LinkedListBasi
		• Lists	cs.pdf
		• Linked Lists	co.pui
		• Trees	
		Understanding Abstract	http://www2.algorithm.docion.net/hondouts/Manga
	15/	Data	http://ww3.algorithmdesign.net/handouts/Merge
14	15/ 10	Types Functions	Sort.pdf http://www.topcoder.com/tc?module=Static&d1
		• Sorting	=tutorials&d2=sorting
		• Filtering	-tutoriaisœu2-sorting
		Programming in Python	
	20/ 10	• Introduction to the General	Thinking as a Computer Scientist in Python
		Structure of Python	http://tdc-www.harvard.edu/Python.pdf
15		• General Data Types in	https://www.softwaretestinghelp.com/python/pytho n-data-types/
		Python	https://en.wikibooks.org/wiki/Python_Programming/
		• Using the Python Script	Interactive mode
		and Interactive Modes	interdetive_inode
		Programming in Python	HOMEWORK #4 ASSIGNED
		• Implementing Abstract	Thinking as a Computer Scientist in Python
16	22/ 10	Data	https://docs.python.org/3/library/datatypes.html
		Types in Python –	http://openbookproject.net/thinkcs/python/english3
		Dictionaries, Lists, Tuples	e/dictionaries.html
		Control Statements in	https://docs.python.org/3/library/collections.html#n
		Python	amedtuple-factory-function-for-tuples-with-named-
			fields
	27/	Problem Solving,	Thinking as a Computer Scientist in Python
17	27/	Algorithms,	PROJECT #3 ASSIGNED
	10	and Programming in	http://www.huffmancoding.com/david/algorithm
		Python	.html

			https://www.cs.auckland.ac.nz/compsci105s1c/resou rces/ProblemSolvingwithAlgorithmsandDataStructure s.pdf
18	29/ 10	Problem Solving, Algorithms, and Programming in Python	
19	3/1	Binary and Other Trees In-class Project: Implementing Huffman Coding in Python	
20	5/1 1	Binary and Other Trees In-class Project: Implementing Huffman Coding in Python	http://bhrigu.me/blog/2017/01/17/huffman-coding- python-implementation/
21	10/ 11	Understanding Today's Encryption Algorithms and Protecting File Data • Asymmetric Keys (Public/Private) • RSA Algorithm	PROJECT #3 ASSIGNED http://www.esat.kuleuven.be/cosic/intro/ https://www.esat.kuleuven.be/cosic/introducing- hector-project-first-year-results/
22	12/ 11	Understanding Today's Encryption Algorithms and Protecting File Data • Asymmetric Keys (Public/Private) • RSA Algorithm	http://www.esat.kuleuven.be/cosic/intro/
23	17/ 11	Introduction to Simulation and Modeling Languages for Computer Scientists and Engineers • Model Structures in Excel • Introduction to Excel • AutoFill • Formulas • Functions	http://oit.wvu.edu/training/files/excel2010_intro. pdf http://bookboon.com/en/excel-2010- introduction-part-i-ebook https://codecn.top/curriculum/science/files/CS_in_Sc ience_Module_1.pdf
24	19/ 11	Introduction to Simulation and Modeling Languages for Computer Scientists	HOMEWORK #5 ASSIGNED Simpler Spreadsheet Simulation of Multi-Server Queues

		and Engineers	
		Waiting Line (Queue)	
		Models in Excel	
		Introduction to Simulation	
	24/		http://heather.cg.updavig.cdu/_motloff/156/
25		and Modeling Languages	http://heather.cs.ucdavis.edu/~matloff/156/
	11	for Computer Scientists	PLN/DESimIntro.pdf
		and Engineers	
	201	Introduction to Simulation	
26	26/	and Modeling Languages	http://heather.cs.ucdavis.edu/~matloff/156
	11	for Computer Scientists	/PLN/DESimIntro.pdf
		and Engineers	
		Using GPS Location	
		Devices and	Step by Step AppInventor
	1/1	Android	code.google.com/p/android-scripting
27	2	• Introduction to	https://github.com/damonkohler/sl4a
	2	AppInventor	code.google.com/p/android
		 Introduction to GPS 	scripting/wiki/SharingScripts
		technology	
		Using GPS Location	
		Devices and	Sten her Sten Ann Inner ten
	2/1	Android	Step by Step AppInventor
28	3/1	• Introduction to	code.google.com/p/android-scripting
	2	AppInventor	code.google.com/p/android
		• Introduction to GPS	scripting/wiki/SharingScripts
		technology	
•	8/1		
29	2	Public Holiday – No Class	
	1	Using GPS Location	
		Devices and	
	10/ 12	Android	PROJECT #5 ASSIGNED
30		• Introduction to	AppInventor Book
		AppInventor	code.google.com/p/android
		Introduction to GPS	scripting/wiki/ApiReference
		technology	
Final	 Evan	nination Due	
1 ma	i l'Aall		