
CSCI 2670

Introduction to Theory of Computing

Fall 2014

Fall 2014 CSCI 2670Introduction to Theory of Computing



Instructor and Lecture Times

� Instructor: Don Potter (potter@uga.edu)

� Office: Boyd GSRC 111;

� Office Hours: TBA

� Lecture Times and Locations

9:05-9:55 Mon Life Sciences, C114
9:30-10:45 Tues & Thurs Life Sciences, C114

Fall 2014 CSCI 2670Introduction to Theory of Computing



Brief Description

This is a first course on the theory of computing.
Fundamental topics include: finite automata, regular expres-
sions and languages, context-free grammars and languages, push-
down automata, pumping lemmas for regular languages and
for context-free grammars, the Chomsky hierarchy of language
classes, Turing machines and computability, undecidability of
the halting problem, reducibilities among decision problems and
languages, time complexity, and NP-completeness and tractabil-
ity.

Prerequisites: CSCI/MATH 2610: Discrete Mathematics; or
CSCI 2611: Discrete Mathematics for Engineers.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Informative Description

� The course focuses on questions of the following sort:
I Which problems are solvable by computers and which

aren’t?
I For a given solvable problem, how difficult is it to solve?

� Questions like the first are addressed in computability theory.
Questions like the second are addressed in complexity theory.

I Historically, computability theory was developed
before/independently of actual computers (1920s-1930s).

I Complexity theory came later (really taking off in the
1970s).

� In order to answer these questions, we must first define what
“problem” and “computer” mean.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Models of Computation: Automata

� This course presents several types of abstract machines (au-
tomata).

� They can be viewed as having different amounts of memory.

I Finite State Machines: constant memory.
I Deterministic Finite Automata (DFAs)
I Nondeterministic Finite Automata (NFAs)

I Push Down Automata (PDAs), having a stack
I Turing Machines, having an unlimited tape

� The machine types are of different computational “power”
(with the TM being the most powerful of all).

� “Computation” is defined via the activity of these machines.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Formal Languages

� The machines are closely related to types of formal languages
(generated by formal grammars).

I A formal language L is just a set of strings defined over an
alphabet of symbols. {a, aa, aaa, aaaa, . . .} is a language.

� Each machine M has a formal language L(M) associated with it,
the language it “accepts” or “recognizes”.

I Roughly, M accepts a string if it stops after reading the
string and says ”YES”. L(M) is the set of strings M
accepts.

� A fundamental type of problem: Given a language L, create a
machine that accepts it.

� Related problem: Given L, create a machine that can decide
whether or not an arbitrary string is in L.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Decidable and Undecidable Languages

� Note that these problems can not always be solved.

� Example Decidable Language: The language consisting of the
tautologies of propositional logic.

� Example Undecidable Language: The language consisting of
the tautologies of predicate logic.

More generally, determining whether a set of formulas of propo-
sitional logic is satisfiable is a decidable problem, while the same
problem for predicate logic is not.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Formal Grammars

� Formal languages are also associated with formal grammars.

I A grammar is a set of rules for generating strings over
a given alphabet.

� E.g., the grammar below produces {b, ab, aab, aaab, . . .}.
S → aS (S may be replaced with aS)
S → b (S may be replaced with b)

� Similar to machines, associated with each grammar G will be
a language L(G ).

� Formal grammars can be viewed as another model of compu-
tation.

� Problem: Given language L, create a grammar G such that
L(G ) = L.

Fall 2014 CSCI 2670Introduction to Theory of Computing



The Chomsky Hierarchy

I There is an equivalence between the abstract machines and
types of grammars.

Language/Grammar Automaton
Unrestricted Unrestricted Turing Machine

Context Sensitive Linearly Bounded Turing Machine

Context Free Push Down Automaton (PDA)

Regular Finite State Machine (DFA and NFA)
I The languages here form a hierarchy. Each level is contained

in the one above it.
I Machines lower in the hierarchy are weaker than those higher:

I A non-regular, context free language cannot be
recognized by any finite state machine.

I But every regular language can be recognized by some
PDA.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Quick History

I 1936 Alan Turing proposes the Turing machine, and proves
that there exists an unsolvable problem.

I 1943 McCulloch and Pitts develop finite automata.
I 1940’s von Neumann proposes the Stored Program Concept.
I 1956 Kleene develops regular expressions and proves the

equivalance of regular expressions and finite automata. Also,
Chomsky defines the Chomsky Hierarchy, which organizes
languages recognized by different automata into hierarchical
classes.

I 1959 Rabin and Scott introduce nondeterministic finite
automata and prove equivalence to deterministic finite
automata.

I 1965 Hartmanis and Stearns define time complexity, and with
Lewis they define space complexity.

I 1971 Cook shows the first NP-Complete problem, the
satisfiability problem.

I 1972 Karp shows many other problems to be NP-Complete.Fall 2014 CSCI 2670Introduction to Theory of Computing



Course Objectives

� By the end of the semester, students should be able to:
I Given an NFA M, create a DFA or a regular expression that

accepts L(M).
I Given a regular language L, create an NFA accepting it.
I Use pumping lemmas to prove a language is not regular or

not context-free.
I Given a description of a context-free language L, develop a

context-free grammar (CFG) G such that L(G ) = L.
I Convert a CFG into Chomsky Normal Form (CNF).
I Given a CFG G in CNF and a string w , use the CYK

algorithm to determine if G generates w .
I Given an context-free grammar G , create a push-down

automaton (PDA) that accepts L(G ).
I Identify if a given language is regular, context-free but not

regular, or neither.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Course Objectives

� By the end of the semester, students should be able to:
I Given a language L, create a Turing machine TM that

accepts L.
I Convert between different variations of the Turing machine

model (e.g., multi-tape to single tape).
I Create a Turing machine that performs a function.
I Define decidabilty and demonstrate that a language is

decidable.
I Reduce one problem to another one.
I Use reductions to prove a problem is undecidable.
I Define P, NP and NP-complete.
I Show a problem is in P and determine its computational

complexity.
I Write pseudo-code describing a non-deterministic Turing

machine’s steps to solve a problem.
I Prove a problem is NP-complete.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Textbook and Website

� Required Text: Michael Sipser. Introduction to the Theory
of Computation (3rd Edition). ISBN-13: 978-1133187790

� Course Website: Certain course materials, maybe student
grades, might be posted to the course’s eLearning Commons
(eLC) website:

https://www.elc.uga.edu/.

Secondary websites might also be used.

� The Wiki: There might be a wiki, where course materials
will be posted. Users can also post links to useful resources
there.

TBA

Students will each be given login details if we use the wiki.

Fall 2014 CSCI 2670Introduction to Theory of Computing

https://www.elc.uga.edu/
TBA


Lectures and Homework

� Lectures: Cover Chapters 0–7, excluding Chapter 6.

Readings will be assigned beforehand, and students hopefully read
these before class begins.

Quizzes and other activities will take place during lecture periods.

� Homework: Students must typeset and submit printed copies of
HW solutions on the assigned due date.

Late submissions are generally not accepted.

At the end of the semester, the lowest HW grade will be dropped.

You are encouraged to use LaTeX or some other appropriate for-
matting system for the HWs.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Exams

3 in-class exams and a separate final exam. Tentative dates:

In-class Exam 1: September 18th.
In-class Exam 2: October 21st.
In-class Exam 3: November 20th.
Final Exam: December 11th, 2014, 8:00–11:00am (tentative)

Makeup tests will not be given. However, a missed in-class exam
might be excused. If excused, the average of the other in-class exams
and the final exam will be used instead.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Grading

Exam 1 (16%), Exam 2 (16%), Exam 3 (16%),
Final Exam (25%), Homework (22%), Quizzes/other work (5%).

Final Letter Grades

A ≥ 93 80 > C+ ≥ 77
93 > A- ≥ 90 77 > C ≥ 73
90 > B+ ≥ 87 73 > C- ≥ 70
87 > B ≥ 83 70 > D ≥ 60
83 > B- ≥ 80 F < 60

The instructor reserves the right to curve grades. Under no circum-
stances will this lower a student’s grade.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Regrading

With the exception of the final exam, students may request a
reevaluation of any test, quiz, or graded assignment. In order
to be considered, however, the request must be made no more
than 7 days after the graded material has been returned to the
class.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Other

� Electronic Devices You likely will not want to use them
unless necessary.

� Email Use UGA email in communications. Include “CSCI
2670” in the subject line.

� In-Class and On-line Behavior Be courteous and respect-
ful.

Fall 2014 CSCI 2670Introduction to Theory of Computing



Academic Honesty

� As a UGA student, you have agreed to abide by the University’s
academic honesty policy, “A Culture of Honesty,” and the Student
Honor Code.

� All academic work must meet the standards described in “A Cul-
ture of Honesty” found at: http://honesty.uga.edu/.

� Lack of knowledge of the academic honesty policy is not a rea-
sonable explanation for a violation.

� Questions related to course assignments and the academic honesty
policy should be directed to the instructor.

Fall 2014 CSCI 2670Introduction to Theory of Computing

http://honesty.uga.edu/


Academic Honesty

Common forms of academic dishonesty:

� copying from another student’s test paper or laboratory report, or al-
lowing another student to copy from you;

� fabricating data (computer, statistical) for an assignment;

� helping another student to write a laboratory report or computer software
code that the student will present as his own work, or accepting such
help and presenting the work as your own;

� turning in material from a public source such as a book or the Internet
as your own work.

Fall 2014 CSCI 2670Introduction to Theory of Computing



For you to do this week...

� Try to access the course on eLC, and your other courses.

� Review the syllabus. A sheet stating you have read it will be
circulated in class for you to sign.

� Read Chapter 0 of the textbook.

� Download a LaTeX distribution (if you want; such as TexS-
tudio).

Tomorrow: We begin Chapter 0.

Fall 2014 CSCI 2670Introduction to Theory of Computing


