
CSCI 305
Introduction

Reasons for Studying Concepts of
PLs
• Increased capacity to express ideas

• Improved background for choosing appropriate languages

• Increased ability to learn new languages

• Better understanding of the significance of implementation

• Better use of known languages

• Overall advancement of computing

Programing Domains

• Scientific Applications

• Business Applications

• Artificial Intelligence

• Systems Programming

• Web Software

• Entertainment

Language Evaluation Criteria

Characteristic Readability Writability Reliability

Simplicity X X X

Orthogonality X X X

Control Structures X X X

Data Types & Structures X X X

Syntax Design X X X

Support for Abstraction X X

Expressivity X X

Exception Handling X

Restricted Aliasing X

Language Evaluation Criteria

Characteristic???? Readability Writability Reliability

OO Support ? ? ?

Support for Interfaces X ?

Support for Reflection X ?

Portability * * *

Tools Available * * *

Unit Testability * * *

Separation of Concerns * * *

Market Value * * *

CRITERIA

Language Evaluation

Readability

• Ease at which it can be understood

• Made popular by the introduction of software life cycle (70s)

• Machine vs. Human Orientation

• Must be evaluated in context of problem domain

Writability

• How easy programs can be created for a problem domain

• Writability typically has a subset of readability characteristics

• Like readability domain is key

Reliability

• A program is reliable if it preforms to specifications under all
conditions

• Reliability typically isn’t considered per problem domain.

• Can be affected by factors outside of the programing language
itself, consider program reliability vs. platform reliability

CHARACTERISTICS

Of languages that allow us to evaluate Criteria

Overall Simplicity

• Small vs. large number of basic constructs

• Most directly affect readability

Overall Simplicity (cont)

• Feature Multiplicity – two or more ways to accomplish a single
operation

 count = count + 1

 count += 1

 count++

 ++count

Overall Simplicity (cont)

• Operator Overloading

 int = int + int

 float = float + float

 struct = struct + struct

 array = array + array

 int = array + array

Overall Simplicity (end)

• Consider assembly language as the other extreme. Extremely
simple, extremely hard to read.

• Programmers often use an learn a small number of the
constructs if the set is large

• Readability issues arise between readers/writers of the same
program.

• Simplicity is usually lightly considered in place of expectations
for good design and programming practices

Orthogonality

• A relatively small set of primitive constructs can be combined
in a relatively small number of ways

• AND every possible combination of primitive is legal and
meaningful

• Meaning of an orthogonal language feature is independent of
the context of appearance in the program (consider C
increments)

Control Statements

•For, While, Loop, etc vs goto
•Not widely available until the 70s

 loop1:
 if (incr >= 2) go to out;
 loop2:
 if (sum > 100) go to next;
 sum += incr;
 go to loop2;
 next:
 incr++;
 go to loop1;
 out:

Data Type and Structures

• Consider Boolean

 intVar = 1 vs

 realVar = true

• Consider it’s affect on orthogonality

C

 if (intVar != 0) or if (intVar == 1)

 if (var)

Vs (C#, Java, etc)

 if (realVar) // if(intVar) does not compile

Data Types and Structures (cont)

• Language C alternatives

typedef char bool;

bool = ‘y’;

bool = ‘n’;

If (bool == ‘y’)

Data Types and Structures (cont)

• Language C alternatives

 #define true 1

 #define false 0

 typedef char bool;

 bool = true;

 if (bool == true)…

 if (bool)…

 if (bool != ‘z’) // ??

Data Types and Structures (end)

• Language C alternatives

#if (__BORLANDC__ <= 0x460) || !defined(__cplusplus)

 typedef enum { false, true } bool;

#endif

• No longer portable (stdbool.h) now breaks in macros

• Same casting issues as before

Syntax Design

• Mainly affects readability

• Identifier forms

 boolean, bool, b

 integer, int, i

Syntax Design (cont)

• Special Words

 while, class, for, loop, struct

• Terminating Special contructs

 }

 end while (endwhile)

 end if (endif)

• Simplicity in reading vs writing
• Reading: more reserved works

• Writing: consistent and simple reserved words

Syntax Design (cont)

• Reserved words

• Can reserved words be used as variable names? (Fortran 95
allows)

int if ;

int for = 2

int break = 3

for (if = 1; if < break; if++)

 if (if > for)

 break;

Syntax Design (cont)

• Form and meaning. It is helpful when statements/constructs
match their meaning.

• do -> while

• static in C?

• Unix commands?!?!

Support for Abstraction

• The ability to define and then use complicated structures or
operations in ways that allow many of the details to be
ignored

• Process Abstraction

• Data Abstraction

• Difference?

Expressivity

• The language provides very powerful operators that allow
much computation with a small program (number of lines)

• Or – A language has convenient, rather than cumbersome,
way of specifying computations.

 count++

 loop, while, do, for, foreach

Type Checking

• Testing for type errors in a given program, either by compiler or
during program execution

• Compile type checking is less expensive – both for program
efficiency and maintenance.

bool var1;

int var2 = var1;

>> Error: Cannot cast var1 (bool) to type int.

Type Checking (end)

function myFund(int value)

{

 return value;

}

bool var1;

myFunc(var1);

>> Error: MyFunc expected type (int), found type
(bool).

Exception Handling

• The ability for a program to intercept run-time errors, take
corrective measures, and then continue

• Widely available in Ada, C++, Java, C#. Virtually non-existent
in many other languages.

Exception Handling (end)

public static void main(String[] args) throws Exception{
 try

 {
 int a,b;
 BufferedReader in =
 new BufferedReader(new InputStreamReader(System.in));
 a = Integer.parseInt(in.readLine());
 b = Integer.parseInt(in.readLine());
 }
 catch(NumberFormatException ex)

 {
 System.out.println(ex.getMessage() + " is not a numeric value.");
 System.exit(0);
 }
}

Aliasing

• Having two or more distinct names that can be used to access
the same memory cell.

• Restricted Aliasing?

DESIGN TRADEOFFS

When criteria conflict

Language Design Trade-Offs
• Reliability vs. cost of execution

• Example: Java demands all references to array elements be
checked for proper indexing, which leads to increased execution
costs

• Readability vs. writability
Example: APL provides many powerful operators (and a large number

of new symbols), allowing complex computations to be written in a
compact program but at the cost of poor readability

• Writability (flexibility) vs. reliability
• Example: C/C++ pointers are powerful and very flexible but are

unreliable

COST

All things considered…

Characteristic Readabilit
y

Writability Reliability

Simplicity X X X

Orthogonality X X X

Control Structures X X X

Data Types X X X

Syntax Design X X X

Support for Abstraction X X

Expressivity X X

Exception Handling X

Restricted Aliasing X

Characteristic???? Readability Writability Reliability

OO Support ? ? ?

Support for Interfaces X ?

Support for Reflection X ?

Portability * * *

Tools Available * * *

Unit Testability * * *

Separation of Concerns * * *

Market Value * * *

Cost

• Cost of Training

• Cost to Write

• Cost of Compilation

• Cost of Execution (Optimization)

• Cost of System

• Cost of Reliability (poor)

• Cost of Maintenance

• Opportunity Cost

INFLUENCES ON LANGUAGE DESIGN

Computer Architecture and Programming Methodologies

Influences on Language Design

• Computer Architecture

• Languages are developed around the prevalent
computer architecture, known as the von Neumann
architecture

• Program Design Methodologies

• New software development methodologies (e.g.,
object-oriented software development) led to new
programming paradigms and by extension, new
programming languages

Computer Architecture Influence

• Well-known computer architecture: Von Neumann

• Imperative languages, most dominant, because of von
Neumann computers
• Data and programs stored in memory

• Memory is separate from CPU

• Instructions and data are piped from memory to CPU

• Basis for imperative languages

• Variables model memory cells

• Assignment statements model piping

• Iteration is efficient

The von Neumann Architecture

The von Neumann Architecture

• Fetch-execute-cycle (on a von Neumann architecture
computer)

initialize the program counter

repeat forever

 fetch the instruction pointed by the counter

 increment the counter

 decode the instruction

 execute the instruction

end repeat

Programming Methodologies Influences

• 1950s and early 1960s: Simple applications; worry about
machine efficiency

• Late 1960s: People efficiency became important;
readability, better control structures
• structured programming

• top-down design and step-wise refinement

• Late 1970s: Process-oriented to data-oriented
• data abstraction

• Middle 1980s: Object-oriented programming
• Data abstraction + inheritance + polymorphism

LANGUAGE CATEGORIES

Imperative, Functional, Logic, Hybrid

Language Categories
• Imperative

• Central features are variables, assignment statements, and
iteration

• Include languages that support object-oriented programming
• Include scripting languages
• Include the visual languages
• Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

• Functional
• Main means of making computations is by applying functions to

given parameters
• Examples: LISP, Scheme, ML, F#

• Logic
• Rule-based (rules are specified in no particular order)
• Example: Prolog

• Markup/programming hybrid
• Markup languages extended to support some programming
• Examples: HTML, XML, XAML, JSTL, XSLT

IMPLEMENTATION METHODS

Compilation, Interpretation, Hybrid, (JIT &
Preprocessing)

Implementation Methods
• Compilation

• Programs are translated into machine language; includes JIT
systems

• Use: Large commercial applications

• Pure Interpretation
• Programs are interpreted by another program known as an

interpreter

• Use: Small programs or when efficiency is not an issue / commercial
web applications with caveats

• Hybrid Implementation Systems
• A compromise between compilers and pure interpreters

• Use: Small and medium systems when efficiency is not the first
concern

Layered View of Computer
The operating system
and language
implementation are
layered over
machine interface of a
computer

Compilation
• Translate high-level program (source language) into

machine code (machine language)

• Slow translation, fast execution

• Compilation process has several phases:
• lexical analysis: converts characters in the source program into

lexical units

• syntax analysis: transforms lexical units into parse trees which
represent the syntactic structure of program

• Semantics analysis: generate intermediate code

• code generation: machine code is generated

The Compilation Process

Additional Compilation Terminologies

• Load module (executable image): the user and system code
together

• Linking and loading: the process of collecting system program
units and linking them to a user program

Von Neumann Bottleneck

• Connection speed between a computer’s memory and its
processor determines the speed of a computer

• Program instructions often can be executed much faster than
the speed of the connection; the connection speed thus
results in a bottleneck

• Known as the von Neumann bottleneck; it is the primary
limiting factor in the speed of computers

Pure Interpretation

• No translation

• Easier implementation of programs (run-time errors can
easily and immediately be displayed)

• Slower execution (10 to 100 times slower than compiled
programs)

• Often requires more space

• No compilation . No optimization. Bottleneck is in
decoding rather than been processor and memory.

• Now rare for traditional high-level languages

• Significant comeback with some Web scripting languages
(e.g., JavaScript, PHP)

Pure Interpretation Process

Hybrid Implementation Systems

• A compromise between compilers and pure interpreters

• A high-level language program is translated to an intermediate
language that allows easy interpretation

• Faster than pure interpretation

• Examples
• Perl programs are partially compiled to detect errors before

interpretation

• Initial implementations of Java were hybrid; the intermediate form,
byte code, provides portability to any machine that has a byte code
interpreter and a run-time system (together, these are called Java
Virtual Machine)

Hybrid Implementation Process

1-54

Just-in-Time Implementation Systems

• Initially translate programs to an intermediate language

• Then compile the intermediate language of the subprograms
into machine code when they are called

• Machine code version is kept for subsequent calls

• JIT systems are widely used for Java programs

• .NET languages are implemented with a JIT system

• In essence, JIT systems are delayed compilers

• Purpose?
• Allows code to be portable just through an interpreter

• Allows some special machine time optimizations to be made

• Can allow program to start faster. Program is brought into memory
only as it’s used.

• Many arguments for against JIT caching/optimization (disk IO speed
vs. JIT cost, etc).

Preprocessors
• Preprocessor macros (instructions) are commonly used to

specify that code from another file is to be included

• A preprocessor processes a program immediately before the
program is compiled to expand embedded preprocessor
macros

• A well-known example: C preprocessor

• expands #include, #define, and similar macros

SUMMARY

Concluding Chapter 1

Summary

• The study of programming languages is valuable for a
number of reasons:
• Increase our capacity to use different constructs
• Enable us to choose languages more intelligently
• Makes learning new languages easier

• Most important criteria for evaluating programming
languages include:
• Readability, writability, reliability, cost

• Major influences on language design have been machine
architecture and software development methodologies

• The major methods of implementing programming
languages are: compilation, pure interpretation, and hybrid
implementation

• Final decision may always be trumped by platform viability
in target market space.

