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Examples of Caching Used

• What is caching?

– Maintaining copies of information in locations that are 
faster to access than their primary home

• Examples

– TLB

– Data/instruction caches

– Branch predictors

– VM

– Web browser

– File I/O (disk cache)

– Internet name resolutions
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REVIEW OF DEFINITIONS & TERMS
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What Makes a Cache Work

• What are the necessary conditions

– Locations used to store cached data must be 
faster to access than original locations

– Some reasonable amount of reuse

– Access patterns must be somewhat predictable
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Memory Hierarchy & Caching

• Use several levels of faster and faster memory to hide delay of 
upper levels

Secondary Storage 

~1-10 ms

Main Memory

~ 100 ns

L2 Cache

~ 10ns

L1 Cache

~ 1ns

Registers

Faster

Less 

Expensive
Larger Slower

More 

Expensive
Smaller

Unit of Transfer: 

Cache block/line
1-8 words

(Take advantage of spatial 

locality)

Unit of Transfer:

Page 
4KB-64KB words

(Take advantage of 

spatial locality)

Unit of Transfer: 

Word or Byte

Higher 

Levels

Lower  

Levels

http://images.google.com/imgres?imgurl=http://content.answers.com/main/content/wp/en/b/bc/DIMMs.jpg&imgrefurl=http://www.answers.com/topic/dimm&h=273&w=439&sz=36&hl=en&start=6&um=1&tbnid=5SVFjWQNFR3QuM:&tbnh=79&tbnw=127&prev=/images?q%3Ddimm%26ndsp%3D18%26um%3D1%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231%26sa%3DN
http://images.google.com/imgres?imgurl=http://www.pcguide.com/ref/hdd/z_ibm_ultrastar36zx.jpg&imgrefurl=http://www.pcguide.com/ref/hdd/index-c.html&h=437&w=398&sz=23&hl=en&start=4&tbnid=v5hBLvB3yy_E7M:&tbnh=126&tbnw=115&prev=/images?q%3Dhard%2Bdisk%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231
http://images.google.com/imgres?imgurl=http://www.sudhian.com/img/intel/core2/core2.03.jpg&imgrefurl=http://www.sudhian.com/index.php?/articles/show/intel_core_2_duo_e6700_core_2_extreme_x6800_review/&h=386&w=500&sz=100&hl=en&start=7&tbnid=NKGcbV1H1RIhmM:&tbnh=100&tbnw=130&prev=/images?q%3Dcore%2B2%2Bduo%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231
http://images.google.com/imgres?imgurl=http://www.sharkyextreme.com/img/2006/07/core2/core2_duo.jpg&imgrefurl=http://www.sharkyextreme.com/hardware/cpu/article.php/3620036&h=369&w=400&sz=25&hl=en&start=5&tbnid=lwGjuvMaRgqAqM:&tbnh=114&tbnw=124&prev=/images?q%3Dcore%2B2%2Bduo%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231
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Hierarchy Access Time & Sizes
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Principle of Locality

• Caches exploit the Principle of Locality

– Explains why caching with a hierarchy of memories yields 
improvement gain

• Works in two dimensions

– Temporal Locality: If an item is referenced, it will tend to 
be referenced again soon

• Examples:  Loops, repeatedly called subroutines, setting a variable 
and then reusing it many times

– Spatial Locality: If an item is referenced, items whose 
addresses are nearby will tend to be referenced soon

• Examples: Arrays and program code
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Cache Blocks/Lines

• Cache is broken into 
"blocks" or "lines"
– Any time data is brought in, 

it will bring in the entire 
block of data

– Blocks start on addresses 
multiples of their size

0x400000
0x400040
0x400080
0x4000c0

128B Cache 

[4 blocks (lines) of

8-words (32-bytes)]

Proc.

M
a
in

 

M
e
m

o
ry

0x400100
0x400140

Wide (multi-word) 

FSB

Narrow (Word) 

Cache bus
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Cache Blocks/Lines

• Whenever the processor 
generates a read or a write, 
it will first check the cache 
memory to see if it 
contains the desired data

– If so, it can get the data 
quickly from cache

– Otherwise, it must go to 
the slow main memory to 
get the data

0x400000
0x400040
0x400080
0x4000c0

Proc.

0x400100
0x400140

Request word @ 

0x400028
1

Cache does not 

have the data and 

requests whole 

cache line 400020-

40003f

2

3 Memory responds

4 Cache forward 

desired word
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Cache Definitions

• Cache Hit = Desired data is in current level of cache

• Cache Miss = Desired data is not present in current level

• When a cache miss occurs, the new block is brought from the 
lower level into cache
– If cache is full a block must be evicted

• When CPU writes to cache, we may use one of two policies:
– Write Through (Store Through): Every write updates both current and 

next level of cache to keep them in sync. (i.e. coherent)

– Write Back: Let the CPU keep writing to cache at fast rate, not 
updating the next level.  Only copy the block back to the next level 
when it needs to be replaced or flushed
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Write Back Cache

• On write-hit

– Update only cached copy

– Processor can continue 
quickly 

– Later when block is 
evicted, entire block is 
written back (because 
bookkeeping is kept on a 
per block basis)

0x400000
0x400040
0x400080
0x4000c0

Proc.

0x400100
0x400140

Write word (hit)
1

Cache updates 

value & signals 

processor to 

continue

2

5
On eviction, entire 

block written back

3

4
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Write Through Cache

• On write-hit
– Update both levels of hierarchy

– Depending on hardware 
implementation, lower-level 
may have to wait for write to 
complete to lower level

– Later when block is evicted, no 
writeback is needed 

0x400000
0x400040
0x400080
0x4000c0

Proc.

0x400100
0x400140

Write word (hit)
1

Cache and memory 

copies are updated
2

3 On eviction, entire 

block written back
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Write-through vs. Writeback

• Write-through

– Pros
• Avoid coherency issues between levels (need for eviction)

– Cons
• Poor performance if next level of hierarchy is slow (VM page fault 

to disk) or if many, repeated accesses

• Writeback

– Pros
• Fast if many repeated accesses

– Cons
• Coherency issues

• Slow if few, isolated writes since entire block must be written back
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Principle of Inclusion

• When the cache at level j misses on data that is store in level k (j < k), the 
data is brought into all levels i where  j < i < k 

• This implies that lower levels always contains a subset of higher levels

• Example:

– L1 contains most recently used data

– L2 contains that data + data used earlier

– MM contains all data

• This make coherence far easier to maintain between levels

L1 Cache 

Memory
Processor

L2 Cache 

Memory

Main

Memory
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Average Access Time

• Define parameters

– Hi = Hit Rate of Cache Level Li

(Note that 1-Hi = Miss rate)

– Ti = Access time of level i

– Ri = Burst rate per word of level i (after startup access time)

– B = Block Size

• Let us find TAVE = average access time 
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Tave without L2 cache

• 2 possible cases:

– Either we have a hit and pay only the L1 cache hit time

– Or we have a miss and read in the whole block to L1 and then 
read from L1 to the processor

• Tave = T1 + (1-H1)•[TMM + B•RMM]

• For T1=10ns, H1 = 0.9, B=8, TMM=100ns, RMM=25ns

– Tave = 10 + [ (0.1) • (100+8•25) ] = 40 ns

(Miss Rate)*(Miss Penalty)
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Tave with L2 cache

• 3 possible cases:
– Either we have a hit and pay the L1 cache hit time

– Or we miss L1 but hit L2 and read in the block from L2

– Or we miss L1 and L2 and read in the block from MM

• Tave = T1 + (1-H1)•H2•(T2+B•R2) + (1-H1)•(1-H2)•(TMM+B•RMM)

• For T1 = 10ns, H1 = 0.9, T2 = 20ns, R2 = 10ns, H2 = 0.98, B=8, 
TMM=100ns, RMM=25 ns

• Tave = 10 + (0.1)•(.98)•(20+8•10) + (0.1)•(.02)•(100+8•25)
= 10 + 9.8 ns + 0.6 = 20.4 ns

L1 miss / L2 Hit L1 miss / L2 Miss
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Three Main Issues

• Finding cached data (hit/miss)

• Replacement algorithms

• Coherency (managing multiple versions)

– Discussed in previous lectures
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MAPPINGS
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Cache Question

00 0a 56 c4 81 e0 fa ee
39 bf 53 e1 b8 00 ff 22

Hi, I'm a block of cache 
data.  Can you tell me 
what address I came 

from?
0xbfffeff0? 0x0080a1c4?



21

Cache Implementation

• Assume a cache of 4 blocks of 16-bytes each

• Must store more than just data!

• What other bookkeeping and identification info is needed?
– Has the block been modified

– Is the block empty or full

– Address range of the data:  Where did I come from?

Data of 0xAC0-ACF

(unmodified)

Data of 0x470-47F

(modified)

empty

empty

Cache with 4 data blocks
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Implementation Terminology

• What bookkeeping values must be stored with the 
cache in addition to the block data?

• Tag – Portion of the block’s address range used to 
identify the MM block residing in the cache from 
other MM blocks.

• Valid bit – Indicates the block is occupied with valid 
data (i.e. not empty or invalid)

• Dirty bit – Indicates the cache and MM copies are 
“inconsistent” (i.e. a write has been done to the 
cached copy but not the main memory copy)

– Used for write-back caches
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Identifying Blocks via Address Range

• Possible methods
– Store start and end address (requires multiple comparisons)

– Ensure block ranges sit on binary boundaries (upper address bits 
identify the block with a single value)

• Analogy:  Hotel room layout/addressing

100

101

102

103

104

105

106

107

108

109

120

121

122

123

124

125

126

127

128

129

200

201

202

203

204

205

206

207

208

209

220

221

222

223

224

225

226

227

228

229

1
s
t
F

lo
o

r

2
n

d
F

lo
o

r

Analogy: Hotel Rooms

To refer to the range 

of rooms on the 

second floor, left aisle 

we would just say 

rooms 20x

4 word (16-byte) blocks:

8 word (32-byte) blocks:

Addr. Range Binary

000-00f 0000 0000 0000 -
1111

010-01f 0000 0001 0000 -
1111

1st Digit = Floor

2nd Digit = Aisle

3rd Digit = Room w/in

aisle

Addr. Range Binary

000-01f 0000 000 00000 -
11111

020-03f 0000 001 00000 -
11111
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Cache Implementation

• Assume 12-bit addresses and 16-byte blocks
• Block addresses will range from xx0-xxF

– Address can be broken down as follows
– A[11:4] = identifies block range (i.e. xx0-xxF)
– A[3:0] = byte offset within the cache block

A[11:4]

ByteTag

A[3:0]

Addr. = 0x124

Word 0x4 (1st) w/in 

block 120-12F

01000001 0010

Addr. = 0xACC

Word 0xC (3rd) 

w/in block AC0-

ACF
1010 1100 1100
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Cache Implementation

• To identify which MM block resides in each cache 
block, the tags need to be stored along with the Dirty 
and Valid bits

Data of 0xAC0-ACF

(unmodified)

1010 1100

D=0V=1

Tag

Data of 0x470-47F

(modified)

0100 0111

D=1V=1

empty

empty

0000 0000

D=0V=0

0000 0000

D=0V=0
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Scenario

• You lost your keys

• You think back to where you have been lately
– You've been the library, to class, to grab food at campus center, and 

the gym

– Where do you have to look to find your keys?

• If you had been home all day and discovered your keys were 
missing, where would you have to look?

• Key lesson:  If something can be anywhere you have to search 
_________
– By contrast, if we limit where things can be then our search need only 

look in those limited places
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Content-Addressable Memory

• Cache memory is one form of what is known as “content-addressable” 
memory

– This means data can be in any location in memory and does not have one 
particular address

– Additional information is saved with the data and is used to “address”/find the 
desired data (this is the “tag” in this case) via a search on each access

– This search can be very time consuming!!

Data of 0xAC0-ACF

(unmodified)

1010 1100

D=0V=1

Data of 0x470-47F

(modified)

0100 0111

D=1V=1

empty

empty

0000 0000

D=0V=0

0000 0000

D=0V=0

Processor

Read 0x47c

Is block 0x470-

0x47f here?

or here?

or here?

or here?

1

2
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Tag Comparison

• When caches have many blocks (> 16 or 32) it can be 
expensive (hardware-wise) to check all tags

0xAC0-ACF

(unmodified)

1010 1100

D=0V=1

Address = A[11:2]

0x470-47F

(modified)

0100 0111

D=1V=1

empty

empty

D=0V=0

D=0V=0

0000 0000

0000 0000

=

=

=

=

Proc.

Tag = A[11:4]

Word = A[3:2]

Hit

When a block can be 

anywhere you have to 

search everywhere.
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Tag Comparison Example

• Tag portion of desired address is check against all the 
tags and qualified with the valid bits to determine a 
hit

0xAC0-ACF

(unmodified)

1010 1100

D=0V=1

0x470-47F

(modified)

0100 0111

D=1V=1

empty

empty

D=0V=0

D=0V=0

0100 0111

0000 0000

=

=

=

=

Proc.

Hit

1

Address = 0x47C

Tag = A[11:4] = 0100 0111

A[3:0] = 1100

1

V=1

1

0

V=0

V=0

0

0

0

V=1

When a block can be 

anywhere you have to 

search everywhere.
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Mapping Techniques

• Determines where blocks can be placed in the 
cache

• By reducing number of possible MM blocks 
that map to a cache block, hit logic (searches) 
can be done faster

• 3 Primary Methods

– Direct Mapping

– Fully Associative Mapping

– Set-Associative Mapping
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Cache Mapping Schemes
• Cache mappings are really just variations in hash table 

configurations
– We hash the larger memory space to the smaller cache space

– Key = originating memory address (e.g. main memory address where 
the block came from)

– Value = data from that cache block

0

1

2

3

…

tag, cache block

Cache Locations

Hash
(Cache 

Mapping)

Main mem. 

address

key, value

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory
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Fully Associative Cache Mapping

• Any memory block can go anywhere

• Like a hash table with 1 bucket/chain [ h(k) = 0 ]
– Turns into a linked list

– To find something in the list we must do a linear search

0

tag, cache block

Cache Locations Hash, h(k)
(Cache 

Mapping)

Main mem. 

address

key, value

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory
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Direct Mapped Caches

• Cache is like a hash table without chaining (one slot per 
bucket)
– Collisions yield to evictions

– Each main memory block will always map to 
the same cache location

0

1

2

3

tag, cache block

Cache Locations

Hash
(Cache 

Mapping)

Main mem. 

address

key, value

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory
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K-way Set Associative Mapping

• Buckets in the hash table are limited to size=k
– Once a bucket is full, must evict blocks to make room for a new one

– Each bucket is referred to as a set

– Each MM block maps to one set but can go 
anywhere in that bucket

0

1

2

3

…

tag, cache block

Cache Locations

Hash
(Cache 

Mapping)

Main mem. 

address

key, value

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Set
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Fully Associative Mapping

• Any block from memory can be put in any cache 
block (i.e. no restriction)

– Implies we have to search everywhere to determine hit or 
miss

Block 0

Block 1

Block 2

Block 6

Block 7

Block 8

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

.

.

.

…
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Direct Mapping

• Each block from memory can only be put in one location

• Given n cache blocks, 
MM block i maps to cache block i mod n

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

= 0 mod 4

= 0 mod 4

= 0 mod 4

= 3 mod 4

= 3 mod 4

= 2 mod 4

= 2 mod 4

= 1 mod 4

= 1 mod 4
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K-way Set-Associative Mapping

• Given, S sets, block i of MM maps to set i mod s

• Within the set, block can be put anywhere

• Let k = number of cache blocks per set = n/s
– K comparisons required for search

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0
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Fully Associative Implementation

• 12-bit address:
– 16 bytes per block => 4 LSB’s used to determine the desired byte/word offset 

within the block
– Tag = Block # = Upper bits used to identify the block in the cache

Block 0

Block 1

Block 2

Block 6

Block 7

Block 8

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

.

.

.

…

ByteTag

000000001000Address = 0x080
0

F

0

F

0

F

0

F

0

F

0

F
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Fully Associative Address Scheme

• A[1:0] unused (word access only)

• Word bits = log2B bits (B=Block Size)

• Tag = Remaining bits
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Fully Associative Mapping

• Any block from memory can be put in any cache 
block (i.e. no mapping scheme)

• Completely flexible

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

CacheTag

ByteTag

000000000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F
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Fully Associative Mapping

• Any block from memory can be put in any 
cache block (i.e. no mapping)

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Block 0

Cache Block 3

Cache

Block 0 can go in any empty 

cache block, but let’s just 

pick cache block 2

Tag

00000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

ByteTag

000000000000
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Fully Associative Mapping

• Any block from memory can be put in any 
cache block (i.e. no mapping)

Block 1

Block 0

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Block 0

Block 1

Cache

Block 1 can go in any 

empty cache block, so let’s 

just pick cache block 3

Tag

00000000

00000001

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

ByteTag

000000000001
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Fully Associative Mapping

• Any block from memory can be put in any 
cache block (i.e. no mapping)

Block FE

Block 0

Block 2

Block 3

Block FC

Block FD

Block 1

Block FF

…

Memory

Cache Block 0

Block FE

Block 0

Block 1

Cache

Block FE can go in any 

cache block, so let’s just 

pick cache block 1

Tag

11111110

00000000

00000001

Tag

11111110

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Fully Associative Mapping

• Any block from memory can be put in any 
cache block (i.e. no mapping)

Block FF

Block 0

Block 2

Block 3

Block FC

Block FD

Block 1

Block FE

…

Memory

Block FF

Block FE

Block 0

Block 1

Cache

Block FF can go in any 

cache block, so the only 

one left is cache block 0

Tag

11111111

11111110

00000000

00000001

Tag

11111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Fully Associative Mapping

• Any block from memory can be put in any 
cache block (i.e. no mapping)

Block FF

Block 0

Block 2

Block 3

Block FC

Block FD

Block 1

Block FE

…

Memory

Block FF

Block FE

Block 0

Block 1

Cache

Block FC must replace a 

block since the cache is full. 

We’ll pick the Least Recently 

Used (Block 0)

Tag

11111111

11111110

11111100

00000001

Tag

11111100

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Fully Associative Mapping

• Any block from memory can be put in any 
cache block (i.e. no mapping)

Block FF

Block 0

Block 2

Block 3

Block FC

Block FD

Block 1

Block FE

…

Memory

Block FF

Block FD

Block FC

Block 1

Cache

Block FC must replace a 

block since the cache is full. 

We’ll pick the Least Recently 

Used (Block 0)

Block 0

Tag

11111111

11111110

11111100

00000001

Tag

11111100

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Direct Mapping

• Each block from memory can only be put in one 
location

• MM block i maps to cache block i mod n

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

= 0 mod 4

= 0 mod 4

= 0 mod 4

= 3 mod 4

= 3 mod 4

= 2 mod 4

= 2 mod 4

= 1 mod 4

= 1 mod 4
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Direct Mapping Implementation

• 12-bit address:
– 16 bytes per block => 4 LSB’s used to determine the desired byte/word 

offset within the block
– 4 = 22 possible blocks => 2 bits to determine cache location (i.e. hash 

function => use these 2 bits of address)
– Tag = Upper 6 bits used to identify the block in the cache (identifies 

between blocks that map to the same bucket (block 0, 4, 8, etc.)

Block 08

Block 09

Block 0A

Block 0B

Block 0C

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache
= 0 mod 4

= 0 mod 4

= 3 mod 4

= 2 mod 4

= 1 mod 4

080

08F
090

09F
0A0

0AF
0B0

0BF
0C0

0CF

BlockTag

00000010Address = 080

Byte

0000
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Direct Mapping Implementation

• 12-bit address:
– 16 bytes per block => 4 LSB’s used to determine the desired byte/word 

offset within the block
– 4 = 22 possible blocks => 2 bits to determine cache location (i.e. hash 

function => use these 2 bits of address)
– Tag = Upper 6 bits used to identify the block in the cache (identifies 

between blocks that map to the same bucket (block 0, 4, 8, etc.)

Block 08

Block 09

Block 0A

Block 0B

Block 0C

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache
= 0 mod 4

= 0 mod 4

= 3 mod 4

= 2 mod 4

= 1 mod 4

080

08F
090

09F
0A0

0AF
0B0

0BF
0C0

0CF

Address = 0A8

BlockTag

10000010

Byte

0000
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Direct Mapping

• Each block from memory can only be put in one 
location

• MM block i maps to cache block i mod n

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

CacheTag

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F
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Direct Mapping

• Each block from memory can only be put in one 
location

• Block i mod n maps to cache block i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

0 = 0 mod 4

Tag

000000

BlockTag

00000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Direct Mapping

• Each block from memory can only be put in one 
location

• Block i mod n maps to cache block i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 2

Cache Block 3

Cache

1 = 1 mod 4

Block 0

Block 1

Tag

000000

000000

BlockTag

01000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Direct Mapping

• Each block from memory can only be put in one 
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 1

Cache Block 3

Cache

0 = FC mod 4

Block FC

Cache Block 2

Block 0 gets evicted since 

block FC can only be put in 

cache block 0

Block 0
Tag

111111

000000

BlockTag

00111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Direct Mapping

• Each block from memory can only be put in one 
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 1

Cache Block 3

Cache

2 = 2 mod 4

Block FC

Block 2

Tag

111111

000000

000000

BlockTag

10000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Direct Mapping

• Each block from memory can only be put in one 
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 1

Cache Block 3

Cache

2 = FE mod 4

Block FC

Block FE

Block 2 gets evicted since 

block FE can only be put in 

cache block 2

Block 2

Tag

111111

000000

111111

BlockTag

10111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Direct Mapping

• Each block from memory can only be put in one 
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 1

Block 3

Cache

3 = 3 mod 4

Block FC

Block FE

Tag

111111

000000

111111

000000

BlockTag

11000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Direct Mapping

• Each block from memory can only be put in one 
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block FD

Block 3

Cache

1 = FD mod 4

Block FC

Block FE

Block 1

Block 1 gets evicted since 

block FD can only be put in 

cache block 1

Tag

111111

111111

111111

000000

BlockTag

01111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Direct Mapping

• Each block from memory can only be put in one 
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block FD

Block FF

Cache

3 = FF mod 4

Block FC

Block FE Block 3

Block 3 gets evicted since 

block FF can only be put 

in cache block 3

Tag

111111

111111

111111

111111

BlockTag

11111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Set-Associative Mapping

• Blocks from set i can map into any cache block 
from set i

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0
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Set-Associative Mapping

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

• 12-bit address:
– 16 bytes per block => 4 LSB’s used to determine the desired byte/word offset 

within the block
– 2 = 21 possible sets => 1 bits to determine cache set (i.e. hash function => use 

this 1-bit of address)
– Tag = Upper 7 bits used to identify the block in the cache

Tag

0000100Address = 080

Set

0

Byte

0000
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Set-Associative Mapping

• Blocks from set i can map into any cache block 
from set i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Tag

S
e

t 
0

S
e

t 
1

Tag

0000000

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000



62

Set-Associative Mapping

• Blocks from set i can map into any cache block 
from set i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block 0 can be placed in any 

empty cache block in set 0

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

CacheTag

S
e

t 
0

S
e

t 
1

Tag

0000000

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Set-Associative Mapping

• Blocks from set i can map into any cache block 
from set i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block 0

Cache Block 1

Cache Block 2

Cache Block 3

CacheTag

0000000

S
e

t 
0

S
e

t 
1

We’ll put Block 0 in 

Cache Block 0 Tag

0000000

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Set-Associative Mapping

• Blocks from set i can map into any cache block 
from set i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block 0

Cache Block 1

Block 1

Cache Block 3

CacheTag

0000000

0000000

S
e

t 
0

S
e

t 
1

Block 1 can be placed in 

any empty cache block in 

set 1.  Let’s select cache 

block 2

Tag

0000000

Set

1

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Set-Associative Mapping

• Blocks from set i can map into any cache block 
from set i

Block 1

Block 0

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block FC can be placed in 

any empty cache block in 

set 0.  So select cache 

block 1.

Block 0

Block 1

Cache Block 3

CacheTag

0000000

1111110

0000000

S
e

t 
0

S
e

t 
1

Block FC

Tag

1111110

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000
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Set-Associative Mapping

• Blocks from set i can map into any cache block 
from set i

Block 1

Block 0

Block 2

Block 3

Block FE

Block FD

Block FC

Block FF

…

Memory

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block FE can replace any 

cache block in set 0, but let’s 

select the Least Recently 

Used (Block 0)

Tag

1111111

1111110

0000000

S
e

t 
0

S
e

t 
1

Block FE

Block 1

Cache Block 3

Block FC

Block 0

Tag

1111111

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte
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Summary of Mapping Schemes

• Fully associative

– Most flexible (less evictions)

– Longest search time O(N)

• Direct-mapped cache

– Least flexible (more evictions)

– Shortest search time O(1)

• K-way Set Associative mapping

– Compromise
• 1-way set associative = ________

• N-way set associative = ________

– Search time is O(k) [usually small 
enough to be done in parallel => O(1)]

Byte
MM 

Addr
Tag

31 0

ByteTag
MM 

Addr

31 0

Block

ByteTag
MM 

Addr

31 0

Set

Fully Associative

No hashing…can be placed 

anywhere in cache.  Must 

search N locations.

Direct Mapped Cache

h(a) = block field

Only search 1 location. 

K-way Set Associative Mapping

h(a) = set field

Only search k locations
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Intel Nehalem Quad Core
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Cache Configurations

AMD Opteron Intel P4 PPC 7447a

Clock rate (2004) 2.0 GHz 3.2 GHz 1.5 – 2 GHz

Instruction Cache 64KB, 2-way SA 96 KB 32 KB, 8-way SA

Latency (clocks) 3 4 1

Data cache 64 KB, 2-way SA 8 KB, 4-way SA 32 KB, 8-way SA

Latency (clocks) 3 2 1

L1 Write Policy Write-back Write-through Programmable

On-chip L2 1 MB, 16-way SA 512 KB, 8-way SA 512 KB, 8-way SA

L2 Latency 6 5 9

Block size (L1/L2) 64 64/128 32/64

L2 Write-Policy Write-back Write-back Programmable

Sources:  H&P, “CO&D”, 3rd ed., Freescale.com, 



70

REPLACEMENT ALGORITHMS
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Replacement Policies

• On a miss, a new block must be brought in

• This requires evicting a current block residing in the 
cache

• Optimal Replacement Policy

– MIN: Replace block used the farthest in the future
• Requires knowledge of the future

• Practical Replacement policies

– FIFO:  First-in first-out (oldest block replaced)

– LRU: Least recently used (usually best but hard to 
implement)

– Random: Actually performs surprisingly well

• What about Least Frequently Used (LFU?)
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Replacement Aglorithms

• FIFO can be pessimal (worst possible) for repeated 
linear scans that don't fit in the cache

• Consider cache of 4 blocks with a repeated iteration 
through an array that requires 5 blocks of storage

OS:PP 2nd Ed. Fig 9.13
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Replacement Aglorithms

• Compare the following replacement algorithms for a pattern exhibiting 
temporal locality

OS:PP 2nd Ed. Fig 9.14
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Replacement Aglorithms

• Compare LRU & MIN following replacement algorithms for a pattern that 
repeatedly scans through memory

OS:PP 2nd Ed. Fig 9.15
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Belady's Anomaly
• Adding space to a cache generally helps improve the hit rate

• BUT NOT ALWAYS!

• For FIFO, more slots may actually decrease hit rate:  Belady's anomaly

– Other algorithms like LRU, MIN, and LFU can be proven to show that adding 
slots to the cache will ONLY HELP

• Compare the hit rate for FIFO replacement with 3 vs. 4 slots

OS:PP 2nd Ed. Fig 9.15



76

Miss Rate

• Reducing Miss Rate means lower TAVE

• To analyze miss rate categorize them based on 
why they occur
– Compulsory Misses

• First access to a block will always result in a miss

– Capacity Misses
• Misses because the cache is too small

– Conflict Misses
• Misses due to mapping scheme (replacement of direct 

or set associative)
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Miss Rate & Block Size

Graph used courtesy “Computer Architecture: AQA, 3rd ed.”, 

Hennessey and Patterson
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Hit/Miss Rate vs. Cache Size

OS:PP 2nd Ed.: Fig. 9.4
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Miss Rate & Associativity

Graph used courtesy “Computer Architecture: AQA, 3rd ed.”, 

Hennessey and Patterson
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Prefetching

• Hardware Prefetching

– On miss of block i, fetch block i and i+1

• Software Prefetching

– Special “Prefetch” Instructions

– Compiler inserts these instructions to give hints ahead of 
time as to the upcoming access pattern
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CACHE CONSCIOUS 
PROGRAMMING
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Working Sets

• Generally a program works with different sets of data at 
different times
– Consider an image processing algorithm akin to JPEG encoding

• Perform data transformation on image pixels using several weighting 
tables/arrays

• Create a table of frequencies

• Perform compression coding using that table of frequencies

• Replace pixels with compressed codes

• The data that the program is accessing in a small time window 
is referred to as its working set

• We want that working set to fit in cache and make as much 
reuse of that working set as possible while it is in cache
– Keep weight tables in cache when performing data transformation

– Keep frequency table in cache when compressing
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https://cartesianproduct.wordpress.com/tag/working-set/
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Cache-Conscious Programming 

• Order of array indexing

– Row major vs. column major 
ordering

• Blocking (keeps working set small)

• Pointer-chasing

– Linked lists, graphs, tree data 
structures that use pointers do not 
exhibit good spatial locality 

• General Principles

– Keep working set reasonably small 
(temporal locality)

– Use small strides (spatial locality)

– Static structures usually better 
than dynamic ones

for(i=0; i<SIZE; i++) {

for(j=0; j<SIZE; j++) {

// Row-major

A[i][j] = A[i][j]*2;

// Column-major

A[j][i] = A[j][i]*2;

} } 

Example of row vs. column 

major ordering

Memory Layout of 

matrix A

Row Major Col. Major

Linked Lists

Memory Layout of 

Linked List

Original 

Matrix

Blocked 

Matrix
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Blocked Matrix Multiply

• Traditional working set 
– 1 row of C, 1 row of A, NxN matrix B

• Break NxN matrix into smaller BxB 
matrices
– Perform matrix multiply on blocks

– Sum results of block multiplies to 
produce overall multiply result

• Blocked multiply working set
– Three BxB matrices

C A B

*=

Traditional Multiply

C A B

*

+=

Blocked Multiply

C A B

*=

+

…

+

*

for(i = 0; i < N; i+=B) {

for(j = 0; j < N; j+=B) {

for(k = 0; k < N; k+=B) {

for(ii = i; ii < i+B; ii++) {

for(jj = j; jj < j+B; jj++) {

for(kk = k; kk < k+B; kk++) {

Cb[ii][jj] += Ab[ii][kk] * Bb[kk][jj];

} } } } } }
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Blocked Multiply Results

• Intel Nehalem processor

– L1D = 32 KB, L2 = 256KB, L3 = 8 MB

25.6

13.27 12.1
17.37 18.9 18.8
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78.31
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T
im

e
 (

s
e
c
)

Block Dimension (B)

Blocked Matrix Multiply (N=2048)
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Zipf Distribution

OS:PP 2nd Ed.: Fig. 9.7

• Zipf modeled the frequency of 
word usage in larger text bodies

• Zipf model says the frequency of 
access of the k-th most 
frequent/popular item from a 
set is 1/kα where [1 < α < 2]

• Applies to may other domains 

– Web page access on the Internet

– Popularity of cities, books, etc.

– Size of friend lists in social 
networks
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Cache Implications

OS:PP 2nd Ed.: Fig. 9.7

• Zipf-ian distributions may not 
perform well even on large 
caches due to the heavy-tail

• Web-page cache

– New data: New pages are being 
added all the time

– No working set: While there are 
some popular webpages, no small 
subset will cover the bulk of the 
accesses

• Diminishing returns as the cache 
size is increased
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SWAPPING
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Recall: VM Swap = Caching

0

1

2

1023

0

1

2

1023

0

1

2

1023

0

1

2

1023

Offset w/in page
Level 

Index 1

31 12 11 022 21

Level 

Index 2
1010

Pointer to start of 

2nd Level Table

PPFN’s

frame

I/O 

and 

un-

used 

area

frame 0x0What mapping scheme does a page 
table correspond to?

What replacement algorithm can be 
used?

Should we be concerned about fairly 
allocating pages?

Swap 

File
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Processor Chip

Translation Unit / MMU

Page Fault Steps

• On page fault, handler will access 
disk possibly on eviction and to bring 
in desired page

– Likely context switch on each access 
since disk is slow

• Make sure PT & TLB are updated 
appropriately

TLB

CacheCPU
VA

VPN

Page Offset

PPFN

PA

data

10 ns

M
is

s

M
is

s

Hit

VA

Miss

Invalid / 
Not Present

OS Exception 

(Page Fault) 

Handler

Memory

1

2

3

3

4

3. Evict (writeback) page if no 

frame free (update PT & TLB)

4. then bring in needed page 

and update PT
4

5 Restart faulting

instruction

3

4
Page Table

4

3

Disk Driver

(Interrupt)

6 TLB Miss / PT 

walk / Update TLB

6
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VM Eviction Algorithms
• Clock algorithm

– Cycle through frames (circular queue)

• Second-chance Algorithm

– Clock algorithm but pages w/ referenced 
bit set get a 2nd chance (wait until next 
cycle) to be evicted)

– May give preference to dirty pages

• Pseudo-LRU

– Use HW reference bits + OS-managed 
reference counts to perform some form 
of pseudo-LRU

0x00000000

0x3fffffff
Pg. 3

Pg. 1

Pg. 0

Pg. 3

Pg. 2

Pg. 0

Pg. 2

Pg. 0

I/O 

and 

un-

used 

area

0xffffffff

Swap file

Pg. 0

Pg. 1

Pg. 2

Pg. 3

Pg. 0

Pg. 1

Pg. 2

Pg. 0

Pg. 1

Pg. 2

Pg. 3

Page Frame Number

Valid / Present

Modified / Dirty

Referenced

Protection

Cacheable

Clock ptr
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Thrashing and Sharing

• When too many processes are sharing cache or main memory paging, 
thrashing may occur

• Thrashing: Working set cannot fit in memory causing constant, evictions 
and re-fetching of needed data

– CPU is underutilized b/c it is constantly waiting on the memory system

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html
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Page Allocation Fairness

• Want to prevent a few processes from hogging all 
the physical resources (or possibly all the swap 
space)

• Max-min fairness for how many pages allocated to 
process

– Maximize responsiveness to the minimum request 
and then redistribute remainder to other processes

• Example:

– Solaris (Unix) has a background thread that can utilize 
some percentage of the CPU's time looking for pages 
to evict

– Can enforce limits on how many frames a process is 
occupying

0x00000000

0x3fffffff
Pg. 5

Pg. 1

Pg. 0

Pg. 3

Pg. 4

Pg. 0

Pg. 2

Pg. 0

I/O 

and 

un-

used 

area

0xffffffff

Physical 

Mem.

https://docs.oracle.com/cd/E23823_01/html/817-0404/chapter2-10.html
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Page Coloring

• We would not want to allocate pages to a process that all map (hash) to the same 
cache

– If so, then when that process runs it would be having to walk the page table much too often

• The OS can keep track of the sets that pages allocated to a given process hash to and 
then allocate a page that hash to a different set (color) on the next request

Address

Tag PF# Tag PF#

= =

Way 1Way 0

16

Pg. 0

Pg. 3

Option B

ByteTag

31 0

Set

Pg. 1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Pg. 3

Pg. 0

Option A

Pg. 1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Phys. Mem. Frames


