
1

CSCI 350
Ch. 9 – Caching and VM

Mark Redekopp

Michael Shindler & Ramesh Govindan

2

Examples of Caching Used

• What is caching?

– Maintaining copies of information in locations that are
faster to access than their primary home

• Examples

– TLB

– Data/instruction caches

– Branch predictors

– VM

– Web browser

– File I/O (disk cache)

– Internet name resolutions

3

REVIEW OF DEFINITIONS & TERMS

4

What Makes a Cache Work

• What are the necessary conditions

– Locations used to store cached data must be
faster to access than original locations

– Some reasonable amount of reuse

– Access patterns must be somewhat predictable

5

Memory Hierarchy & Caching

• Use several levels of faster and faster memory to hide delay of
upper levels

Secondary Storage

~1-10 ms

Main Memory

~ 100 ns

L2 Cache

~ 10ns

L1 Cache

~ 1ns

Registers

Faster

Less

Expensive
Larger Slower

More

Expensive
Smaller

Unit of Transfer:

Cache block/line
1-8 words

(Take advantage of spatial

locality)

Unit of Transfer:

Page
4KB-64KB words

(Take advantage of

spatial locality)

Unit of Transfer:

Word or Byte

Higher

Levels

Lower

Levels

http://images.google.com/imgres?imgurl=http://content.answers.com/main/content/wp/en/b/bc/DIMMs.jpg&imgrefurl=http://www.answers.com/topic/dimm&h=273&w=439&sz=36&hl=en&start=6&um=1&tbnid=5SVFjWQNFR3QuM:&tbnh=79&tbnw=127&prev=/images?q%3Ddimm%26ndsp%3D18%26um%3D1%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231%26sa%3DN
http://images.google.com/imgres?imgurl=http://www.pcguide.com/ref/hdd/z_ibm_ultrastar36zx.jpg&imgrefurl=http://www.pcguide.com/ref/hdd/index-c.html&h=437&w=398&sz=23&hl=en&start=4&tbnid=v5hBLvB3yy_E7M:&tbnh=126&tbnw=115&prev=/images?q%3Dhard%2Bdisk%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231
http://images.google.com/imgres?imgurl=http://www.sudhian.com/img/intel/core2/core2.03.jpg&imgrefurl=http://www.sudhian.com/index.php?/articles/show/intel_core_2_duo_e6700_core_2_extreme_x6800_review/&h=386&w=500&sz=100&hl=en&start=7&tbnid=NKGcbV1H1RIhmM:&tbnh=100&tbnw=130&prev=/images?q%3Dcore%2B2%2Bduo%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231
http://images.google.com/imgres?imgurl=http://www.sharkyextreme.com/img/2006/07/core2/core2_duo.jpg&imgrefurl=http://www.sharkyextreme.com/hardware/cpu/article.php/3620036&h=369&w=400&sz=25&hl=en&start=5&tbnid=lwGjuvMaRgqAqM:&tbnh=114&tbnw=124&prev=/images?q%3Dcore%2B2%2Bduo%26hl%3Den%26rlz%3D1T4ADBR_enUS227US231

6

Hierarchy Access Time & Sizes

7

Principle of Locality

• Caches exploit the Principle of Locality

– Explains why caching with a hierarchy of memories yields
improvement gain

• Works in two dimensions

– Temporal Locality: If an item is referenced, it will tend to
be referenced again soon

• Examples: Loops, repeatedly called subroutines, setting a variable
and then reusing it many times

– Spatial Locality: If an item is referenced, items whose
addresses are nearby will tend to be referenced soon

• Examples: Arrays and program code

8

Cache Blocks/Lines

• Cache is broken into
"blocks" or "lines"
– Any time data is brought in,

it will bring in the entire
block of data

– Blocks start on addresses
multiples of their size

0x400000
0x400040
0x400080
0x4000c0

128B Cache

[4 blocks (lines) of

8-words (32-bytes)]

Proc.

M
a
in

M
e
m

o
ry

0x400100
0x400140

Wide (multi-word)

FSB

Narrow (Word)

Cache bus

9

Cache Blocks/Lines

• Whenever the processor
generates a read or a write,
it will first check the cache
memory to see if it
contains the desired data

– If so, it can get the data
quickly from cache

– Otherwise, it must go to
the slow main memory to
get the data

0x400000
0x400040
0x400080
0x4000c0

Proc.

0x400100
0x400140

Request word @

0x400028
1

Cache does not

have the data and

requests whole

cache line 400020-

40003f

2

3 Memory responds

4 Cache forward

desired word

10

Cache Definitions

• Cache Hit = Desired data is in current level of cache

• Cache Miss = Desired data is not present in current level

• When a cache miss occurs, the new block is brought from the
lower level into cache
– If cache is full a block must be evicted

• When CPU writes to cache, we may use one of two policies:
– Write Through (Store Through): Every write updates both current and

next level of cache to keep them in sync. (i.e. coherent)

– Write Back: Let the CPU keep writing to cache at fast rate, not
updating the next level. Only copy the block back to the next level
when it needs to be replaced or flushed

11

Write Back Cache

• On write-hit

– Update only cached copy

– Processor can continue
quickly

– Later when block is
evicted, entire block is
written back (because
bookkeeping is kept on a
per block basis)

0x400000
0x400040
0x400080
0x4000c0

Proc.

0x400100
0x400140

Write word (hit)
1

Cache updates

value & signals

processor to

continue

2

5
On eviction, entire

block written back

3

4

12

Write Through Cache

• On write-hit
– Update both levels of hierarchy

– Depending on hardware
implementation, lower-level
may have to wait for write to
complete to lower level

– Later when block is evicted, no
writeback is needed

0x400000
0x400040
0x400080
0x4000c0

Proc.

0x400100
0x400140

Write word (hit)
1

Cache and memory

copies are updated
2

3 On eviction, entire

block written back

13

Write-through vs. Writeback

• Write-through

– Pros
• Avoid coherency issues between levels (need for eviction)

– Cons
• Poor performance if next level of hierarchy is slow (VM page fault

to disk) or if many, repeated accesses

• Writeback

– Pros
• Fast if many repeated accesses

– Cons
• Coherency issues

• Slow if few, isolated writes since entire block must be written back

14

Principle of Inclusion

• When the cache at level j misses on data that is store in level k (j < k), the
data is brought into all levels i where j < i < k

• This implies that lower levels always contains a subset of higher levels

• Example:

– L1 contains most recently used data

– L2 contains that data + data used earlier

– MM contains all data

• This make coherence far easier to maintain between levels

L1 Cache

Memory
Processor

L2 Cache

Memory

Main

Memory

15

Average Access Time

• Define parameters

– Hi = Hit Rate of Cache Level Li

(Note that 1-Hi = Miss rate)

– Ti = Access time of level i

– Ri = Burst rate per word of level i (after startup access time)

– B = Block Size

• Let us find TAVE = average access time

16

Tave without L2 cache

• 2 possible cases:

– Either we have a hit and pay only the L1 cache hit time

– Or we have a miss and read in the whole block to L1 and then
read from L1 to the processor

• Tave = T1 + (1-H1)•[TMM + B•RMM]

• For T1=10ns, H1 = 0.9, B=8, TMM=100ns, RMM=25ns

– Tave = 10 + [(0.1) • (100+8•25)] = 40 ns

(Miss Rate)*(Miss Penalty)

17

Tave with L2 cache

• 3 possible cases:
– Either we have a hit and pay the L1 cache hit time

– Or we miss L1 but hit L2 and read in the block from L2

– Or we miss L1 and L2 and read in the block from MM

• Tave = T1 + (1-H1)•H2•(T2+B•R2) + (1-H1)•(1-H2)•(TMM+B•RMM)

• For T1 = 10ns, H1 = 0.9, T2 = 20ns, R2 = 10ns, H2 = 0.98, B=8,
TMM=100ns, RMM=25 ns

• Tave = 10 + (0.1)•(.98)•(20+8•10) + (0.1)•(.02)•(100+8•25)
= 10 + 9.8 ns + 0.6 = 20.4 ns

L1 miss / L2 Hit L1 miss / L2 Miss

18

Three Main Issues

• Finding cached data (hit/miss)

• Replacement algorithms

• Coherency (managing multiple versions)

– Discussed in previous lectures

19

MAPPINGS

20

Cache Question

00 0a 56 c4 81 e0 fa ee
39 bf 53 e1 b8 00 ff 22

Hi, I'm a block of cache
data. Can you tell me
what address I came

from?
0xbfffeff0? 0x0080a1c4?

21

Cache Implementation

• Assume a cache of 4 blocks of 16-bytes each

• Must store more than just data!

• What other bookkeeping and identification info is needed?
– Has the block been modified

– Is the block empty or full

– Address range of the data: Where did I come from?

Data of 0xAC0-ACF

(unmodified)

Data of 0x470-47F

(modified)

empty

empty

Cache with 4 data blocks

22

Implementation Terminology

• What bookkeeping values must be stored with the
cache in addition to the block data?

• Tag – Portion of the block’s address range used to
identify the MM block residing in the cache from
other MM blocks.

• Valid bit – Indicates the block is occupied with valid
data (i.e. not empty or invalid)

• Dirty bit – Indicates the cache and MM copies are
“inconsistent” (i.e. a write has been done to the
cached copy but not the main memory copy)

– Used for write-back caches

23

Identifying Blocks via Address Range

• Possible methods
– Store start and end address (requires multiple comparisons)

– Ensure block ranges sit on binary boundaries (upper address bits
identify the block with a single value)

• Analogy: Hotel room layout/addressing

100

101

102

103

104

105

106

107

108

109

120

121

122

123

124

125

126

127

128

129

200

201

202

203

204

205

206

207

208

209

220

221

222

223

224

225

226

227

228

229

1
s
t
F

lo
o

r

2
n

d
F

lo
o

r

Analogy: Hotel Rooms

To refer to the range

of rooms on the

second floor, left aisle

we would just say

rooms 20x

4 word (16-byte) blocks:

8 word (32-byte) blocks:

Addr. Range Binary

000-00f 0000 0000 0000 -
1111

010-01f 0000 0001 0000 -
1111

1st Digit = Floor

2nd Digit = Aisle

3rd Digit = Room w/in

aisle

Addr. Range Binary

000-01f 0000 000 00000 -
11111

020-03f 0000 001 00000 -
11111

24

Cache Implementation

• Assume 12-bit addresses and 16-byte blocks
• Block addresses will range from xx0-xxF

– Address can be broken down as follows
– A[11:4] = identifies block range (i.e. xx0-xxF)
– A[3:0] = byte offset within the cache block

A[11:4]

ByteTag

A[3:0]

Addr. = 0x124

Word 0x4 (1st) w/in

block 120-12F

01000001 0010

Addr. = 0xACC

Word 0xC (3rd)

w/in block AC0-

ACF
1010 1100 1100

25

Cache Implementation

• To identify which MM block resides in each cache
block, the tags need to be stored along with the Dirty
and Valid bits

Data of 0xAC0-ACF

(unmodified)

1010 1100

D=0V=1

Tag

Data of 0x470-47F

(modified)

0100 0111

D=1V=1

empty

empty

0000 0000

D=0V=0

0000 0000

D=0V=0

26

Scenario

• You lost your keys

• You think back to where you have been lately
– You've been the library, to class, to grab food at campus center, and

the gym

– Where do you have to look to find your keys?

• If you had been home all day and discovered your keys were
missing, where would you have to look?

• Key lesson: If something can be anywhere you have to search

– By contrast, if we limit where things can be then our search need only

look in those limited places

27

Content-Addressable Memory

• Cache memory is one form of what is known as “content-addressable”
memory

– This means data can be in any location in memory and does not have one
particular address

– Additional information is saved with the data and is used to “address”/find the
desired data (this is the “tag” in this case) via a search on each access

– This search can be very time consuming!!

Data of 0xAC0-ACF

(unmodified)

1010 1100

D=0V=1

Data of 0x470-47F

(modified)

0100 0111

D=1V=1

empty

empty

0000 0000

D=0V=0

0000 0000

D=0V=0

Processor

Read 0x47c

Is block 0x470-

0x47f here?

or here?

or here?

or here?

1

2

28

Tag Comparison

• When caches have many blocks (> 16 or 32) it can be
expensive (hardware-wise) to check all tags

0xAC0-ACF

(unmodified)

1010 1100

D=0V=1

Address = A[11:2]

0x470-47F

(modified)

0100 0111

D=1V=1

empty

empty

D=0V=0

D=0V=0

0000 0000

0000 0000

=

=

=

=

Proc.

Tag = A[11:4]

Word = A[3:2]

Hit

When a block can be

anywhere you have to

search everywhere.

29

Tag Comparison Example

• Tag portion of desired address is check against all the
tags and qualified with the valid bits to determine a
hit

0xAC0-ACF

(unmodified)

1010 1100

D=0V=1

0x470-47F

(modified)

0100 0111

D=1V=1

empty

empty

D=0V=0

D=0V=0

0100 0111

0000 0000

=

=

=

=

Proc.

Hit

1

Address = 0x47C

Tag = A[11:4] = 0100 0111

A[3:0] = 1100

1

V=1

1

0

V=0

V=0

0

0

0

V=1

When a block can be

anywhere you have to

search everywhere.

30

Mapping Techniques

• Determines where blocks can be placed in the
cache

• By reducing number of possible MM blocks
that map to a cache block, hit logic (searches)
can be done faster

• 3 Primary Methods

– Direct Mapping

– Fully Associative Mapping

– Set-Associative Mapping

31

Cache Mapping Schemes
• Cache mappings are really just variations in hash table

configurations
– We hash the larger memory space to the smaller cache space

– Key = originating memory address (e.g. main memory address where
the block came from)

– Value = data from that cache block

0

1

2

3

…

tag, cache block

Cache Locations

Hash
(Cache

Mapping)

Main mem.

address

key, value

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

32

Fully Associative Cache Mapping

• Any memory block can go anywhere

• Like a hash table with 1 bucket/chain [h(k) = 0]
– Turns into a linked list

– To find something in the list we must do a linear search

0

tag, cache block

Cache Locations Hash, h(k)
(Cache

Mapping)

Main mem.

address

key, value

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

33

Direct Mapped Caches

• Cache is like a hash table without chaining (one slot per
bucket)
– Collisions yield to evictions

– Each main memory block will always map to
the same cache location

0

1

2

3

tag, cache block

Cache Locations

Hash
(Cache

Mapping)

Main mem.

address

key, value

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

34

K-way Set Associative Mapping

• Buckets in the hash table are limited to size=k
– Once a bucket is full, must evict blocks to make room for a new one

– Each bucket is referred to as a set

– Each MM block maps to one set but can go
anywhere in that bucket

0

1

2

3

…

tag, cache block

Cache Locations

Hash
(Cache

Mapping)

Main mem.

address

key, value

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Set

35

Fully Associative Mapping

• Any block from memory can be put in any cache
block (i.e. no restriction)

– Implies we have to search everywhere to determine hit or
miss

Block 0

Block 1

Block 2

Block 6

Block 7

Block 8

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

.

.

.

…

36

Direct Mapping

• Each block from memory can only be put in one location

• Given n cache blocks,
MM block i maps to cache block i mod n

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

= 0 mod 4

= 0 mod 4

= 0 mod 4

= 3 mod 4

= 3 mod 4

= 2 mod 4

= 2 mod 4

= 1 mod 4

= 1 mod 4

37

K-way Set-Associative Mapping

• Given, S sets, block i of MM maps to set i mod s

• Within the set, block can be put anywhere

• Let k = number of cache blocks per set = n/s
– K comparisons required for search

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

38

Fully Associative Implementation

• 12-bit address:
– 16 bytes per block => 4 LSB’s used to determine the desired byte/word offset

within the block
– Tag = Block # = Upper bits used to identify the block in the cache

Block 0

Block 1

Block 2

Block 6

Block 7

Block 8

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

.

.

.

…

ByteTag

000000001000Address = 0x080
0

F

0

F

0

F

0

F

0

F

0

F

39

Fully Associative Address Scheme

• A[1:0] unused (word access only)

• Word bits = log2B bits (B=Block Size)

• Tag = Remaining bits

40

Fully Associative Mapping

• Any block from memory can be put in any cache
block (i.e. no mapping scheme)

• Completely flexible

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

CacheTag

ByteTag

000000000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

41

Fully Associative Mapping

• Any block from memory can be put in any
cache block (i.e. no mapping)

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Block 0

Cache Block 3

Cache

Block 0 can go in any empty

cache block, but let’s just

pick cache block 2

Tag

00000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

ByteTag

000000000000

42

Fully Associative Mapping

• Any block from memory can be put in any
cache block (i.e. no mapping)

Block 1

Block 0

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Block 0

Block 1

Cache

Block 1 can go in any

empty cache block, so let’s

just pick cache block 3

Tag

00000000

00000001

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

ByteTag

000000000001

43

Fully Associative Mapping

• Any block from memory can be put in any
cache block (i.e. no mapping)

Block FE

Block 0

Block 2

Block 3

Block FC

Block FD

Block 1

Block FF

…

Memory

Cache Block 0

Block FE

Block 0

Block 1

Cache

Block FE can go in any

cache block, so let’s just

pick cache block 1

Tag

11111110

00000000

00000001

Tag

11111110

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

44

Fully Associative Mapping

• Any block from memory can be put in any
cache block (i.e. no mapping)

Block FF

Block 0

Block 2

Block 3

Block FC

Block FD

Block 1

Block FE

…

Memory

Block FF

Block FE

Block 0

Block 1

Cache

Block FF can go in any

cache block, so the only

one left is cache block 0

Tag

11111111

11111110

00000000

00000001

Tag

11111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

45

Fully Associative Mapping

• Any block from memory can be put in any
cache block (i.e. no mapping)

Block FF

Block 0

Block 2

Block 3

Block FC

Block FD

Block 1

Block FE

…

Memory

Block FF

Block FE

Block 0

Block 1

Cache

Block FC must replace a

block since the cache is full.

We’ll pick the Least Recently

Used (Block 0)

Tag

11111111

11111110

11111100

00000001

Tag

11111100

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

46

Fully Associative Mapping

• Any block from memory can be put in any
cache block (i.e. no mapping)

Block FF

Block 0

Block 2

Block 3

Block FC

Block FD

Block 1

Block FE

…

Memory

Block FF

Block FD

Block FC

Block 1

Cache

Block FC must replace a

block since the cache is full.

We’ll pick the Least Recently

Used (Block 0)

Block 0

Tag

11111111

11111110

11111100

00000001

Tag

11111100

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

47

Direct Mapping

• Each block from memory can only be put in one
location

• MM block i maps to cache block i mod n

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

= 0 mod 4

= 0 mod 4

= 0 mod 4

= 3 mod 4

= 3 mod 4

= 2 mod 4

= 2 mod 4

= 1 mod 4

= 1 mod 4

48

Direct Mapping Implementation

• 12-bit address:
– 16 bytes per block => 4 LSB’s used to determine the desired byte/word

offset within the block
– 4 = 22 possible blocks => 2 bits to determine cache location (i.e. hash

function => use these 2 bits of address)
– Tag = Upper 6 bits used to identify the block in the cache (identifies

between blocks that map to the same bucket (block 0, 4, 8, etc.)

Block 08

Block 09

Block 0A

Block 0B

Block 0C

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache
= 0 mod 4

= 0 mod 4

= 3 mod 4

= 2 mod 4

= 1 mod 4

080

08F
090

09F
0A0

0AF
0B0

0BF
0C0

0CF

BlockTag

00000010Address = 080

Byte

0000

49

Direct Mapping Implementation

• 12-bit address:
– 16 bytes per block => 4 LSB’s used to determine the desired byte/word

offset within the block
– 4 = 22 possible blocks => 2 bits to determine cache location (i.e. hash

function => use these 2 bits of address)
– Tag = Upper 6 bits used to identify the block in the cache (identifies

between blocks that map to the same bucket (block 0, 4, 8, etc.)

Block 08

Block 09

Block 0A

Block 0B

Block 0C

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache
= 0 mod 4

= 0 mod 4

= 3 mod 4

= 2 mod 4

= 1 mod 4

080

08F
090

09F
0A0

0AF
0B0

0BF
0C0

0CF

Address = 0A8

BlockTag

10000010

Byte

0000

50

Direct Mapping

• Each block from memory can only be put in one
location

• MM block i maps to cache block i mod n

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

CacheTag

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

51

Direct Mapping

• Each block from memory can only be put in one
location

• Block i mod n maps to cache block i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

0 = 0 mod 4

Tag

000000

BlockTag

00000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

52

Direct Mapping

• Each block from memory can only be put in one
location

• Block i mod n maps to cache block i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 2

Cache Block 3

Cache

1 = 1 mod 4

Block 0

Block 1

Tag

000000

000000

BlockTag

01000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

53

Direct Mapping

• Each block from memory can only be put in one
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 1

Cache Block 3

Cache

0 = FC mod 4

Block FC

Cache Block 2

Block 0 gets evicted since

block FC can only be put in

cache block 0

Block 0
Tag

111111

000000

BlockTag

00111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

54

Direct Mapping

• Each block from memory can only be put in one
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 1

Cache Block 3

Cache

2 = 2 mod 4

Block FC

Block 2

Tag

111111

000000

000000

BlockTag

10000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

55

Direct Mapping

• Each block from memory can only be put in one
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 1

Cache Block 3

Cache

2 = FE mod 4

Block FC

Block FE

Block 2 gets evicted since

block FE can only be put in

cache block 2

Block 2

Tag

111111

000000

111111

BlockTag

10111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

56

Direct Mapping

• Each block from memory can only be put in one
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block 1

Block 3

Cache

3 = 3 mod 4

Block FC

Block FE

Tag

111111

000000

111111

000000

BlockTag

11000000

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

57

Direct Mapping

• Each block from memory can only be put in one
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block FD

Block 3

Cache

1 = FD mod 4

Block FC

Block FE

Block 1

Block 1 gets evicted since

block FD can only be put in

cache block 1

Tag

111111

111111

111111

000000

BlockTag

01111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

58

Direct Mapping

• Each block from memory can only be put in one
location

• Block i mod n maps to cache block i

Block 0

Block 2

Block 1

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Block FD

Block FF

Cache

3 = FF mod 4

Block FC

Block FE Block 3

Block 3 gets evicted since

block FF can only be put

in cache block 3

Tag

111111

111111

111111

111111

BlockTag

11111111

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

59

Set-Associative Mapping

• Blocks from set i can map into any cache block
from set i

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

60

Set-Associative Mapping

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 8

Block 4

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

• 12-bit address:
– 16 bytes per block => 4 LSB’s used to determine the desired byte/word offset

within the block
– 2 = 21 possible sets => 1 bits to determine cache set (i.e. hash function => use

this 1-bit of address)
– Tag = Upper 7 bits used to identify the block in the cache

Tag

0000100Address = 080

Set

0

Byte

0000

61

Set-Associative Mapping

• Blocks from set i can map into any cache block
from set i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Tag

S
e

t
0

S
e

t
1

Tag

0000000

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

62

Set-Associative Mapping

• Blocks from set i can map into any cache block
from set i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block 0 can be placed in any

empty cache block in set 0

Cache Block 0

Cache Block 1

Cache Block 2

Cache Block 3

CacheTag

S
e

t
0

S
e

t
1

Tag

0000000

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

63

Set-Associative Mapping

• Blocks from set i can map into any cache block
from set i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block 0

Cache Block 1

Cache Block 2

Cache Block 3

CacheTag

0000000

S
e

t
0

S
e

t
1

We’ll put Block 0 in

Cache Block 0 Tag

0000000

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

64

Set-Associative Mapping

• Blocks from set i can map into any cache block
from set i

Block 0

Block 1

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block 0

Cache Block 1

Block 1

Cache Block 3

CacheTag

0000000

0000000

S
e

t
0

S
e

t
1

Block 1 can be placed in

any empty cache block in

set 1. Let’s select cache

block 2

Tag

0000000

Set

1

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

65

Set-Associative Mapping

• Blocks from set i can map into any cache block
from set i

Block 1

Block 0

Block 2

Block 3

Block FC

Block FD

Block FE

Block FF

…

Memory

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block FC can be placed in

any empty cache block in

set 0. So select cache

block 1.

Block 0

Block 1

Cache Block 3

CacheTag

0000000

1111110

0000000

S
e

t
0

S
e

t
1

Block FC

Tag

1111110

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

66

Set-Associative Mapping

• Blocks from set i can map into any cache block
from set i

Block 1

Block 0

Block 2

Block 3

Block FE

Block FD

Block FC

Block FF

…

Memory

Cache

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Set 0

Set 1

Block FE can replace any

cache block in set 0, but let’s

select the Least Recently

Used (Block 0)

Tag

1111111

1111110

0000000

S
e

t
0

S
e

t
1

Block FE

Block 1

Cache Block 3

Block FC

Block 0

Tag

1111111

Set

0

0

F

0

F

0

F

0

F

0

F

0

F

0

F

0

F

Byte

0000

67

Summary of Mapping Schemes

• Fully associative

– Most flexible (less evictions)

– Longest search time O(N)

• Direct-mapped cache

– Least flexible (more evictions)

– Shortest search time O(1)

• K-way Set Associative mapping

– Compromise
• 1-way set associative = ________

• N-way set associative = ________

– Search time is O(k) [usually small
enough to be done in parallel => O(1)]

Byte
MM

Addr
Tag

31 0

ByteTag
MM

Addr

31 0

Block

ByteTag
MM

Addr

31 0

Set

Fully Associative

No hashing…can be placed

anywhere in cache. Must

search N locations.

Direct Mapped Cache

h(a) = block field

Only search 1 location.

K-way Set Associative Mapping

h(a) = set field

Only search k locations

68

Intel Nehalem Quad Core

69

Cache Configurations

AMD Opteron Intel P4 PPC 7447a

Clock rate (2004) 2.0 GHz 3.2 GHz 1.5 – 2 GHz

Instruction Cache 64KB, 2-way SA 96 KB 32 KB, 8-way SA

Latency (clocks) 3 4 1

Data cache 64 KB, 2-way SA 8 KB, 4-way SA 32 KB, 8-way SA

Latency (clocks) 3 2 1

L1 Write Policy Write-back Write-through Programmable

On-chip L2 1 MB, 16-way SA 512 KB, 8-way SA 512 KB, 8-way SA

L2 Latency 6 5 9

Block size (L1/L2) 64 64/128 32/64

L2 Write-Policy Write-back Write-back Programmable

Sources: H&P, “CO&D”, 3rd ed., Freescale.com,

70

REPLACEMENT ALGORITHMS

71

Replacement Policies

• On a miss, a new block must be brought in

• This requires evicting a current block residing in the
cache

• Optimal Replacement Policy

– MIN: Replace block used the farthest in the future
• Requires knowledge of the future

• Practical Replacement policies

– FIFO: First-in first-out (oldest block replaced)

– LRU: Least recently used (usually best but hard to
implement)

– Random: Actually performs surprisingly well

• What about Least Frequently Used (LFU?)

72

Replacement Aglorithms

• FIFO can be pessimal (worst possible) for repeated
linear scans that don't fit in the cache

• Consider cache of 4 blocks with a repeated iteration
through an array that requires 5 blocks of storage

OS:PP 2nd Ed. Fig 9.13

73

Replacement Aglorithms

• Compare the following replacement algorithms for a pattern exhibiting
temporal locality

OS:PP 2nd Ed. Fig 9.14

74

Replacement Aglorithms

• Compare LRU & MIN following replacement algorithms for a pattern that
repeatedly scans through memory

OS:PP 2nd Ed. Fig 9.15

75

Belady's Anomaly
• Adding space to a cache generally helps improve the hit rate

• BUT NOT ALWAYS!

• For FIFO, more slots may actually decrease hit rate: Belady's anomaly

– Other algorithms like LRU, MIN, and LFU can be proven to show that adding
slots to the cache will ONLY HELP

• Compare the hit rate for FIFO replacement with 3 vs. 4 slots

OS:PP 2nd Ed. Fig 9.15

76

Miss Rate

• Reducing Miss Rate means lower TAVE

• To analyze miss rate categorize them based on
why they occur
– Compulsory Misses

• First access to a block will always result in a miss

– Capacity Misses
• Misses because the cache is too small

– Conflict Misses
• Misses due to mapping scheme (replacement of direct

or set associative)

77

Miss Rate & Block Size

Graph used courtesy “Computer Architecture: AQA, 3rd ed.”,

Hennessey and Patterson

78

Hit/Miss Rate vs. Cache Size

OS:PP 2nd Ed.: Fig. 9.4

79

Miss Rate & Associativity

Graph used courtesy “Computer Architecture: AQA, 3rd ed.”,

Hennessey and Patterson

80

Prefetching

• Hardware Prefetching

– On miss of block i, fetch block i and i+1

• Software Prefetching

– Special “Prefetch” Instructions

– Compiler inserts these instructions to give hints ahead of
time as to the upcoming access pattern

81

CACHE CONSCIOUS
PROGRAMMING

82

Working Sets

• Generally a program works with different sets of data at
different times
– Consider an image processing algorithm akin to JPEG encoding

• Perform data transformation on image pixels using several weighting
tables/arrays

• Create a table of frequencies

• Perform compression coding using that table of frequencies

• Replace pixels with compressed codes

• The data that the program is accessing in a small time window
is referred to as its working set

• We want that working set to fit in cache and make as much
reuse of that working set as possible while it is in cache
– Keep weight tables in cache when performing data transformation

– Keep frequency table in cache when compressing

83

https://cartesianproduct.wordpress.com/tag/working-set/

84

Cache-Conscious Programming

• Order of array indexing

– Row major vs. column major
ordering

• Blocking (keeps working set small)

• Pointer-chasing

– Linked lists, graphs, tree data
structures that use pointers do not
exhibit good spatial locality

• General Principles

– Keep working set reasonably small
(temporal locality)

– Use small strides (spatial locality)

– Static structures usually better
than dynamic ones

for(i=0; i<SIZE; i++) {

for(j=0; j<SIZE; j++) {

// Row-major

A[i][j] = A[i][j]*2;

// Column-major

A[j][i] = A[j][i]*2;

} }

Example of row vs. column

major ordering

Memory Layout of

matrix A

Row Major Col. Major

Linked Lists

Memory Layout of

Linked List

Original

Matrix

Blocked

Matrix

85

Blocked Matrix Multiply

• Traditional working set
– 1 row of C, 1 row of A, NxN matrix B

• Break NxN matrix into smaller BxB
matrices
– Perform matrix multiply on blocks

– Sum results of block multiplies to
produce overall multiply result

• Blocked multiply working set
– Three BxB matrices

C A B

*=

Traditional Multiply

C A B

*

+=

Blocked Multiply

C A B

*=

+

…

+

*

for(i = 0; i < N; i+=B) {

for(j = 0; j < N; j+=B) {

for(k = 0; k < N; k+=B) {

for(ii = i; ii < i+B; ii++) {

for(jj = j; jj < j+B; jj++) {

for(kk = k; kk < k+B; kk++) {

Cb[ii][jj] += Ab[ii][kk] * Bb[kk][jj];

} } } } } }

86

Blocked Multiply Results

• Intel Nehalem processor

– L1D = 32 KB, L2 = 256KB, L3 = 8 MB

25.6

13.27 12.1
17.37 18.9 18.8

18.78

78.31

95.98 96.95

0

20

40

60

80

100

120

4 8 16 32 64 128 256 512 1024 2048

T
im

e
 (

s
e
c
)

Block Dimension (B)

Blocked Matrix Multiply (N=2048)

87

Zipf Distribution

OS:PP 2nd Ed.: Fig. 9.7

• Zipf modeled the frequency of
word usage in larger text bodies

• Zipf model says the frequency of
access of the k-th most
frequent/popular item from a
set is 1/kα where [1 < α < 2]

• Applies to may other domains

– Web page access on the Internet

– Popularity of cities, books, etc.

– Size of friend lists in social
networks

88

Cache Implications

OS:PP 2nd Ed.: Fig. 9.7

• Zipf-ian distributions may not
perform well even on large
caches due to the heavy-tail

• Web-page cache

– New data: New pages are being
added all the time

– No working set: While there are
some popular webpages, no small
subset will cover the bulk of the
accesses

• Diminishing returns as the cache
size is increased

89

SWAPPING

90

Recall: VM Swap = Caching

0

1

2

1023

0

1

2

1023

0

1

2

1023

0

1

2

1023

Offset w/in page
Level

Index 1

31 12 11 022 21

Level

Index 2
1010

Pointer to start of

2nd Level Table

PPFN’s

frame

I/O

and

un-

used

area

frame 0x0What mapping scheme does a page
table correspond to?

What replacement algorithm can be
used?

Should we be concerned about fairly
allocating pages?

Swap

File

91

Processor Chip

Translation Unit / MMU

Page Fault Steps

• On page fault, handler will access
disk possibly on eviction and to bring
in desired page

– Likely context switch on each access
since disk is slow

• Make sure PT & TLB are updated
appropriately

TLB

CacheCPU
VA

VPN

Page Offset

PPFN

PA

data

10 ns

M
is

s

M
is

s

Hit

VA

Miss

Invalid /
Not Present

OS Exception

(Page Fault)

Handler

Memory

1

2

3

3

4

3. Evict (writeback) page if no

frame free (update PT & TLB)

4. then bring in needed page

and update PT
4

5 Restart faulting

instruction

3

4
Page Table

4

3

Disk Driver

(Interrupt)

6 TLB Miss / PT

walk / Update TLB

6

92

VM Eviction Algorithms
• Clock algorithm

– Cycle through frames (circular queue)

• Second-chance Algorithm

– Clock algorithm but pages w/ referenced
bit set get a 2nd chance (wait until next
cycle) to be evicted)

– May give preference to dirty pages

• Pseudo-LRU

– Use HW reference bits + OS-managed
reference counts to perform some form
of pseudo-LRU

0x00000000

0x3fffffff
Pg. 3

Pg. 1

Pg. 0

Pg. 3

Pg. 2

Pg. 0

Pg. 2

Pg. 0

I/O

and

un-

used

area

0xffffffff

Swap file

Pg. 0

Pg. 1

Pg. 2

Pg. 3

Pg. 0

Pg. 1

Pg. 2

Pg. 0

Pg. 1

Pg. 2

Pg. 3

Page Frame Number

Valid / Present

Modified / Dirty

Referenced

Protection

Cacheable

Clock ptr

93

Thrashing and Sharing

• When too many processes are sharing cache or main memory paging,
thrashing may occur

• Thrashing: Working set cannot fit in memory causing constant, evictions
and re-fetching of needed data

– CPU is underutilized b/c it is constantly waiting on the memory system

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

94

Page Allocation Fairness

• Want to prevent a few processes from hogging all
the physical resources (or possibly all the swap
space)

• Max-min fairness for how many pages allocated to
process

– Maximize responsiveness to the minimum request
and then redistribute remainder to other processes

• Example:

– Solaris (Unix) has a background thread that can utilize
some percentage of the CPU's time looking for pages
to evict

– Can enforce limits on how many frames a process is
occupying

0x00000000

0x3fffffff
Pg. 5

Pg. 1

Pg. 0

Pg. 3

Pg. 4

Pg. 0

Pg. 2

Pg. 0

I/O

and

un-

used

area

0xffffffff

Physical

Mem.

https://docs.oracle.com/cd/E23823_01/html/817-0404/chapter2-10.html

95

Page Coloring

• We would not want to allocate pages to a process that all map (hash) to the same
cache

– If so, then when that process runs it would be having to walk the page table much too often

• The OS can keep track of the sets that pages allocated to a given process hash to and
then allocate a page that hash to a different set (color) on the next request

Address

Tag PF# Tag PF#

= =

Way 1Way 0

16

Pg. 0

Pg. 3

Option B

ByteTag

31 0

Set

Pg. 1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Pg. 3

Pg. 0

Option A

Pg. 1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Set 0

Set 1

Set n-1

Phys. Mem. Frames

