
Maria Hybinette, UGA 1

CSCI: 4500/6500 Programming
Languages

Python

Thanks to: Stephen Ferg, Bureau of Labor Statistics and Guido van Rossum, Python Architect

Maria Hybinette, UGA 2

Evolution of Scripting
Languages

! UNIX shell scripting

» awk, sed, ksh, csh

! Tck/Tk

! Perl

! Python

! PHP

! Ruby

Maria Hybinette, UGA 3

Python

Developed in 1991

by Guido van Rossum

! Mature

! Powerful / flexible

! Easy-to-learn / use

! Easy to read (in contrast to Perl !)

! Open source

! Lots of documentation

! Lots of tutorials

! Lots of libraries

» Ruby - nice, purely object oriented, but
harder to find libraries

Monty Python’s Flying Circus Fan

Maria Hybinette, UGA 4

Python

! Portable

» Mac, Windows, Unix (and installed on atlas.cs.uga.edu)

! Faster than C, C++, Java in productivity

» Compact language

» Batteries included (build in library)

! Python block indenting

» looks cleaner => easier to read

! Slower in execution

» but you can integrate C/C++/Java with Python

Maria Hybinette, UGA 5

Python vs Java (outdated)

Java 5.3X faster2.290.43Interpreter Speed

Java 8X faster211.1123.65Object Allocation

Python 6.3X faster0.040.25
Interpreter

Initialization

Java 3.2X faster7.922.475Native Methods

Java 2.4X faster14.325.94List

Python 1.2X faster47.3656.72I/O

Python 2X faster8.2217.00Hashtable

Python 4.5X faster30.58138.85Standard Output

ComparisonPythonJavaTest

http://www.twistedmatrix.com/users/glyph/rant/python-vs-java.html (April/2000)

Matthew “Glyph” Lefkowitz
Maria Hybinette, UGA 6

More comparisons…

! furryland.org/~mikec/bench/

! Doug Bagley's Great Computer Language

Shootout
(http://web.archive.org/web/20040611035744/http://shootout.alioth.debian.org/)

Maria Hybinette, UGA 7

Python vs Java

! Python programs run slower than Java

! Python programs take less time to develop

» Typically a 5-10 times difference (origin, Ousterhout)

! Python is dynamically (but strongly) typed

» Programmer don’t have to deal with static typing

– variable bound to type at compile time & optionally to an object
(value of same type)

» Trend is now toward stronger static type checking, not less

– However, this is a productivity win at the cost of some risk

! Python is compact

! Python is concise (not verbose, not superfluous)

! Closures (lambda)

http://www.ferg.org/projects/python_java_side-by-side.html(February/2004)

Maria Hybinette, UGA 8

Weak vs Strong Typing

! Variable can be of non-specific data type.

! Strongly typed languages puts (many) restrictions
on of di!erent types interact with each other

» 3+ 3.5 may not be allowed (only integers adds)

! Weak typing means that a language will implicitly
convert (or cast) types when used.

» C is weakly typed, you can easily override the type
system using casts, PHP

» Python, Java strongly typed

Maria Hybinette, UGA 9

Dynamically vs Static Typing

! Other people like static typing… trade-off

performance

I think there is a trend ...

Dynamically typed languages such as

Python, Ruby, and even Smalltalk will

be mainstream industrial languages in

the coming years.
Robert C. Martin, author of Agile Software Development

Maria Hybinette, UGA 10

Quotes

! "When Java came out, I was excited -- I could write
code twice as fast in Java as I could in C/C++. And with
Python I can write code twice as fast as I can in Java."

– Andy Hertzfeld (original apple computer software engineer now at google)

! When a 20,000 line project went to approximately 3,000 lines
overnight, and came out being more flexible and robust ... I
realized I was on to something really good.

– Matthew "Glyph" Lefkowitz

! So the real punchline of the story is this: weeks and
months after writing [python program], I could still
read the code and grok what it was doing without
serious mental effort.

» And the true reason I no longer write Perl for anything but tiny
projects is that was never true when I was writing large
masses of Perl code. I fear the prospect of ever having to
modify keeper or anthologize again -- but [the above python]
gives me no qualms at all.

Eric S. Raymond, author of The Cathedral and the Bazaar

Maria Hybinette, UGA 11

Is it Safe?

Python is an "open-source" language.

It has no vendor.

Does that mean we'll have support problems?

What about...

• Vendor longevity?

• Consulting & training support?

• Books and reference materials?

• Tools? IDEs, debuggers, screen-painters?

Maria Hybinette, UGA 12

Who is using open-source
software?

! Apache has overwhelmingly dominated the

Web server market since 1996.

! PHP is the most popular Apache module,

running on almost 10 million domains (over a

million IP addresses).

! Linux

! Apache

! MySql

! PHP | Perl | Python

“LAMP”

... and then there's ...

Maria Hybinette, UGA 13

Department of Defense (DoD)

! In 2002, a Mitre1 study found 115 FOSS (free

and open-source) products in use in the U.S.

Dept. of Defense.

http://egovos.org/pdf/dodfoss.pdf

1. Past employer of Maria Hybinette

Maria Hybinette, UGA 14

… and IBM

! In September 2003, IBM began promoting Linux with a series of television ads

depicting a young boy receiving lessons from famous innovators and

teachers. The boy represents the next generation of humanity, learning from

teachers who – like the open-source community – freely share their

accumulated expertise.

Maria Hybinette, UGA 15

Who is using Python?

! Industrial Light & Magic, maker of the Star Wars films,
uses Python extensively in the computer graphics
production process.

! Disney Feature Length Animation uses Python for its
animation production applications.

! Google, a leading internet search engine, is powered
by Python.

! Yahoo uses Python for its groups site, and in its
Inktomi search engine.

! New York Stock Exchange (NYSE) - uses it for
developing on-line systems for the floor of the
exchange and for the member firm's back offices

! The National Weather Service uses Python to prepare
weather forecasts.

Python spotting: http://www.pythonology.org/spotting
Maria Hybinette, UGA 16

! Longevity - open source have no vendor,

python is managed by the python software

foundation - non-profit, produces core python

distribution (blessed by Guido)

Maria Hybinette, UGA 17

Learning Python

! We will cover the highlights of python today not the

details.

» You will have to learn more on your own (that is life)

» “Dive into Python”

– download a local copy pdf and on-line read available

– http://diveintopython.org/toc/index.html

» “Python 101” -- nice introduction

– http://www.rexx.com/~dkuhlman/python_101/python_101.html

! The Official Python Tutorial
http://www.python.org/doc/current/tut/tut.html

! The Python Quick Reference
http://rgruet.free.fr/PQR2.3.html

Maria Hybinette, UGA 18

Resources

Maria Hybinette, UGA 19

Installing Python

! Already exists of atlas.cs.uga.edu

! Easy to get and install for Win/Mac from

http://www.python.org

Maria Hybinette, UGA 20

IDLE Development Environment

! Shell for interactive evaluation

! Text editor with color-coding and smart

indenting for creating python files.

! Menu commands for changing system

settings and running files.

http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html

Maria Hybinette, UGA 21

Interpreter: On my Mac

Maria Hybinette, UGA 22

Working with a file.py

! IDLE -

1. File -> new window

2. type commands in new window area

3. save as “file name”.py (typical extension)

4. Run module

Maria Hybinette, UGA 23 Maria Hybinette, UGA 24

Running Programs on UNIX

! #! /opt/sfw/bin/python (makes it

runnable as an executable)

{saffron:ingrid:1563} more
filename.py
#! /usr/bin/python
print "hello world"
print "here are the ten numbers
from 0 to 9"
for i in range(10):
 print i,
print "I'm done!" {saffron:ingrid:1562} python filename.py

hello world
here are the ten numbers from 0 to 9
0 1 2 3 4 5 6 7 8 9 I'm done!
{saffron:ingrid:1563}

Maria Hybinette, UGA 25

Look at a sample of code…

 x = 34 - 23 # A comment.

 y = “Hello” # Another one.

 z = 3.45
 if z == 3.45 or y == “Hello”:
 x = x + 1

 y = y + “World” # String concat.

 print x

 print y

Maria Hybinette, UGA 26

Look at a sample of code…

>>>
12
HelloWorld

 x = 34 - 23 # A comment.

 y = “Hello” # Another one.

 z = 3.45
 if z == 3.45 or y == “Hello”:
 x = x + 1

 y = y + “World” # String concat.

 print x

 print y

Maria Hybinette, UGA 27

Enough to Understand the Code

! Assignment uses = and comparison uses ==.

! For numbers +-*/% are as expected.

» Special use of + for string concatenation.

» Special use of % for string formatting.

! Logical operators are words (and, or, not)
not symbols (&&, ||, !).

! The basic printing command is “print.”

! First assignment to a variable will create it.

» Variable types don’t need to be declared.

» Python figures out the variable types on its own.

Maria Hybinette, UGA 28

Basic Datatypes

! Integers (default for numbers)

z = 5 / 2 # Answer is 2, integer division.

! Floats

x = 3.456

! Strings

Can use “” or ‘’ to specify. “abc” ‘abc’ (Same thing.)

Unmatched ones can occur within the string. “maria’s”

Use triple double-quotes for multi-line strings or strings
that contain both ‘ and “ inside of them: “““a‘b“c”””

Maria Hybinette, UGA 29

Whitespace

! Whitespace is meaningful in Python:
especially indentation and placement of
newlines.

» Use a newline to end a line of code.
(Not a semicolon like in C++ or Java.)
(Use \ when must go to next line prematurely.)

» No braces { } to mark blocks of code in Python…
Use consistent indentation instead. The first line
with a new indentation is considered outside of the
block.

» Often a colon appears at the start of a new block.
(We’ll see this later for function and class
definitions.)

Maria Hybinette, UGA 30

Comments

! Start comments with # – the rest of line is ignored.

! Can include a “documentation string” as the first

line of any new function or class that you define.

! The development environment, debugger, and

other tools use it: it’s good style to include one.

def my_function(x, y):

 “““This is the docstring. This
function does blah blah blah.”””
The code would go here...

Maria Hybinette, UGA 31

Look at a sample of code…

 x = 34 - 23 # A comment.

 y = “Hello” # Another one.

 z = 3.45

 if z == 3.45 or y == “Hello”:

 x = x + 1

 y = y + “ World” # String concat.

 print x

 print y

Maria Hybinette, UGA 32

Python and Types

Python determines the data types

in a program automatically. “Dynamic Typing”

But Python’s not casual about types, it

enforces them after it figures them out. “Strong Typing”

So, for example, you can’t just append an integer to a string. You

must first convert the integer to a string itself.

 x = “the answer is ” # Decides x is string.

 y = 23 # Decides y is integer.

 print x + y # Python will complain about this.

Maria Hybinette, UGA 33

Naming Rules

! Names are case sensitive and cannot start with a
number. They can contain letters, numbers, and
underscores.

 bob Bob _bob _2_bob_ bob_2 BoB

! There are some reserved words:

and, assert, break, class, continue, def,
del, elif, else, except, exec, finally, for,
from, global, if, import, in, is, lambda,
not, or, pass, print, raise, return, try,
while

Maria Hybinette, UGA 34

Accessing Non-existent Name

! If you try to access a name before it’s been properly created
(by placing it on the left side of an assignment), you’ll get
an error.

>>> y

Traceback (most recent call last):

 File "<pyshell#16>", line 1, in -toplevel-

 y

NameError: name ‘y' is not defined

>>> y = 3

>>> y

3

Maria Hybinette, UGA 35

Multiple Assignment

! You can also assign to multiple names at the same
time.

>>> x, y = 2, 3

>>> x

2

>>> y

3

Maria Hybinette, UGA 36

String Operations

! We can use some methods built-in to the string data
type to perform some formatting operations on
strings:

>>> “hello”.upper()

‘HELLO’

! There are many other handy string operations
available. Check the Python documentation for more.

Maria Hybinette, UGA 37

Printing with Python

! You can print a string to the screen using “print.”

! Using the % string operator in combination with the print
command, we can format our output text.

>>> print “%s xyz %d” % (“abc”, 34)

abc xyz 34

“Print” automatically adds a newline to the end of the string. If you
include a list of strings, it will concatenate them with a space
between them.

>>> print “abc” >>> print “abc”, “def”

abc abc def

Maria Hybinette, UGA 38

Strings

» Concatenation

– “Hello” + “World” -> ‘HelloWorld’

» Repetition

– “UGA” * 3 -> ‘UGAUGAUGA’

» Indexing

– “UGA”[0] -> ‘U’

» Slicing

– “UGA”[1:3] -> ‘GA’

» Size

– len(“UGA”) -> 3

» Comparison

– “Maria” < “maria” -> True

» Search

– “i” in “maria” -> True

Maria Hybinette, UGA 39

Container Typs

! (100, 200, 300) # Tuple

! [42, 3.14, “hello”] # List

! { ‘x’:42, ‘y’:3.14 } # Dictionary

Tuple

» a simple immutable ordered sequence of items

List

» a mutable ordered sequence with more powerful
manipulations

Dictionary -

» a lookup table of key-value pairs

Maria Hybinette, UGA 40

Lists

 >>> alist = [631, “maria” , [331, “maria”]]

>>> print alist

[123, ‘maria’, [331, ‘maria’]]

! List items need not have the same type

! Flexible arrays not Lisp-like linked list

! Same operators as for strings

! operations append(), insert(), pop(), reverse() and
sort()

Maria Hybinette, UGA 41

More List Operations

>>> a = range(5) # [0,1,2,3,4]

>>> a.append(5) # [0,1,2,3,4,5]

>>> a.pop() # [0,1,2,3,4]

5

>>> a.insert(0, 42) # [42,0,1,2,3,4]

>>> a.pop(0) # [0,1,2,3,4]

42

>>> a.reverse() # [4,3,2,1,0]

>>> a.sort() # [0,1,2,3,4]

>>> a.append([22,33]) # [0,1,2,3,4,[22,33]]

>>> a.extend([10,20]) # [0,1,2,3,4,[22,33],10,20]

Maria Hybinette, UGA 42

More Lists

! List multiplication

» list = ["aa“, "bb"] * 3

! Printing out lists

» print "\n".join(list) # better formatting

! More operations

» list.count("aa") # how many times

» list.index("bb") # returns the location

! More on slices

» list[-1] # last element

» list[0:3] # starting ele 0 and up to 2

» list[3:] # starting ele 3 to end of list

» list[:] # a complete copy of the list

Maria Hybinette, UGA 43

Dictionaries

! Hash tables, "associative arrays“ with key/value pairs

– d = {"duck": "bird", "bee": "insect"}

! Lookup:

– d["duck"] # "bird"

– d["lion"] # raises KeyError exception

! Delete, insert, overwrite:

– del d["bee"] # delete

– d["lion"] = “cat" # insert

– d["duck"] = “unknown" # overwrites

Maria Hybinette, UGA 44

More Dictionary Ops

! Keys, values, items:
– d.keys() # returns dictionary keys

– d.values() # returns all values

– d.items() # returns a list of
 key/value pairs

! Presence check:
– d.has_key("duck") # True

– d.has_key("spam") # False

! Values of any type

! Keys almost any type

{
"name":”Maria",

"age": 25,

("hello","world"):1,

42:"yes",

"flag": ["red","white","blue"]

}

Maria Hybinette, UGA 45

Dictionary Details

! Keys must be immutable:

» numbers, strings, tuples of immutables

– these cannot be changed after creation

» reason is hashing (fast lookup technique)

» not lists or other dictionaries

– these types of objects can be changed "in place"

» no restrictions on values

! Keys will be listed in arbitrary order

» again, because of hashing

Maria Hybinette, UGA 46

Tuples

! Immutable lists

! Faster than lists

! key = (lastname, firstname)

! lastname = key[0]

! point = x, y, z # parentheses optional

! x, y, z = point # unpack

! singleton = (1,) # trailing comma!!!

! empty = () # parentheses!

Maria Hybinette, UGA 47

Variables

! Need to assign (initialize)

– use of uninitialized variable raises exception

! No need to declare type (dynamically typed)
if friendly: greeting = "hello world"

else: greeting = 12**2

print greeting

» However once set the type matters

– Can’t treat integer as a string

Maria Hybinette, UGA 48

Reference Semantics

! Assignment manipulates references
– x = y

! does not make a copy of y

! makes x reference the object y references

! Very useful; but beware!

! Example:
>>> a = [1, 2, 3]

>>> b = a

>>> a.append(4)

>>> print b

[1, 2, 3, 4]

Maria Hybinette, UGA 49

a
1 2 3

b

a

1 2 3

b

4

a = [1, 2, 3]

a.append(4)

b = a

a 1 2 3

Changing a Shared List

Maria Hybinette, UGA 50

a

1

b

a

1b

a = 1

a = a+1

b = a

a 1

2

Changing an Integer

old reference deleted
by assignment (a=...)

new int object created
by add operator (1+1)

Maria Hybinette, UGA 51

Control Structures

if condition:

 statements

[elif condition:

 statements] ...

else:

 statements

while condition:

 statements

for var in sequence:

 statements

break

continue

Maria Hybinette, UGA 52

More For Loops

! looping through list

» for item in list:

» print item

! looping through counter

» for i in range(5):

» print i

! Iterating through a dictionary

» import os

» for k,v in os.environ.items():

» print "%s=%s" % (k,v)

! `os.environ` is a dictionary of environment variables

! dict.items() returns key value pair tuples

Maria Hybinette, UGA 53

Exercise I

Print:

1x1=1 1x2=2 1x3=3 8x9=72 9x9=81

but don’t repeat. For example

print only 3x5=15

but don’t print 5x3=15

so print only if first_number <= second_num

Hint: use range

for num in range(1,10):

…

Maria Hybinette, UGA 54

Exercise Answer

a = range(1,10)

b = range(1,10)

for anum in a:

 for bnum in b:

 if (anum <= bnum):

 print str(anum),"x",str(bnum),"=",str(anum*bnum)

Maria Hybinette, UGA 55

Grouping Indentation

In Python:

for i in range(20):

 if i%3 == 0:

 print i

 if i%5 == 0:

 print "Bingo!"

 print "---"

In C:

for (i = 0; i < 20; i++)

{

 if (i%3 == 0) {

 printf("%d\n", i);

 if (i%5 == 0) {

 printf("Bingo!\n");
}

 }

 printf("---\n");

}

0
Bingo!

3

6

9

12

15
Bingo!

18

--- Maria Hybinette, UGA 56

Functions, Procedures

def name(arg1, arg2, ...):

 """documentation""" # optional doc string

 statements

return # from procedure

return expression # from function

Maria Hybinette, UGA 57

Example Function

def gcd(a, b):

 "greatest common divisor"

 while a != 0:

 a, b = b%a, a # parallel assignment

 return b

>>> gcd.__doc__ # 2 _ _ of these

'greatest common divisor'

>>> gcd(12, 20)

4

Maria Hybinette, UGA 58

Exercise II

! Phone book application

» 1) add

– Ask for name and phone number

» 2) print phone book

! To get input:
» answer = raw_input("Enter your selection: ")

intro= """
Welcome to the phone book application
choices:
 1) add new entry
 2) print phone book
 3) exit
"""

print intro

ph_d = {} # phone book dictionary

def add_entry():
 """ add new entry into phone book"""
 name = raw_input("give me a name:")
 number = raw_input("give me a number:")
 ph_d[name] = number

def print_pb():
 print "name".rjust(30)+"number".rjust(30)
 for name,num in ph_d.items():
 print name.rjust(30),num.rjust(30)

while (True):
 response = raw_input("Enter your command: ")
 if (response == '1'):
 add_entry()
 elif (response == '2'):
 print_pb()
 elif (response == '3'):
 break
 else:
 print "invalid command"

>>>

Welcome to the phone book application

choices:

 1) add new entry

 2) print phone book

 3) exit

Enter your command: 1

give me a name:maria

give me a number:555-1212

Enter your command: 2

 name number

 maria 555-1212

Enter your command:

Maria Hybinette, UGA 60

On your own…

! modules & packages

! exceptions

! files & standard library

! classes & instances

Maria Hybinette, UGA 61

Hands On

! www.python.org/doc/current/tut/tut.html

Maria Hybinette, UGA 62

Python Slogans

! Python Fits Your Brain, Bruce Eckel

! Life is Better Without Braces, Bruce Eckel

! Import This

! Batteries included (Tcl origin)

! Powered by Python

! Readability counts, Tim Peters

http://mindview.net/

Maria Hybinette, UGA 63

Bruce Eckel’s Top 10

10. Reduced clutter.

Programs are read more than they are written

Consistent formatting is important

readability & compactness

conversation of compactness

Consistent use of programming idioms

09. It's not backward-compatible with other languages. (This came with
some hilarious one-liners:

"C++'s backward compatibility with C is both its strength and
its bane"; "Java causes repetitive-strain syndrome";

"Perl is compatible with every hacky syntax of every UNIX tool

 ever invented";

"C# and Microsoft .NET are backward-compatible

 with Microsoft's previous marketing campaigns"; and

"Javascript is not even compatible with itself".)

08. It doesn't value performance over my productivity.

C++ memory leaks

primitive types require awkward coding

Maria Hybinette, UGA 64

Bruce Eckel’s Top 10

07. It doesn't treat me like I'm stupid.

Java insists operator overloading is bad because

you can make ugly code with it.

Bruce observes, "And we all know there's no ugly Java code out there."

06. I don't have to wait forever for a full implementation of the language.

features invented in C+ takes a long time to appear in languages

Unused features don’t get tested

05. It doesn't make assumptions about how we discover errors.

Is strong static type checking rally the only way to be sure?

Lack of good static typing in pre-ANSI C was troublesome

Doesn’t mean it’s the best solution

Maria Hybinette, UGA 65

Bruce Eckel’s Top 10

04. Marketing people are not involved in it (yet).

Java is flawless

Microsoft happens “Visual” C++

Of-course Python isn’t immune

03. I don't have to type so much.

But what I do type is the right typing.

02. My guesses are usually right.

I still have to look up how to open a file every time I do it in Java

Most things I do in Java, I have to look up.

Remember Python Idioms easier because they are simpler

Maria Hybinette, UGA 66

Bruce Eckel’s Top 10

01. Python helps me focus on my concepts rather than on fighting with the

language.

