CSCI 8535 Multi Robot Systems

Dr. Ramviyas N. Parasuraman

Assistant Professor, Computer Science

Jan 10, 2019

Ramviyas Nattanmai Parasuraman, ramviyas@uga.edu

CSCI 8535 – Multi Robot Systems

Talk Outline

Recap on Course Introduction, Syllabus, etc.

Announcements

Graph Theory – fundamentals

Rendezvous problem

Course Introduction

This is primarily a **research oriented**, **seminar-style** course covering the topics of control, communication, cooperation, and coordination aspects in multi-robot systems.

It enables students to understand, devise, and solve problems in multi-robot systems and the course will have project-based assignments.

Course Outline

General topics to be covered:

- Multi-robot Rendezvous and Formation Control
- Multi-agent Cooperation and Coordination
- Security and adversarial actions
- Applications of Multi-Robot Systems

Goals of the Course

Graduate-only course.

- Give you a good intuition of *Multi Robot Systems (MRS)* modeling and control
 - The essential theoretical tools for MRS
 - How to implement and simulate MRS
 - How to solve real-world multi-robots problems
- You will be able to work on a MRS projects
- After the course, you will:
 - Know the essential theoretical tools for MRS
 - Know how to implement and simulate MRS
 - Know how to solve real-world problems
 - Develop and present a research project
 - Learn something about mobile robots

Requisites of the Course

Requirements:

- (Hard) Programming background and skills (Python or C++)
- (Soft) Working knowledge of simulation tools (Matlab or V-REP or ROS Gazebo, etc.)
- (Hard) Rudimentary mathematical analysis
- (Hard) Linear algebra
- (Soft) Some control theory
- (Soft) Graph theory fundamentals
- (Soft) Probability theory fundamentals

Course Style

- Seminar-style lectures
 - Each student will be assigned a paper to read and present it to the class (as if it's their own work)
 - Each student will need to critically and constructively review the papers not assigned to them
- Project-based practical assignments and exam

Grading Criteria

In-class participation and Attendance: 10%

Assignments/Paper Reviews: 20%

Paper Presentations: 20%

Mini Project (Midterm): 20% (Project assigned by the Instructor)

Research Project (Final Project): 30% (Project chosen by the student in teams)

Office hours

Office hours of the instructor:

Tuesday and Thursday 2 - 3 pm.

Location: Boyd Room 519/520.

If this schedule does not work for you, then send me an email to set up an appointment.

Announcements

First paper assignment for review (by all students):

Presenter: Instructor

Paper: "Consensus Control of Distributed Robots Using Direction of A rrival of Wireless Signals" R. Parasuraman and BC. Min, Intl. Sym. On Distributed Autonomous Robotic Systems (DARS), 2018.

Paper accessible here. http://cobweb.cs.uga.edu/~ramviyas/pdf/DARS2018_Parasuraman.pdf

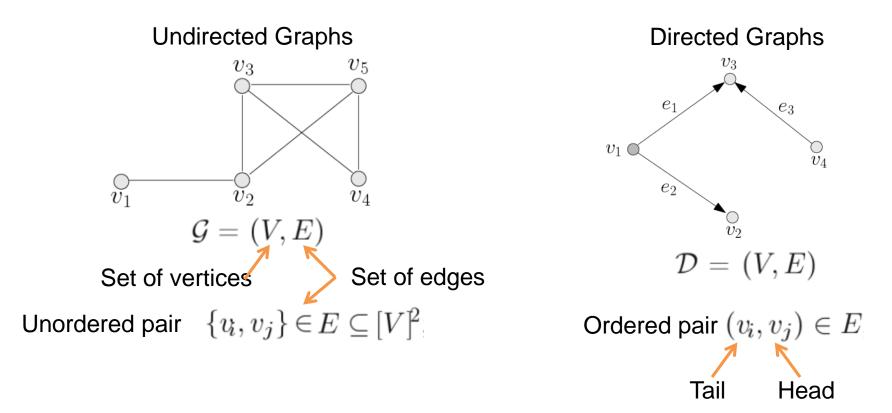
Also, uploaded to *eLC* and *Slack*.

Graph Theory, Rendezvous Problem, and Formation Control Problem

Courtesy of slides from Dr. Andrej Pronobis, U. Washington and KTH Sweden <u>https://www.pronobis.pro/teaching/mas/</u>

Graph Theory

Great tool for analyzing networks



• Neighborhood of a vertex $N(i) = \{v_j \in V \mid v_i v_j \in E\}$

Algebraic Graph Theory

Adjacency matrix

 $[A(\mathcal{G})]_{ij} = \begin{cases} 1 \text{ if } v_i v_j \in E, \\ 0 \text{ otherwise.} \end{cases} \quad [A(\mathcal{D})]_{ij} = \begin{cases} 1 \text{ if } (v_j, v_i) \in E(\mathcal{D}) \\ 0 \text{ otherwise,} \end{cases}$

Degree matrix (undirected graph)

Degree of vertex $d(v_i)$ represents cardinality of neighborhood set N(i)

$$\Delta(\mathcal{G}) = \begin{pmatrix} d(v_1) & 0 & \cdots & 0 \\ 0 & d(v_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d(v_n) \end{pmatrix}$$

In-degree matrix (directed graph)

 $d(v_i)$ represents the in-degree (counts incoming edges only)

Graph Laplacian

• For undirected graphs

$$L(\mathcal{G}) = \Delta(\mathcal{G}) - A(\mathcal{G})$$

$$v_{3} \quad v_{5} \quad L(\mathcal{G}) = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 \\ 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{pmatrix}$$

• For directed graphs – In-degree Laplacian

$$L(\mathcal{D}) = \Delta(\mathcal{D}) - A(\mathcal{D})$$

Properties of Laplacian

- Symmetric and positive semi-definite
- Eigenvalues can be ordered as

 $\lambda_1(\mathcal{G}) \leq \lambda_2(\mathcal{G}) \leq \cdots \leq \lambda_n(\mathcal{G})$

Smallest eigenvalue is always zero

 $\lambda_1(\mathcal{G}) = 0$

- Is the graph connected?
 - If for every pair of vertices there is a path
 - IFF $\lambda_2(\mathcal{G}) > 0$
 - As many connected sub-graphs as zero eigenvalues

Types of Graphs

A graph is said to be connected when there is at least one path (connection/link) from every vertex to every other vertex.

- Path graph or a line graph: each node is connected only once (without a loop)
- Cycle graph: graph structure looks like a cycle (loop)
- Complete graph: all vertices (nodes) are connected to all other vertices
- Tree graph: a connected graph without any cycles

Quick references for Graph Theory

Nice internet resource available in the internet for learning graph theory notations and definitions:

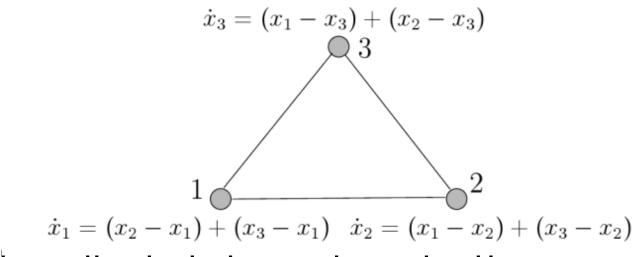
http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/defEx.htm

Rendezvous Problem – Agreement

- Agents agree on a value of a parameter
- Definition
 - *n* dynamic agents
 - Interconnected via relative links
 - Agent's state depends on the sum of its relative states w.r.t. a subset of other agents
- Applications
 - Distributed estimation in sensor networks
 - Flocking/swarming

Rendezvous Problem

- Rendezvous problem
 - Agent's state is its location mobile robot
 - Agents should meet at one point in space
- Example: agreement protocol over a triangle



Links pull robots towards each other

State-space Representation

Continuous-time state-space model

$$\dot{x}_i(t) = \sum_{j \in N(i)} (x_j(t) - x_i(t)), \quad i = 1, \dots, n$$

$$\dot{x}(t) = -L(\mathcal{G}) x(t)$$

• For directed graphs: use in-degree Laplacian

$$\dot{x}(t) = -L(\mathcal{D})x(t)$$

State-space Models in Matlab

 Dynamics of a system specified using continuous time-invariant state-space model

 $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$ $\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$

Create state-space model

sys = ss(A,B,C,D)

• In our case,

$$\dot{x}(t) = -L(\mathcal{G}) x(t)$$
 $\dot{x}(t) = -L(\mathcal{D}) x(t)$
A

Mit-Agent Robot Systems [http://pronobis.pro/mas] Simulating

• Simulate

Initial condition response

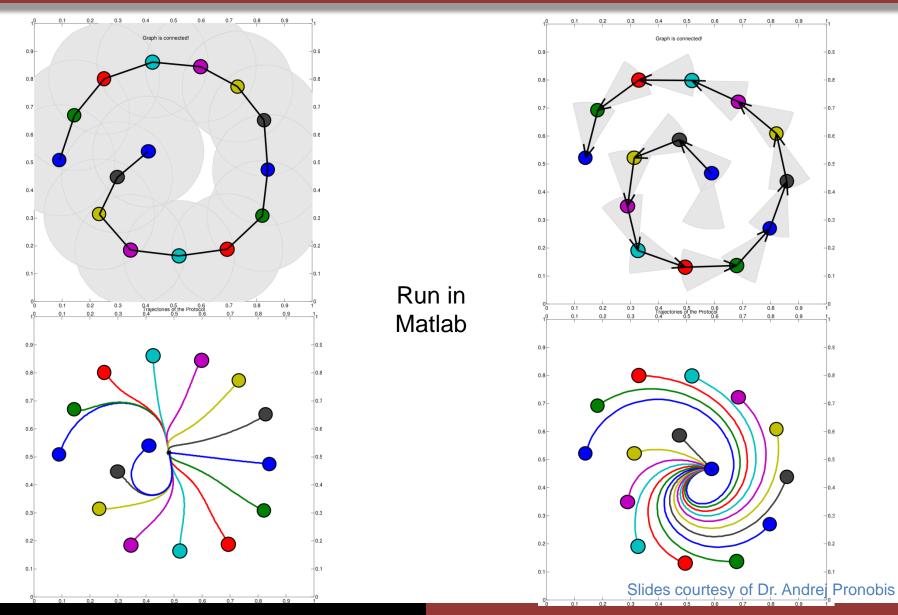
$$[\mathbf{y},\mathbf{t},\mathbf{x}] = \text{initial}(\mathbf{sys},\mathbf{x}0,\mathbf{t}) \qquad \begin{array}{l} \dot{\mathbf{x}}(t) = A\mathbf{x} \\ \mathbf{y}(t) = C\mathbf{x} \end{array}$$

• Response to arbitrary inputs

 $[\mathbf{y},\mathbf{t},\mathbf{x}] = \mathsf{lsim}(\mathsf{sys},\mathsf{u},\mathsf{t},\mathsf{x}\mathbf{0}) \qquad \qquad \dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \\ \mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$

 Basic toolkit for defining and visualizing problems available in course materials

Simulating Trajectories



Ramviyas Nattanmai Parasuraman, ramviyas@uga.edu

CSCI 8535 – Multi Robot Systems

Formation Control Problem

- Mobile agents move in order to realize a geometrical pattern (formation)
 - Appear often in biological systems (e.g. geese)
- Formations can be specified in several ways
 - Shape
 - Specified in terms of points

 $\Xi = \{\xi_1, \ldots, \xi_n\}, \ \xi_i \in \mathbf{R}^p, \ i = 1, \ldots, n,$

• Translationally invariant

$$x_i = \xi_i + \tau$$

State-space Representation

• Let's define τ_i as displacement from target

$$\tau_i(t) = x_i(t) - \xi_i, \ i = 1, \dots, n$$

• Now, apply the agreement protocol to τ_i $\dot{\tau}_i(t) = -\sum_{j \in N_f(i)} (\tau_i(t) - \tau_j(t))$

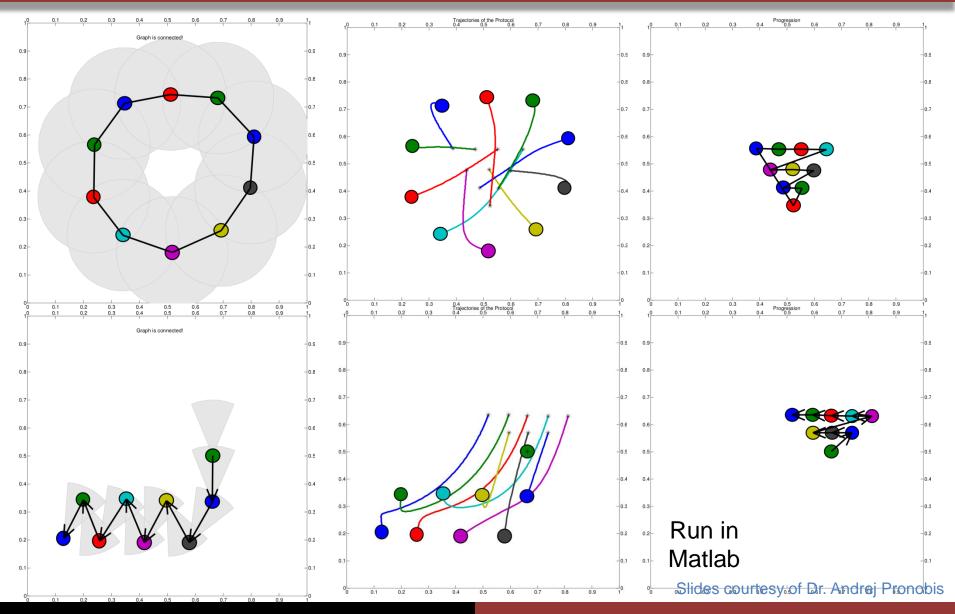
• Since
$$\dot{\tau}_i(t) = \dot{x}_i(t)$$
 , $\tau_i(t) - \tau_j(t) = x_i(t) - x_j(t) - (\xi_i - \xi_j)$

$$\dot{x}_i(t) = -\sum_{j \in N_f(i)} (x_i(t) - x_j(t)) - (\xi_i - \xi_j)$$

$$\dot{x}(t) = -L(\mathcal{G}) x(t) + L(\mathcal{G}) \Xi$$

Analogous for directed graphs

Simulating Trajectories



Ramviyas Nattanmai Parasuraman, ramviyas@uga.edu

CSCI 8535 – Multi Robot Systems

Summary

- Intuition about what multi-agent and multi-robot systems are and how to solve control problems
 - From theory to simulations
- Multiple applications in robotics
 - When no global maps and central coordination
- What's next?
 - Dynamic and random networks
 - Switching between formations and control problems
 - Networks as systems (with inputs & outputs)
- Try this at home!