CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo
U of Southern California

Sep 16, 2021

Administration

HW1 is being graded. Will discuss solutions today.

HW2 will be released after this lecture. Due on 9/28.

Outline

(1) Review of Last Lecture
(2) Multiclass Classification
(3) Neural Nets

Outline

(1) Review of Last Lecture

Linear classifiers

Linear models for binary classification:
Step 1. Model is the set of separating hyperplanes

$$
\mathcal{F}=\left\{f(\boldsymbol{x})=\operatorname{sgn}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}
$$

Linear classifiers

Step 2. Pick the surrogate loss

- perceptron loss $\ell_{\text {perceptron }}(z)=\max \{0,-z\}$ (used in Perceptron)
- hinge loss $\ell_{\text {hinge }}(z)=\max \{0,1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text {logistic }}(z)=\log (1+\exp (-z))$ (used in logistic regression)

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} F(\boldsymbol{w})=\underset{\boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
$$

using

- GD: $\boldsymbol{w} \leftarrow \boldsymbol{w}-\eta \nabla F(\boldsymbol{w})$
- SGD: $\boldsymbol{w} \leftarrow \boldsymbol{w}-\eta \tilde{\nabla} F(\boldsymbol{w}) \quad(\mathbb{E}[\tilde{\nabla} F(\boldsymbol{w})]=\nabla F(\boldsymbol{w}))$
- Newton: $\boldsymbol{w} \leftarrow \boldsymbol{w}-\left(\nabla^{2} F(\boldsymbol{w})\right)^{-1} \nabla F(\boldsymbol{w})$

Convergence guarantees of GD/SGD

- GD/SGD converges to a stationary point

Convergence guarantees of GD/SGD

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need

Convergence guarantees of GD/SGD

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)

"good" saddle points

"bad" saddle points

Perceptron and logistic regression

Initialize $\boldsymbol{w}=\mathbf{0}$ or randomly.
Repeat:

- pick a data point \boldsymbol{x}_{n} uniformly at random (common trick for SGD)

Perceptron and logistic regression

Initialize $\boldsymbol{w}=\mathbf{0}$ or randomly.
Repeat:

- pick a data point \boldsymbol{x}_{n} uniformly at random (common trick for SGD)
- update parameter:

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+ \begin{cases}\mathbb{I}\left[y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n} \leq 0\right] y_{n} \boldsymbol{x}_{n} & \text { (Perceptron) } \\ \eta \sigma\left(-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) y_{n} \boldsymbol{x}_{n} & \text { (logistic regression) }\end{cases}
$$

A Probabilistic view of logistic regression

Minimizing logistic loss $=$ MLE for the sigmoid model

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \ell_{\text {logistic }}\left(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)=\underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{\boldsymbol{n}} ; \boldsymbol{w}\right)
$$

where

$$
\mathbb{P}(y \mid \boldsymbol{x} ; \boldsymbol{w})=\sigma\left(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)=\frac{1}{1+e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}
$$

Outline

(1) Review of Last Lecture
(2) Multiclass Classification

- Multinomial logistic regression
- Reduction to binary classification
(3) Neural Nets

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$
- output (label): $y \in[\mathrm{C}]=\{1,2, \cdots, \mathrm{C}\}$
- goal: learn a mapping $f: \mathbb{R}^{\mathrm{D}} \rightarrow[\mathrm{C}]$

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$
- output (label): $y \in[\mathrm{C}]=\{1,2, \cdots, \mathrm{C}\}$
- goal: learn a mapping $f: \mathbb{R}^{\mathrm{D}} \rightarrow[\mathrm{C}]$

Examples:

- recognizing digits $(C=10)$ or letters $(C=26$ or 52$)$
- predicting weather: sunny, cloudy, rainy, etc
- predicting image category: ImageNet dataset $(C \approx 20 K)$

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$
- output (label): $y \in[\mathrm{C}]=\{1,2, \cdots, \mathrm{C}\}$
- goal: learn a mapping $f: \mathbb{R}^{\mathrm{D}} \rightarrow[\mathrm{C}]$

Examples:

- recognizing digits $(C=10)$ or letters $(C=26$ or 52$)$
- predicting weather: sunny, cloudy, rainy, etc
- predicting image category: ImageNet dataset $(C \approx 20 K)$

Nearest Neighbor Classifier naturally works for arbitrary C.

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from $\{-1,+1\}$ to $\{1,2\}$)

$$
f(\boldsymbol{x})= \begin{cases}1 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0 \\ 2 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}<0\end{cases}
$$

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from $\{-1,+1\}$ to $\{1,2\}$)

$$
f(\boldsymbol{x})= \begin{cases}1 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0 \\ 2 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}<0\end{cases}
$$

can be written as

$$
f(\boldsymbol{x})= \begin{cases}1 & \text { if } \boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x} \\ 2 & \text { if } \boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}>\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}\end{cases}
$$

for any $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ s.t. $\boldsymbol{w}=\boldsymbol{w}_{1}-\boldsymbol{w}_{2}$

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from $\{-1,+1\}$ to $\{1,2\}$)

$$
f(\boldsymbol{x})= \begin{cases}1 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0 \\ 2 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}<0\end{cases}
$$

can be written as

$$
\begin{aligned}
f(\boldsymbol{x}) & = \begin{cases}1 & \text { if } \boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x} \\
2 & \text { if } \boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}>\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}\end{cases} \\
& =\underset{k \in\{1,2\}}{\operatorname{argmax}} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}
\end{aligned}
$$

for any $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ s.t. $\boldsymbol{w}=\boldsymbol{w}_{1}-\boldsymbol{w}_{2}$

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from $\{-1,+1\}$ to $\{1,2\}$)

$$
f(\boldsymbol{x})= \begin{cases}1 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0 \\ 2 & \text { if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}<0\end{cases}
$$

can be written as

$$
\begin{aligned}
f(\boldsymbol{x}) & = \begin{cases}1 & \text { if } \boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x} \\
2 & \text { if } \boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}>\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}\end{cases} \\
& =\underset{k \in\{1,2\}}{\operatorname{argmax}} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}
\end{aligned}
$$

for any $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ s.t. $\boldsymbol{w}=\boldsymbol{w}_{1}-\boldsymbol{w}_{2}$
Think of $\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}$ as a score for class k.

Linear models: from binary to multiclass

$$
\boldsymbol{w}=\left(\frac{3}{2}, \frac{1}{6}\right)
$$

- Blue class:

$$
\left\{\boldsymbol{x}: \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \geq 0\right\}
$$

- Orange class:

$$
\left\{\boldsymbol{x}: \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}<0\right\}
$$

Linear models: from binary to multiclass

$$
\begin{aligned}
& \boldsymbol{w}=\left(\frac{3}{2}, \frac{1}{6}\right)=\boldsymbol{w}_{1}-\boldsymbol{w}_{2} \\
& \boldsymbol{w}_{1}=\left(1,-\frac{1}{3}\right) \\
& \boldsymbol{w}_{2}=\left(-\frac{1}{2},-\frac{1}{2}\right)
\end{aligned}
$$

- Blue class: $\left\{\boldsymbol{x}: 1=\operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right\}$
- Orange class: $\left\{\boldsymbol{x}: 2=\operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right\}$

Linear models: from binary to multiclass

$$
\begin{aligned}
& \boldsymbol{w}_{1}=\left(1,-\frac{1}{3}\right) \\
& \boldsymbol{w}_{2}=\left(-\frac{1}{2},-\frac{1}{2}\right)
\end{aligned}
$$

- Blue class:

$$
\left\{\boldsymbol{x}: 1=\operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right\}
$$

- Orange class:

$$
\left\{\boldsymbol{x}: 2=\operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right\}
$$

Linear models: from binary to multiclass

$$
\begin{aligned}
& \boldsymbol{w}_{1}=\left(1,-\frac{1}{3}\right) \\
& \boldsymbol{w}_{2}=\left(-\frac{1}{2},-\frac{1}{2}\right) \\
& \boldsymbol{w}_{3}=(0,1)
\end{aligned}
$$

- Blue class:

$$
\left\{\boldsymbol{x}: 1=\operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right\}
$$

- Orange class:

$$
\left\{\boldsymbol{x}: 2=\operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right\}
$$

- Green class:

$$
\left\{\boldsymbol{x}: 3=\operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right\}
$$

Linear models for multiclass classification

$$
\mathcal{F}=\left\{f(\boldsymbol{x})=\underset{k \in[\mathrm{C}]}{\operatorname{argmax}} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{\mathrm{C}} \in \mathbb{R}^{\mathrm{D}}\right\}
$$

Linear models for multiclass classification

$$
\begin{aligned}
\mathcal{F} & =\left\{f(\boldsymbol{x})=\underset{k \in[\mathrm{C}]}{\operatorname{argmax}} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{\mathrm{C}} \in \mathbb{R}^{\mathrm{D}}\right\} \\
& =\left\{f(\boldsymbol{x})=\underset{k \in[\mathrm{C}]}{\operatorname{argmax}}(\boldsymbol{W} \boldsymbol{x})_{k} \mid \boldsymbol{W} \in \mathbb{R}^{\mathrm{C} \times \mathrm{D}}\right\}
\end{aligned}
$$

Linear models for multiclass classification

$$
\begin{aligned}
\mathcal{F} & =\left\{f(\boldsymbol{x})=\underset{k \in[\mathrm{C}]}{\operatorname{argmax}} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{\mathrm{C}} \in \mathbb{R}^{\mathrm{D}}\right\} \\
& =\left\{f(\boldsymbol{x})=\underset{k \in[\mathrm{C}]}{\operatorname{argmax}}(\boldsymbol{W} \boldsymbol{x})_{k} \mid \boldsymbol{W} \in \mathbb{R}^{\mathrm{C} \times \mathrm{D}}\right\}
\end{aligned}
$$

Step 2: How do we generalize perceptron/hinge/logistic loss?

Linear models for multiclass classification

$$
\begin{aligned}
\mathcal{F} & =\left\{f(\boldsymbol{x})=\underset{k \in[\mathrm{C}]}{\operatorname{argmax}} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{\mathrm{C}} \in \mathbb{R}^{\mathrm{D}}\right\} \\
& =\left\{f(\boldsymbol{x})=\underset{k \in[\mathrm{C}]}{\operatorname{argmax}}(\boldsymbol{W} \boldsymbol{x})_{k} \mid \boldsymbol{W} \in \mathbb{R}^{\mathrm{C} \times \mathrm{D}}\right\}
\end{aligned}
$$

Step 2: How do we generalize perceptron/hinge/logistic loss?
This lecture: focus on the more popular logistic loss

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $\boldsymbol{w}=\boldsymbol{w}_{1}-\boldsymbol{w}_{2}$:

$$
\mathbb{P}(y=1 \mid \boldsymbol{x} ; \boldsymbol{w})=\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)=\frac{1}{1+e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}=\frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}+e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}
$$

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $\boldsymbol{w}=\boldsymbol{w}_{1}-\boldsymbol{w}_{2}$:

$$
\mathbb{P}(y=1 \mid \boldsymbol{x} ; \boldsymbol{w})=\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)=\frac{1}{1+e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}=\frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}+e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}
$$

Naturally, for multiclass:

$$
\mathbb{P}(y=k \mid \boldsymbol{x} ; \boldsymbol{W})=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime} \in[\mathrm{C}]} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}
$$

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $\boldsymbol{w}=\boldsymbol{w}_{1}-\boldsymbol{w}_{2}$:

$$
\mathbb{P}(y=1 \mid \boldsymbol{x} ; \boldsymbol{w})=\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}\right)=\frac{1}{1+e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}=\frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}+e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}
$$

Naturally, for multiclass:

$$
\mathbb{P}(y=k \mid \boldsymbol{x} ; \boldsymbol{W})=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime} \in[\mathrm{C}]} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}
$$

This is called the softmax function.

Applying MLE again

Maximize probability of seeing labels $y_{1}, \ldots, y_{\mathrm{N}}$ given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{N}}$

$$
P(\boldsymbol{W})=\prod_{n=1}^{\mathrm{N}} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)=\prod_{n=1}^{\mathrm{N}} \frac{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}}{\sum_{k \in[\mathrm{C}]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}
$$

Applying MLE again

Maximize probability of seeing labels $y_{1}, \ldots, y_{\mathrm{N}}$ given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{N}}$

$$
P(\boldsymbol{W})=\prod_{n=1}^{\mathrm{N}} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)=\prod_{n=1}^{\mathrm{N}} \frac{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}}{\sum_{k \in[\mathrm{C}]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}
$$

By taking negative log, this is equivalent to minimizing

$$
F(\boldsymbol{W})=\sum_{n=1}^{\mathrm{N}} \ln \left(\frac{\sum_{k \in[\mathrm{C}]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}}\right)
$$

Applying MLE again

Maximize probability of seeing labels $y_{1}, \ldots, y_{\mathrm{N}}$ given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{N}}$

$$
P(\boldsymbol{W})=\prod_{n=1}^{\mathrm{N}} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)=\prod_{n=1}^{\mathrm{N}} \frac{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}}{\sum_{k \in[\mathrm{C}]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}
$$

By taking negative log, this is equivalent to minimizing

$$
F(\boldsymbol{W})=\sum_{n=1}^{\mathrm{N}} \ln \left(\frac{\sum_{k \in[\mathrm{C}]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}}\right)=\sum_{n=1}^{\mathrm{N}} \ln \left(1+\sum_{k \neq y_{n}} e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right)
$$

Applying MLE again

Maximize probability of seeing labels $y_{1}, \ldots, y_{\mathrm{N}}$ given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{N}}$

$$
P(\boldsymbol{W})=\prod_{n=1}^{\mathrm{N}} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)=\prod_{n=1}^{\mathrm{N}} \frac{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}}{\sum_{k \in[\mathrm{C}]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}
$$

By taking negative log, this is equivalent to minimizing

$$
F(\boldsymbol{W})=\sum_{n=1}^{\mathrm{N}} \ln \left(\frac{\sum_{k \in[\mathrm{C}]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}}\right)=\sum_{n=1}^{\mathrm{N}} \ln \left(1+\sum_{k \neq y_{n}} e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right)
$$

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

Applying MLE again

Maximize probability of seeing labels $y_{1}, \ldots, y_{\mathrm{N}}$ given $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{N}}$

$$
P(\boldsymbol{W})=\prod_{n=1}^{\mathrm{N}} \mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)=\prod_{n=1}^{\mathrm{N}} \frac{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}}{\sum_{k \in[\mathrm{C}]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}
$$

By taking negative log, this is equivalent to minimizing

$$
F(\boldsymbol{W})=\sum_{n=1}^{\mathrm{N}} \ln \left(\frac{\sum_{k \in[\mathrm{C}]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}}\right)=\sum_{n=1}^{\mathrm{N}} \ln \left(1+\sum_{k \neq y_{n}} e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right)
$$

This is the multiclass logistic loss, a.k.a. cross-entropy loss.
When $\mathrm{C}=2$, this is the same as binary logistic loss.

Step 3: Optimization

Apply SGD: what is the gradient of

$$
F_{n}(\boldsymbol{W})=\ln \left(1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right) ?
$$

Step 3: Optimization

Apply SGD: what is the gradient of

$$
F_{n}(\boldsymbol{W})=\ln \left(1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right) ?
$$

It's a $C \times D$ matrix. Let's focus on the k-th row:

Step 3: Optimization

Apply SGD: what is the gradient of

$$
F_{n}(\boldsymbol{W})=\ln \left(1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right) ?
$$

It's a $\mathrm{C} \times \mathrm{D}$ matrix. Let's focus on the k-th row:
If $k \neq y_{n}$:

$$
\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W})=\frac{e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}}{1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}}
$$

Step 3: Optimization

Apply SGD: what is the gradient of

$$
F_{n}(\boldsymbol{W})=\ln \left(1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right) ?
$$

It's a $\mathrm{C} \times \mathrm{D}$ matrix. Let's focus on the k-th row:
If $k \neq y_{n}$:

$$
\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W})=\frac{e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}}{1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}}=\mathbb{P}\left(k \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right) \boldsymbol{x}_{n}^{\mathrm{T}}
$$

Step 3: Optimization

Apply SGD: what is the gradient of

$$
F_{n}(\boldsymbol{W})=\ln \left(1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right) ?
$$

It's a $C \times D$ matrix. Let's focus on the k-th row:
If $k \neq y_{n}$:

$$
\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W})=\frac{e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}}{1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}}=\mathbb{P}\left(k \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right) \boldsymbol{x}_{n}^{\mathrm{T}}
$$

else:
$\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W})=\frac{-\left(\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right)}{1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}}$

Step 3: Optimization

Apply SGD: what is the gradient of

$$
F_{n}(\boldsymbol{W})=\ln \left(1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right) ?
$$

It's a $C \times D$ matrix. Let's focus on the k-th row:
If $k \neq y_{n}$:

$$
\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W})=\frac{e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}}{1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}}=\mathbb{P}\left(k \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right) \boldsymbol{x}_{n}^{\mathrm{T}}
$$

else:
$\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W})=\frac{-\left(\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}\right)}{1+\sum_{k^{\prime} \neq y_{n}} e^{\left(\boldsymbol{w}_{k^{\prime}}-\boldsymbol{w}_{y_{n}}\right)^{\mathrm{T}} \boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}}=\left(\mathbb{P}\left(y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)-1\right) \boldsymbol{x}_{n}^{\mathrm{T}}$

SGD for multinomial logistic regression

Initialize $\boldsymbol{W}=\mathbf{0}$ (or randomly). Repeat:
(1) pick $n \in[\mathrm{~N}]$ uniformly at random
(2) update the parameters

$$
\boldsymbol{W} \leftarrow \boldsymbol{W}-\eta\left(\begin{array}{c}
\mathbb{P}\left(y=1 \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right) \\
\vdots \\
\mathbb{P}\left(y=y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)-1 \\
\vdots \\
\mathbb{P}\left(y=\mathrm{C} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)
\end{array}\right) \boldsymbol{x}_{n}^{\mathrm{T}}
$$

SGD for multinomial logistic regression

Initialize $\boldsymbol{W}=\mathbf{0}$ (or randomly). Repeat:
(1) pick $n \in[\mathrm{~N}]$ uniformly at random
(2) update the parameters

$$
\boldsymbol{W} \leftarrow \boldsymbol{W}-\eta\left(\begin{array}{c}
\mathbb{P}\left(y=1 \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right) \\
\vdots \\
\mathbb{P}\left(y=y_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)-1 \\
\vdots \\
\mathbb{P}\left(y=\mathrm{C} \mid \boldsymbol{x}_{n} ; \boldsymbol{W}\right)
\end{array}\right) \boldsymbol{x}_{n}^{\mathrm{T}}
$$

Think about why the algorithm makes sense intuitively.

A note on prediction

Having learned \boldsymbol{W}, we can either

- make a deterministic prediction $\operatorname{argmax}_{k \in[\mathrm{C}]} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}$

A note on prediction

Having learned \boldsymbol{W}, we can either

- make a deterministic prediction $\operatorname{argmax}_{k \in[\mathrm{C}]} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}$
- make a randomized prediction according to $\mathbb{P}(k \mid \boldsymbol{x} ; \boldsymbol{W}) \propto e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}$

A note on prediction

Having learned \boldsymbol{W}, we can either

- make a deterministic prediction $\operatorname{argmax}_{k \in[\mathrm{C}]} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}$
- make a randomized prediction according to $\mathbb{P}(k \mid \boldsymbol{x} ; \boldsymbol{W}) \propto e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}$

In either case, (expected) mistake is bounded by logistic loss

A note on prediction

Having learned \boldsymbol{W}, we can either

- make a deterministic prediction $\operatorname{argmax}_{k \in[\mathrm{C}]} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}$
- make a randomized prediction according to $\mathbb{P}(k \mid \boldsymbol{x} ; \boldsymbol{W}) \propto e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}$

In either case, (expected) mistake is bounded by logistic loss

- deterministic

$$
\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log _{2}\left(1+\sum_{k \neq y} e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y}\right)^{\mathrm{T}} \boldsymbol{x}}\right)
$$

A note on prediction

Having learned \boldsymbol{W}, we can either

- make a deterministic prediction $\operatorname{argmax}_{k \in[\mathrm{C}]} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}$
- make a randomized prediction according to $\mathbb{P}(k \mid \boldsymbol{x} ; \boldsymbol{W}) \propto e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}$

In either case, (expected) mistake is bounded by logistic loss

- deterministic

$$
\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log _{2}\left(1+\sum_{k \neq y} e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y}\right)^{\mathrm{T}} \boldsymbol{x}}\right)
$$

- randomized

$$
\mathbb{E}[\mathbb{I}[f(\boldsymbol{x}) \neq y]]
$$

A note on prediction

Having learned \boldsymbol{W}, we can either

- make a deterministic prediction $\operatorname{argmax}_{k \in[\mathrm{C}]} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}$
- make a randomized prediction according to $\mathbb{P}(k \mid \boldsymbol{x} ; \boldsymbol{W}) \propto e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}$

In either case, (expected) mistake is bounded by logistic loss

- deterministic

$$
\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log _{2}\left(1+\sum_{k \neq y} e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y}\right)^{\mathrm{T}} \boldsymbol{x}}\right)
$$

- randomized

$$
\mathbb{E}[\mathbb{I}[f(\boldsymbol{x}) \neq y]]=1-\mathbb{P}(y \mid \boldsymbol{x} ; \boldsymbol{W})
$$

A note on prediction

Having learned \boldsymbol{W}, we can either

- make a deterministic prediction $\operatorname{argmax}_{k \in[\mathrm{C}]} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}$
- make a randomized prediction according to $\mathbb{P}(k \mid \boldsymbol{x} ; \boldsymbol{W}) \propto e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}$

In either case, (expected) mistake is bounded by logistic loss

- deterministic

$$
\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log _{2}\left(1+\sum_{k \neq y} e^{\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{y}\right)^{\mathrm{T}} \boldsymbol{x}}\right)
$$

- randomized

$$
\mathbb{E}[\mathbb{I}[f(\boldsymbol{x}) \neq y]]=1-\mathbb{P}(y \mid \boldsymbol{x} ; \boldsymbol{W}) \leq-\ln \mathbb{P}(y \mid \boldsymbol{x} ; \boldsymbol{W})
$$

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass classification algorithms?

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass classification algorithms?

Given a binary classification algorithm (any one, not just linear methods), can we turn it to a multiclass algorithm, in a black-box manner?

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass classification algorithms?

Given a binary classification algorithm (any one, not just linear methods), can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

- one-versus-all (one-versus-rest, one-against-all, etc.)
- one-versus-one (all-versus-all, etc.)
- Error-Correcting Output Codes (ECOC)
- tree-based reduction

One-versus-all (OvA)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

One-versus-all (OvA)

Idea: train C binary classifiers to learn "is class k or not?" for each k.
Training: for each class $k \in[\mathrm{C}]$,

- relabel examples with class k as +1 , and all others as -1
- train a binary classifier h_{k} using this new dataset

One-versus-all (OvA)

Idea: train C binary classifiers to learn "is class k or not?" for each k.
Training: for each class $k \in[\mathrm{C}]$,

- relabel examples with class k as +1 , and all others as -1
- train a binary classifier h_{k} using this new dataset

		\square	\square	\square	\square
x_{1}	\square	$x_{1} \quad-$	$x_{1}+$	$x_{1}-$	$x_{1}-$
x_{2}	\square	x_{2}	$x_{2}-$	$x_{2}+$	x_{2}
x_{3}	$\square \Rightarrow$	x_{3}	$x_{3}-$	x_{3}	$x_{3}+$
x_{4}	-	x_{4}	$x_{4}+$	x_{4}	x_{4}
x_{5}	\square		$\begin{gathered} x_{5} \quad- \\ \Downarrow \\ h_{2} \end{gathered}$	$\begin{gathered} x_{5} \\ \Downarrow \\ \\ h_{3} \end{gathered}$	$\begin{gathered} x_{5} \quad- \\ \Downarrow \\ h_{4} \end{gathered}$

One-versus-all (OvA)

Prediction: for a new example \boldsymbol{x}

- ask each h_{k} : does this belong to class k ? (i.e. $h_{k}(\boldsymbol{x})$)

One-versus-all (OvA)

Prediction: for a new example \boldsymbol{x}

- ask each h_{k} : does this belong to class k ? (i.e. $h_{k}(\boldsymbol{x})$)
- randomly pick among all k 's s.t. $h_{k}(\boldsymbol{x})=+1$.

One-versus-all (OvA)

Prediction: for a new example \boldsymbol{x}

- ask each h_{k} : does this belong to class k ? (i.e. $h_{k}(\boldsymbol{x})$)
- randomly pick among all k 's s.t. $h_{k}(\boldsymbol{x})=+1$.

Issue: will (probably) make a mistake as long as one of h_{k} errs.

One-versus-one (OvO)

Idea: train $\binom{C}{2}$ binary classifiers to learn "is class k or k^{\prime} ?".

One-versus-one (OvO)

Idea: train $\binom{\mathrm{C}}{2}$ binary classifiers to learn "is class k or k^{\prime} ?".
Training: for each pair $\left(k, k^{\prime}\right)$,

- relabel examples with class k as +1 and examples with class k^{\prime} as -1
- discard all other examples
- train a binary classifier $h_{\left(k, k^{\prime}\right)}$ using this new dataset

One-versus-one (OvO)

Idea: train $\binom{\mathrm{C}}{2}$ binary classifiers to learn "is class k or k^{\prime} ?".
Training: for each pair $\left(k, k^{\prime}\right)$,

- relabel examples with class k as +1 and examples with class k^{\prime} as -1
- discard all other examples
- train a binary classifier $h_{\left(k, k^{\prime}\right)}$ using this new dataset

One-versus-one (OvO)

Prediction: for a new example \boldsymbol{x}

- ask each classifier $h_{\left(k, k^{\prime}\right)}$ to vote for either class k or k^{\prime}

One-versus-one (OvO)

Prediction: for a new example \boldsymbol{x}

- ask each classifier $h_{\left(k, k^{\prime}\right)}$ to vote for either class k or k^{\prime}
- predict the class with the most votes (break tie in some way)

One-versus-one (OvO)

Prediction: for a new example \boldsymbol{x}

- ask each classifier $h_{\left(k, k^{\prime}\right)}$ to vote for either class k or k^{\prime}
- predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

Error-correcting output codes (ECOC)

Idea: based on a code $\boldsymbol{M} \in\{-1,+1\}^{\mathrm{C} \times \mathrm{L}}$, train L binary classifiers to learn "is bit b on or off".

M	1	2	3	4	5
\square	+	-	+	-	+
\square	-	-	+	+	+
\square	+	+	-	-	-
\square	+	+	+	+	-

Error-correcting output codes (ECOC)

Idea: based on a code $\boldsymbol{M} \in\{-1,+1\}^{\mathrm{C} \times \mathrm{L}}$, train L binary classifiers to learn "is bit b on or off".
Training: for each bit $b \in[\mathrm{~L}]$

- relabel example x_{n} as $M_{y_{n}, b}$
- train a binary classifier h_{b} using this new dataset.

M	1	2	3	4	5
\square	+	-	+	-	+
\square	-	-	+	+	+
\square	+	+	-	-	-
\square	+	+	+	+	-

Error-correcting output codes (ECOC)

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $\boldsymbol{c}=\left(h_{1}(\boldsymbol{x}), \ldots, h_{\mathrm{L}}(\boldsymbol{x})\right)^{\mathrm{T}}$

Error-correcting output codes (ECOC)

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $\boldsymbol{c}=\left(h_{1}(\boldsymbol{x}), \ldots, h_{\mathrm{L}}(\boldsymbol{x})\right)^{\mathrm{T}}$
- predict the class with the most similar code: $k=\operatorname{argmax}_{k}(\boldsymbol{M c})_{k}$

Error-correcting output codes (ECOC)

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $\boldsymbol{c}=\left(h_{1}(\boldsymbol{x}), \ldots, h_{\mathrm{L}}(\boldsymbol{x})\right)^{\mathrm{T}}$
- predict the class with the most similar code: $k=\operatorname{argmax}_{k}(\boldsymbol{M c})_{k}$

How to design the code M ?

Error-correcting output codes (ECOC)

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $\boldsymbol{c}=\left(h_{1}(\boldsymbol{x}), \ldots, h_{\mathrm{L}}(\boldsymbol{x})\right)^{\mathrm{T}}$
- predict the class with the most similar code: $k=\operatorname{argmax}_{k}(\boldsymbol{M c})_{k}$

How to design the code M ?

- the more dissimilar the codes, the more robust

Error-correcting output codes (ECOC)

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $\boldsymbol{c}=\left(h_{1}(\boldsymbol{x}), \ldots, h_{\mathrm{L}}(\boldsymbol{x})\right)^{\mathrm{T}}$
- predict the class with the most similar code: $k=\operatorname{argmax}_{k}(\boldsymbol{M c})_{k}$

How to design the code M ?

- the more dissimilar the codes, the more robust
- if any two codes are d bits away, then prediction can tolerate about $d / 2$ errors

Error-correcting output codes (ECOC)

Prediction: for a new example \boldsymbol{x}

- compute the predicted code $\boldsymbol{c}=\left(h_{1}(\boldsymbol{x}), \ldots, h_{\mathrm{L}}(\boldsymbol{x})\right)^{\mathrm{T}}$
- predict the class with the most similar code: $k=\operatorname{argmax}_{k}(\boldsymbol{M c})_{k}$

How to design the code M ?

- the more dissimilar the codes, the more robust
- if any two codes are d bits away, then prediction can tolerate about $d / 2$ errors
- random code is often a good choice

Tree based method

Idea: train $\approx \mathrm{C}$ binary classifiers to learn "belongs to which half?".

Tree based method

Idea: $\operatorname{train} \approx \mathrm{C}$ binary classifiers to learn "belongs to which half?".
Training: see pictures

Tree based method

Idea: $\operatorname{train} \approx \mathrm{C}$ binary classifiers to learn "belongs to which half?".
Training: see pictures

Prediction is also natural,

Tree based method

Idea: $\operatorname{train} \approx \mathrm{C}$ binary classifiers to learn "belongs to which half?".
Training: see pictures

Prediction is also natural, but is very fast! (think ImageNet where $C \approx 20 K$)

Comparisons

Reduction	training time	prediction time	remark

training time: how many
training points are created
prediction time: how many
binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA			

training time: how many training points are created prediction time: how many binary predictions are made

			\square	\square	\square	-	
x_{1}	-			$x_{1}+$		${ }_{1}$	
x_{2}	■		$x_{2}-$	x_{2} -	$x_{2}+$	x_{2}	-
x_{3}	\square	\Rightarrow	$x_{3}-$	$x_{3}-$	$x_{3}-$	x_{3}	+
x_{4}	-		x_{4} -	$x_{4}+$	x_{4} -	x_{4}	-
	-		$x_{5}+$	x_{5}	x_{5}	x_{5}	
			\Downarrow h_{1}	\Downarrow h_{2}	\Downarrow h_{3}	\Downarrow h_{4}	

Comparisons

Reduction	training time	prediction time	remark
OvA	CN		

training time: how many training points are created prediction time: how many binary predictions are made

			\square	\square	\square	-	
x_{1}	-			$x_{1}+$		${ }_{1}$	
x_{2}	■		$x_{2}-$	x_{2} -	$x_{2}+$	x_{2}	-
x_{3}	\square	\Rightarrow	$x_{3}-$	$x_{3}-$	$x_{3}-$	x_{3}	+
x_{4}	-		x_{4} -	$x_{4}+$	x_{4} -	x_{4}	-
	-		$x_{5}+$	x_{5}	x_{5}	x_{5}	
			\Downarrow h_{1}	\Downarrow h_{2}	\Downarrow h_{3}	\Downarrow h_{4}	

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	

training time: how many training points are created prediction time: how many binary predictions are made

			\square	\square	\square	-	
x_{1}	-			$x_{1}+$		${ }_{1}$	
x_{2}	■		$x_{2}-$	x_{2} -	$x_{2}+$	x_{2}	-
x_{3}	\square	\Rightarrow	$x_{3}-$	$x_{3}-$	$x_{3}-$	x_{3}	+
x_{4}	-		x_{4} -	$x_{4}+$	x_{4} -	x_{4}	-
	-		$x_{5}+$	x_{5}	x_{5}	x_{5}	
			\Downarrow h_{1}	\Downarrow h_{2}	\Downarrow h_{3}	\Downarrow h_{4}	

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust

training time: how many training points are created prediction time: how many binary predictions are made

			\square	\square	\square	\square	
x_{1}	-		${ }_{1}$	$x_{1}+$	${ }_{1}$	${ }_{1}$	
x_{2}	■		$x_{2}-$	x_{2} -	x_{2}	x_{2}	
x_{3}	■	\Rightarrow	$x_{3}-$	$x_{3}-$	x_{3}	x_{3}	+
\times_{4}	-		x_{4} -	$x_{4}+$	x_{4}	\times_{4}	-
${ }^{4}$	-		$x_{5}+$	x_{5} -	x_{5} -	x_{5}	
			\Downarrow h_{1}	\Downarrow h_{2}	$\stackrel{\downarrow}{\downarrow}$	${ }_{4} \downarrow$	

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO			

training time: how many training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$		

training time: how many training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	

training time: how many training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	can achieve very small training error

training time: how many training points are created prediction time: how many binary predictions are made

		\square vs.	■ vs. \quad	■ vs. \quad -	■ vs.	■ vs.	■ vs.
x_{1}	$\underline{1}$		x_{2}	$\begin{array}{ll} x_{2} & + \\ x_{3} & - \end{array}$	x_{1}		x_{1}
x_{2}	\Rightarrow						$x_{2}+$
					$x_{3}+$	x_{3}	
x_{4}		x_{4}			x_{4}		x_{4}
x_{5}		$x_{5}+$	$x_{5}+$			$x_{5}+$	
		\Downarrow	\Downarrow	\Downarrow	\Downarrow	\Downarrow	\Downarrow
		$h_{(1,2)}$	${ }^{h_{(1,3)}}$	$h_{(3,4)}$	$h_{(4,2)}$	$h_{(1,4)}$	${ }^{h_{(3,2)}}$

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	can achieve very small training error
ECOC			

training time: how many training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	can achieve very small training error
ECOC	LN		

training time: how many training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	can achieve very small training error
ECOC	LN	L	

training time: how many training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code

training time: how many training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree			

training time: how many
training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$\mathcal{O}\left(\left(\log _{2} \mathrm{C}\right) \mathrm{N}\right)$		

training time: how many
training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$\mathcal{O}\left(\left(\log _{2} \mathrm{C}\right) \mathrm{N}\right)$	$\mathcal{O}\left(\log _{2} \mathrm{C}\right)$	

training time: how many
training points are created prediction time: how many binary predictions are made

Comparisons

Reduction	training time	prediction time	remark
OvA	CN	C	not robust
OvO	$(\mathrm{C}-1) \mathrm{N}$	$\mathcal{O}\left(\mathrm{C}^{2}\right)$	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$\mathcal{O}\left(\left(\log _{2} \mathrm{C}\right) \mathrm{N}\right)$	$\mathcal{O}\left(\log _{2} \mathrm{C}\right)$	good for "extreme classification"

training time: how many
training points are created prediction time: how many binary predictions are made

Outline

(1) Review of Last Lecture

(2) Multiclass Classification

(3) Neural Nets

- Definition
- Backpropagation
- Preventing overfitting

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{\mathrm{D}} \rightarrow \boldsymbol{z} \in \mathbb{R}^{\mathrm{M}}
$$

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{\mathrm{D}} \rightarrow \boldsymbol{z} \in \mathbb{R}^{\mathrm{M}}
$$

But what kind of nonlinear mapping ϕ should be used? Can we actually learn this nonlinear mapping?

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{\mathrm{D}} \rightarrow \boldsymbol{z} \in \mathbb{R}^{\mathrm{M}}
$$

But what kind of nonlinear mapping ϕ should be used? Can we actually learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

Linear model as a one-layer neural net

$h(a)=a$ for linear model

Linear model as a one-layer neural net

$h(a)=a$ for linear model

To create non-linearity, can use

- Rectified Linear Unit (ReLU): $h(a)=\max \{0, a\}$
- sigmoid function: $h(a)=\frac{1}{1+e^{-a}}$
- TanH: $h(a)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}}$
- many more

More output nodes

$\boldsymbol{W} \in \mathbb{R}^{4 \times 3}, \boldsymbol{h}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ so $\boldsymbol{h}(\boldsymbol{a})=\left(h_{1}\left(a_{1}\right), h_{2}\left(a_{2}\right), h_{3}\left(a_{3}\right), h_{4}\left(a_{4}\right)\right)$

More output nodes

$\boldsymbol{W} \in \mathbb{R}^{4 \times 3}, \boldsymbol{h}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ so $\boldsymbol{h}(\boldsymbol{a})=\left(h_{1}\left(a_{1}\right), h_{2}\left(a_{2}\right), h_{3}\left(a_{3}\right), h_{4}\left(a_{4}\right)\right)$
Can think of this as a nonlinear mapping: $\boldsymbol{\phi}(\boldsymbol{x})=\boldsymbol{h}(\boldsymbol{W} \boldsymbol{x})$

More layers

Becomes a network:

More layers

Becomes a network:

- each node is called a neuron

input layer

More layers

Becomes a network:

- each node is called a neuron
- \boldsymbol{h} is called the activation function
- can use $h(a)=1$ for one neuron in each layer to incorporate bias term
- output neuron can use $h(a)=a$

More layers

Becomes a network:

- each node is called a neuron

- \boldsymbol{h} is called the activation function
- can use $h(a)=1$ for one neuron in each layer to incorporate bias term
- output neuron can use $h(a)=a$
- \#layers refers to \#hidden_layers (plus 1 or 2 for input/output layers)

More layers

Becomes a network:

- each node is called a neuron

- \boldsymbol{h} is called the activation function
- can use $h(a)=1$ for one neuron in each layer to incorporate bias term
- output neuron can use $h(a)=a$
- \#layers refers to \#hidden_layers (plus 1 or 2 for input/output layers)
- deep neural nets can have many layers and millions of parameters

More layers

Becomes a network:

- each node is called a neuron

input layer
hidden layer 1
hidden layer 2
- \boldsymbol{h} is called the activation function
- can use $h(a)=1$ for one neuron in each layer to incorporate bias term
- output neuron can use $h(a)=a$
- \#layers refers to \#hidden_layers (plus 1 or 2 for input/output layers)
- deep neural nets can have many layers and millions of parameters
- this is a feedforward, fully connected neural net, there are many variants (convolutional nets, residual nets, recurrent nets, etc.)

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):
A feedforward neural net with a single hidden layer can approximate any continuous functions.

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):
A feedforward neural net with a single hidden layer can approximate any continuous functions.

It might need a huge number of neurons though, and depth helps!

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):
A feedforward neural net with a single hidden layer can approximate any continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

- for feedforward network, need to decide number of hidden layers, number of neurons at each layer, activation functions, etc.

Math formulation

An L-layer neural net can be written as
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{h}_{\mathrm{L}}\left(\boldsymbol{W}_{L} \boldsymbol{h}_{\mathrm{L}-1}\left(\boldsymbol{W}_{L-1} \cdots \boldsymbol{h}_{1}\left(\boldsymbol{W}_{1} \boldsymbol{x}\right)\right)\right)$

Math formulation

An L-layer neural net can be written as

$$
\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{h}_{\mathrm{L}}\left(\boldsymbol{W}_{L} \boldsymbol{h}_{\mathrm{L}-1}\left(\boldsymbol{W}_{L-1} \cdots \boldsymbol{h}_{1}\left(\boldsymbol{W}_{1} \boldsymbol{x}\right)\right)\right)
$$

To ease notation, for a given input \boldsymbol{x}, define recursively

$$
\boldsymbol{o}_{0}=\boldsymbol{x}, \quad \boldsymbol{a}_{\ell}=\boldsymbol{W}_{\ell} \boldsymbol{o}_{\ell-1}, \quad \boldsymbol{o}_{\ell}=\boldsymbol{h}_{\ell}\left(\boldsymbol{a}_{\ell}\right) \quad(\ell=1, \ldots, \mathrm{~L})
$$

where

- $\boldsymbol{W}_{\ell} \in \mathbb{R}^{\mathrm{D}_{\ell} \times \mathrm{D}_{\ell-1}}$ is the weights between layer $\ell-1$ and ℓ
- $\mathrm{D}_{0}=\mathrm{D}, \mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{L}}$ are numbers of neurons at each layer
- $a_{\ell} \in \mathbb{R}^{\mathrm{D}_{\ell}}$ is input to layer ℓ
- $\boldsymbol{o}_{\ell} \in \mathbb{R}^{\mathrm{D}_{\ell}}$ is output of layer ℓ
- $\boldsymbol{h}_{\ell}: \mathbb{R}^{\mathrm{D}_{\ell}} \rightarrow \mathbb{R}^{\mathrm{D}_{\ell}}$ is activation functions at layer ℓ

Learning the model

No matter how complicated the model is, our goal is the same: minimize

$$
F\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)=\frac{1}{N} \sum_{n=1}^{\mathrm{N}} F_{n}\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)
$$

Learning the model

No matter how complicated the model is, our goal is the same: minimize

$$
F\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)=\frac{1}{N} \sum_{n=1}^{\mathrm{N}} F_{n}\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)
$$

where
$F_{n}\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)= \begin{cases}\left\|\boldsymbol{f}\left(\boldsymbol{x}_{n}\right)-\boldsymbol{y}_{n}\right\|_{2}^{2} & \text { for regression } \\ \ln \left(1+\sum_{k \neq y_{n}} e^{f\left(\boldsymbol{x}_{n}\right)_{k}-f\left(\boldsymbol{x}_{n}\right)_{y_{n}}}\right) & \text { for classification }\end{cases}$

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.
What is the gradient of this complicated function?

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.
What is the gradient of this complicated function?
Chain rule is the only secret:

- for a composite function $f(g(w))$

$$
\frac{\partial f}{\partial w}=\frac{\partial f}{\partial g} \frac{\partial g}{\partial w}
$$

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.
What is the gradient of this complicated function?
Chain rule is the only secret:

- for a composite function $f(g(w))$

$$
\frac{\partial f}{\partial w}=\frac{\partial f}{\partial g} \frac{\partial g}{\partial w}
$$

- for a composite function $f\left(g_{1}(w), \ldots, g_{d}(w)\right)$

$$
\frac{\partial f}{\partial w}=\sum_{i=1}^{d} \frac{\partial f}{\partial g_{i}} \frac{\partial g_{i}}{\partial w}
$$

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.
What is the gradient of this complicated function?
Chain rule is the only secret:

- for a composite function $f(g(w))$

$$
\frac{\partial f}{\partial w}=\frac{\partial f}{\partial g} \frac{\partial g}{\partial w}
$$

- for a composite function $f\left(g_{1}(w), \ldots, g_{d}(w)\right)$

$$
\frac{\partial f}{\partial w}=\sum_{i=1}^{d} \frac{\partial f}{\partial g_{i}} \frac{\partial g_{i}}{\partial w}
$$

the simplest example $f\left(g_{1}(w), g_{2}(w)\right)=g_{1}(w) g_{2}(w)$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.
Find the derivative of F_{n} w.r.t. to $w_{i j}$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.
Find the derivative of F_{n} w.r.t. to $w_{i j}$

$$
\frac{\partial F_{n}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial a_{i}}{\partial w_{i j}}
$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.
Find the derivative of F_{n} w.r.t. to $w_{i j}$

$$
\frac{\partial F_{n}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial a_{i}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial\left(w_{i j} o_{j}\right)}{\partial w_{i j}}
$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.
Find the derivative of F_{n} w.r.t. to $w_{i j}$

$$
\frac{\partial F_{n}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial a_{i}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial\left(w_{i j} o_{j}\right)}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} o_{j}
$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.
Find the derivative of F_{n} w.r.t. to $w_{i j}$

$$
\frac{\partial F_{n}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial a_{i}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial\left(w_{i j} o_{j}\right)}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} o_{j}
$$

$$
\frac{\partial F_{n}}{\partial a_{i}}=\frac{\partial F_{n}}{\partial o_{i}} \frac{\partial o_{i}}{\partial a_{i}}
$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.
Find the derivative of F_{n} w.r.t. to $w_{i j}$

$$
\begin{gathered}
\frac{\partial F_{n}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial a_{i}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial\left(w_{i j} o_{j}\right)}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} o_{j} \\
\frac{\partial F_{n}}{\partial a_{i}}=\frac{\partial F_{n}}{\partial o_{i}} \frac{\partial o_{i}}{\partial a_{i}}=\left(\sum_{k} \frac{\partial F_{n}}{\partial a_{k}} \frac{\partial a_{k}}{\partial o_{i}}\right) h_{i}^{\prime}\left(a_{i}\right)
\end{gathered}
$$

Computing the derivative

Drop the subscript ℓ for layer for simplicity. Find the derivative of F_{n} w.r.t. to $w_{i j}$

$$
\begin{gathered}
\frac{\partial F_{n}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial a_{i}}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} \frac{\partial\left(w_{i j} o_{j}\right)}{\partial w_{i j}}=\frac{\partial F_{n}}{\partial a_{i}} o_{j} \\
\frac{\partial F_{n}}{\partial a_{i}}=\frac{\partial F_{n}}{\partial o_{i}} \frac{\partial o_{i}}{\partial a_{i}}=\left(\sum_{k} \frac{\partial F_{n}}{\partial a_{k}} \frac{\partial a_{k}}{\partial o_{i}}\right) h_{i}^{\prime}\left(a_{i}\right)=\left(\sum_{k} \frac{\partial F_{n}}{\partial a_{k}} w_{k i}\right) h_{i}^{\prime}\left(a_{i}\right)
\end{gathered}
$$

Computing the derivative

Adding the subscript for layer:

$$
\begin{gathered}
\frac{\partial F_{n}}{\partial w_{\ell, i j}}=\frac{\partial F_{n}}{\partial a_{\ell, i}} o_{\ell-1, j} \\
\frac{\partial F_{n}}{\partial a_{\ell, i}}=\left(\sum_{k} \frac{\partial F_{n}}{\partial a_{\ell+1, k}} w_{\ell+1, k i}\right) h_{\ell, i}^{\prime}\left(a_{\ell, i}\right)
\end{gathered}
$$

Computing the derivative

Adding the subscript for layer:

$$
\begin{gathered}
\frac{\partial F_{n}}{\partial w_{\ell, i j}}=\frac{\partial F_{n}}{\partial a_{\ell, i}} o_{\ell-1, j} \\
\frac{\partial F_{n}}{\partial a_{\ell, i}}=\left(\sum_{k} \frac{\partial F_{n}}{\partial a_{\ell+1, k}} w_{\ell+1, k i}\right) h_{\ell, i}^{\prime}\left(a_{\ell, i}\right)
\end{gathered}
$$

For the last layer, for square loss

$$
\frac{\partial F_{n}}{\partial a_{\mathrm{L}, i}}=\frac{\partial\left(h_{\mathrm{L}, i}\left(a_{\mathrm{L}, i}\right)-y_{n, i}\right)^{2}}{\partial a_{\mathrm{L}, i}}
$$

Computing the derivative

Adding the subscript for layer:

$$
\begin{gathered}
\frac{\partial F_{n}}{\partial w_{\ell, i j}}=\frac{\partial F_{n}}{\partial a_{\ell, i}} o_{\ell-1, j} \\
\frac{\partial F_{n}}{\partial a_{\ell, i}}=\left(\sum_{k} \frac{\partial F_{n}}{\partial a_{\ell+1, k}} w_{\ell+1, k i}\right) h_{\ell, i}^{\prime}\left(a_{\ell, i}\right)
\end{gathered}
$$

For the last layer, for square loss

$$
\frac{\partial F_{n}}{\partial a_{\mathrm{L}, i}}=\frac{\partial\left(h_{\mathrm{L}, i}\left(a_{\mathrm{L}, i}\right)-y_{n, i}\right)^{2}}{\partial a_{\mathrm{L}, i}}=2\left(h_{\mathrm{L}, i}\left(a_{\mathrm{L}, i}\right)-y_{n, i}\right) h_{\mathrm{L}, i}^{\prime}\left(a_{\mathrm{L}, i}\right)
$$

Computing the derivative

Adding the subscript for layer:

$$
\begin{gathered}
\frac{\partial F_{n}}{\partial w_{\ell, i j}}=\frac{\partial F_{n}}{\partial a_{\ell, i}} o_{\ell-1, j} \\
\frac{\partial F_{n}}{\partial a_{\ell, i}}=\left(\sum_{k} \frac{\partial F_{n}}{\partial a_{\ell+1, k}} w_{\ell+1, k i}\right) h_{\ell, i}^{\prime}\left(a_{\ell, i}\right)
\end{gathered}
$$

For the last layer, for square loss

$$
\frac{\partial F_{n}}{\partial a_{\mathrm{L}, i}}=\frac{\partial\left(h_{\mathrm{L}, i}\left(a_{\mathrm{L}, i}\right)-y_{n, i}\right)^{2}}{\partial a_{\mathrm{L}, i}}=2\left(h_{\mathrm{L}, i}\left(a_{\mathrm{L}, i}\right)-y_{n, i}\right) h_{\mathrm{L}, i}^{\prime}\left(a_{\mathrm{L}, i}\right)
$$

Exercise: try to do it for logistic loss yourself.

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

$$
\begin{gathered}
\frac{\partial F_{n}}{\partial \boldsymbol{W}_{\ell}}=\frac{\partial F_{n}}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}} \in \mathbb{R}^{\mathrm{D}_{\ell} \times \mathrm{D}_{\ell-1}} \\
\frac{\partial F_{n}}{\partial \boldsymbol{a}_{\ell}}= \begin{cases}\left(\boldsymbol{W}_{\ell+1}^{\mathrm{T}} \frac{\partial F_{n}}{\partial \boldsymbol{a}_{\ell+1}}\right) \circ \boldsymbol{h}_{\ell}^{\prime}\left(\boldsymbol{a}_{\ell}\right) & \text { if } \ell<\mathrm{L} \\
2\left(\boldsymbol{h}_{\mathrm{L}}\left(\boldsymbol{a}_{\mathrm{L}}\right)-\boldsymbol{y}_{n}\right) \circ \boldsymbol{h}_{\mathrm{L}}^{\prime}\left(\boldsymbol{a}_{\mathrm{L}}\right) & \text { else }\end{cases}
\end{gathered}
$$

where $\boldsymbol{v}_{1} \circ \boldsymbol{v}_{2}=\left(v_{11} v_{21}, \cdots, v_{1 \mathrm{D}} v_{2 \mathrm{D}}\right)$ is the element-wise product (a.k.a. Hadamard product).

Verify yourself!

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize $\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}$ randomly.

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize $\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}$ randomly. Repeat:
(1) randomly pick one data point $n \in[\mathrm{~N}]$

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize $\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}$ randomly. Repeat:
(1) randomly pick one data point $n \in[\mathrm{~N}]$
(2) forward propagation: for each layer $\ell=1, \ldots, L$

- compute $\boldsymbol{a}_{\ell}=\boldsymbol{W}_{\ell} \boldsymbol{o}_{\ell-1}$ and $\boldsymbol{o}_{\ell}=\boldsymbol{h}_{\ell}\left(\boldsymbol{a}_{\ell}\right)$

$$
\left(o_{0}=x_{n}\right)
$$

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize $\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}$ randomly. Repeat:
(1) randomly pick one data point $n \in[\mathrm{~N}]$
(2) forward propagation: for each layer $\ell=1, \ldots, \mathrm{~L}$

- compute $\boldsymbol{a}_{\ell}=\boldsymbol{W}_{\ell} \boldsymbol{o}_{\ell-1}$ and $\boldsymbol{o}_{\ell}=\boldsymbol{h}_{\ell}\left(\boldsymbol{a}_{\ell}\right)$
(3) backward propagation: for each $\ell=L, \ldots, 1$
- compute

$$
\frac{\partial F_{n}}{\partial \boldsymbol{a}_{\ell}}= \begin{cases}\left(\boldsymbol{W}_{\ell+1}^{\mathrm{T}} \frac{\partial F_{n}}{\partial \boldsymbol{a}_{\ell+1}}\right) \circ \boldsymbol{h}_{\ell}^{\prime}\left(\boldsymbol{a}_{\ell}\right) & \text { if } \ell<\mathrm{L} \\ 2\left(\boldsymbol{h}_{\mathrm{L}}\left(\boldsymbol{a}_{\mathrm{L}}\right)-\boldsymbol{y}_{n}\right) \circ \boldsymbol{h}_{\mathrm{L}}^{\prime}\left(\boldsymbol{a}_{\mathrm{L}}\right) & \text { else }\end{cases}
$$

- update weights

$$
\boldsymbol{W}_{\ell} \leftarrow \boldsymbol{W}_{\ell}-\eta \frac{\partial F_{n}}{\partial \boldsymbol{W}_{\ell}}=\boldsymbol{W}_{\ell}-\eta \frac{\partial F_{n}}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}}
$$

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize $\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}$ randomly. Repeat:
(1) randomly pick one data point $n \in[\mathrm{~N}]$
(2) forward propagation: for each layer $\ell=1, \ldots, L$

- compute $\boldsymbol{a}_{\ell}=\boldsymbol{W}_{\ell} \boldsymbol{o}_{\ell-1}$ and $\boldsymbol{o}_{\ell}=\boldsymbol{h}_{\ell}\left(\boldsymbol{a}_{\ell}\right)$
(3) backward propagation: for each $\ell=L, \ldots, 1$
- compute

$$
\frac{\partial F_{n}}{\partial \boldsymbol{a}_{\ell}}= \begin{cases}\left(\boldsymbol{W}_{\ell+1}^{\mathrm{T}} \frac{\partial F_{n}}{\partial \boldsymbol{a}_{\ell+1}}\right) \circ \boldsymbol{h}_{\ell}^{\prime}\left(\boldsymbol{a}_{\ell}\right) & \text { if } \ell<\mathrm{L} \\ 2\left(\boldsymbol{h}_{\mathrm{L}}\left(\boldsymbol{a}_{\mathrm{L}}\right)-\boldsymbol{y}_{n}\right) \circ \boldsymbol{h}_{\mathrm{L}}^{\prime}\left(\boldsymbol{a}_{\mathrm{L}}\right) & \text { else }\end{cases}
$$

- update weights

$$
\boldsymbol{W}_{\ell} \leftarrow \boldsymbol{W}_{\ell}-\eta \frac{\partial F_{n}}{\partial \boldsymbol{W}_{\ell}}=\boldsymbol{W}_{\ell}-\eta \frac{\partial F_{n}}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}}
$$

(Important: should W_{ℓ} be overwritten immediately in the last step?)

More tricks to optimize neural nets

Many variants based on Backprop

More tricks to optimize neural nets

Many variants based on Backprop

- mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64, 128, etc.)

More tricks to optimize neural nets

Many variants based on Backprop

- mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64, 128, etc.)
- batch normalization: normalize the inputs of each neuron over the mini-batch (to zero-mean and one-variance; c.f. Lec 1)

More tricks to optimize neural nets

Many variants based on Backprop

- mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64, 128, etc.)
- batch normalization: normalize the inputs of each neuron over the mini-batch (to zero-mean and one-variance; c.f. Lec 1)
- momentum: make use of previous gradients (taking inspiration from physics)

SGD with momentum (a simple version)

Initialize \boldsymbol{w}_{0} and velocity $\boldsymbol{v}=\mathbf{0}$
For $t=1,2, \ldots$.

- form a stochastic gradient \boldsymbol{g}_{t}
- update velocity $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v}+\boldsymbol{g}_{t}$ for some discount factor $\alpha \in(0,1)$
- update weight $\boldsymbol{w}_{t} \leftarrow \boldsymbol{w}_{t-1}-\eta \boldsymbol{v}$

SGD with momentum (a simple version)

Initialize \boldsymbol{w}_{0} and velocity $\boldsymbol{v}=\mathbf{0}$
For $t=1,2, \ldots$.

- form a stochastic gradient \boldsymbol{g}_{t}
- update velocity $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v}+\boldsymbol{g}_{t}$ for some discount factor $\alpha \in(0,1)$
- update weight $\boldsymbol{w}_{t} \leftarrow \boldsymbol{w}_{t-1}-\eta \boldsymbol{v}$

Updates for first few rounds:

- $\boldsymbol{w}_{1}=\boldsymbol{w}_{0}-\eta \boldsymbol{g}_{1}$
- $\boldsymbol{w}_{2}=\boldsymbol{w}_{1}-\alpha \eta \boldsymbol{g}_{1}-\eta \boldsymbol{g}_{2}$
- $\boldsymbol{w}_{3}=\boldsymbol{w}_{2}-\alpha^{2} \eta \boldsymbol{g}_{1}-\alpha \eta \boldsymbol{g}_{2}-\eta \boldsymbol{g}_{3}$
- ...

Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

- data augmentation
- regularization
- dropout
- early stopping
- . .

Data augmentation

Data: the more the better. How do we get more data?

Data augmentation

Data: the more the better. How do we get more data?
Exploit prior knowledge to add more training data

Affine
Distortion
 flip

Noise
Elastic Deformation

Hue Shift

Regularization

L2 regularization: minimize

$$
F^{\prime}\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)=F\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)+\lambda \sum_{\ell=1}^{\mathrm{L}}\left\|\boldsymbol{W}_{\ell}\right\|_{2}^{2}
$$

Regularization

L2 regularization: minimize

$$
F^{\prime}\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)=F\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)+\lambda \sum_{\ell=1}^{\mathrm{L}}\left\|\boldsymbol{W}_{\ell}\right\|_{2}^{2}
$$

Simple change to the gradient:

$$
\frac{\partial F^{\prime}}{\partial w_{i j}}=\frac{\partial F}{\partial w_{i j}}+2 \lambda w_{i j}
$$

Regularization

L2 regularization: minimize

$$
F^{\prime}\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)=F\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\mathrm{L}}\right)+\lambda \sum_{\ell=1}^{\mathrm{L}}\left\|\boldsymbol{W}_{\ell}\right\|_{2}^{2}
$$

Simple change to the gradient:

$$
\frac{\partial F^{\prime}}{\partial w_{i j}}=\frac{\partial F}{\partial w_{i j}}+2 \lambda w_{i j}
$$

Introduce weight decaying effect

Dropout

Independently delete each neuron with a fixed probability (say 0.5), during each iteration of Backprop (only for training, not for testing)

Very effective, makes training faster as well

Early stopping

Stop training when the performance on validation set stops improving

Conclusions for neural nets

Deep neural networks

- are hugely popular, achieving best performance on many problems

Conclusions for neural nets

Deep neural networks

- are hugely popular, achieving best performance on many problems
- do need a lot of data to work well

Conclusions for neural nets

Deep neural networks

- are hugely popular, achieving best performance on many problems
- do need a lot of data to work well
- take a lot of time to train (need GPUs for massive parallel computing)

Conclusions for neural nets

Deep neural networks

- are hugely popular, achieving best performance on many problems
- do need a lot of data to work well
- take a lot of time to train (need GPUs for massive parallel computing)
- take some work to select architecture and hyperparameters

Conclusions for neural nets

Deep neural networks

- are hugely popular, achieving best performance on many problems
- do need a lot of data to work well
- take a lot of time to train (need GPUs for massive parallel computing)
- take some work to select architecture and hyperparameters
- are still not well understood in theory

