CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo

U of Southern California

Sep 16, 2021

1/51

Administration

HW1 is being graded. Will discuss solutions today.

HW2 will be released after this lecture. Due on 9/28.

2 /51

Outline

© Review of Last Lecture

© Muilticlass Classification

© Neural Nets

3/51

Outline

© Review of Last Lecture

4 /51

Review of Last Lecture

Linear classifiers

Linear models for binary classification:
Step 1. Model is the set of separating hyperplanes

F={f(z) =sgn(w'x) | w e R}

5/ 51

Review of Last Lecture

Linear classifiers

Step 2. Pick the surrogate loss

. 2
N
N\t
\\
N
° Lperceptron(2) = max{0, —z} (used in Perceptron)
° hinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss ogistic(2) = log(1 +exp(—z)) (used in logistic regression)

6 /51

Review of Last Lecture

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

w” = argmin F(w) = argmin — Z ((ypwTx,)

weRP weRP
using
e GD: w4+ w—nVEF(w)
e SGD: w + w — nVF(w) (E[VF(w)] = VF(w))

o Newton: w <+ w — (V2F(w))_1 VF(w)

751

Convergence guarantees of GD/SGD

@ GD/SGD converges to a stationary point

8 /51

Convergence guarantees of GD/SGD

@ GD/SGD converges to a stationary point

@ for convex objectives, this is all we need

8 /51

Review of Last Lecture

Convergence guarantees of GD/SGD

@ GD/SGD converges to a stationary point
o for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

“good” saddle points “bad” saddle points

8 /51

Review of Last Lecture

Perceptron and logistic regression
Initialize w = 0 or randomly.

Repeat:
@ pick a data point x,, uniformly at random (common trick for SGD)

9 /51

Review of Last Lecture

Perceptron and logistic regression
Initialize w = 0 or randomly.

Repeat:
@ pick a data point x,, uniformly at random (common trick for SGD)
@ update parameter:

w — w -+ H[yanmn < O]ynwn (Per.ce.ptron) .
no(—ynw Ty) ynxn (logistic regression)

9 /51

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

N N
w* = argmin Z €|ogistic(yanmn) = argmax H P(yy | Tn;w)
w n=1 w n=1

where
1

. — Tr) = ___
Ply | @iw) = olyw’e) = ——

0.9)
0.8]
0.7]
0.6
0.5
0.4]
0.3]
0.2]
0.1

10 / 51

Outline

© Multiclass Classification
@ Multinomial logistic regression
@ Reduction to binary classification

11 /51

Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

12 / 51

Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)

12 / 51

Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.

12 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

13 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwfz <0

13 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

1 ifwTxz>0
2 ifwfz <0

f(z)

can be written as
fla) = 1 if wim > w%ax
2 fwyx >wizx

for any wi,ws s.t. w = w; — wq

13 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwfz <0

can be written as

T

1 ifwle>wlx
2 ifwiz>wix

— argmax wy «
ke{1,2}

for any wi,ws s.t. w = w; — wq

13 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwle <0
can be written as

T

1 ifwle>wlx
2 ifwiz>wix

— argmax wy «
ke{1,2}

for any wi,ws s.t. w = w; — wq
Think of w,?ac as a score for class k.

13 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

- @ Blue class:
{z:wTz >0}
1] ° :
{x:wrz <0}

14 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

£ g

I
—~
les
ool
‘ SN—
W=

= wp —

@ Blue class:
{x: 1 = argmax, wlx}

° ;
{x : 2 = argmax;, w] =}

14 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w1 = (l*

)

~_] @ Blue class:

{x : 1 = argmax, wlx}
° ;
{z : 2 = argmax;, wi z}

14 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

@ Blue class:
T~] {x: 1 = argmax;, w) =}
° ;
1 1 {x : 2 = argmax, wlx}
° :
{x: 3 = argmax;, w; =}

15 / 51

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

16 / 51

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

f

f(x) = argmax wix | wy,..., wc € RP
ke[C]

f(x) = argmax (W), | W e R*P
ke[C]

16 / 51

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(xz) = argmax wix |w,..., wc € RP
kelC]

= { f(x) = argmax (Wax), | W € RSP
ke[C]

Step 2: How do we generalize perceptron/hinge/logistic loss?

16 / 51

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(xz) = argmax wix |w,..., wc € RP
kelC]

= { f(x) = argmax (Wax), | W € RSP
ke[C]

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

16 / 51

Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T) _ 1 B ew;rm

T
_ wix

—wTe wie wlx e
1+e eWi® + W2

Ply=1|z;w) =0c(w

17 / 51

Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T
1 e ® T
P(y:1|w;w):a(wT)= Ty, = T T < et
1+67waz €w1w+€w2w
Naturally, for multiclass:
eWr® T
Ply=k|xz;W) = = ua ox ek
kec) € ¥

17 / 51

Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T
1 e ® T
P(y:1|w;w):a(wT)= T, = T T ocel®
1+67wm €w1w+€w2w
Naturally, for multiclass:
ewgw me
Ply=k|aW) = ————_ xe’
ke[€ ¥

This is called the softmax function.

17 / 51

AT e
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N

N N

PW) =[] Blyn | 2 W) =]

'lUTw
ne=1 a1 Dkelc) €T

T
eWyn Tn

18 / 51

AT e
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

18 / 51

AT e
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkewqemnk) Zln 1+Zewk Wy,) Te,

Y
" k#yn

18 / 51

AT e
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkewqemnk) Zln 1+Zewk Wy,) Te,

Y
" k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

18 / 51

AT e
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkewqemnk) Zln 1+Zewk Wy,) Te,

Y
" k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

18 / 51

TG e e
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

19 / 51

TG e e
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

19 / 51

Multinomial logistic regression
Step 3: Optimization
Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If & # yn:

e(wk —Wyp,)Tm"

ngFn(W) = 1+ Zk,?éyn e(wk/—wyn)Tmn

T
L

19 / 51

Multinomial logistic regression
Step 3: Optimization
Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If & # yn:

e(wk —Wyp,)Tm"

T g, T

Vur Fa(W) zl =Pk |z, W)z!

n

19 / 51

TG e e
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If & # yn:
(wk_wyn)Tm”
e
F (W) = T —Pk| ap; W)t

ng W) L4+ sy e(Wy —wy,)T Tn Tn (k| @n; W)a,

else:
— Zk’ N e(wk/ _wyn)Tw"

V. Fu(W) = (e)a:T

1+ Zk’?ﬁy e(wk/_wyn)Tw" "

19 / 51

TG e e
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If & # yn:
(wk_wyn)Tmn
e
F (W) = T —Pk| ap; W)t

ng W) L4+ sy e(Wy —wy,)T Tn Tn (k| @ W),

else:
— Zk’ . e(wk/ _wyn)Tw"

Veur Fn(W) = (7y)xz = (P(yn | zn; W) — 1) z;)

1+ Zk’#y e(wyr—wy,)Tz

19 / 51

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

P(y:1|mn§w)
W< W-—n P(y:yn‘mn;w)_l

Ply=C|ax,;, W)

Bl

20 / 51

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|zn; W)

Bl

W< W-—n P(y:yn‘mn;w)_l r
Ply=C|ax,;, W)

Think about why the algorithm makes sense intuitively.

20 / 51

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wgw

21 /51

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wgw

o make a randomized prediction according to P(k | &; W) o e@r ®

21 /51

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wgw

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

21 /51

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wgw

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy | 1+ Z e(wi—wy)T

k#y

21 /51

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wgw

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy | 1+ Z e(wi—wy)T

k#y

@ randomized
E[I[f(x) # y]]

21/ 51

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wgw

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy | 1+ Z (Wi —wy) e
k#y

@ randomized
EIlf(x) #yl] =1-P(y |z W)

21/ 51

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wgw

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy | 1+ Z (Wi —wy) e
k#y

@ randomized

E[l[f(x) #yll =1-P(y|z;W) < —InP(y | z; W)

21/ 51

Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

22 / 51

Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

22 / 51

Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

one-versus-all (one-versus-rest, one-against-all, etc.)

one-versus-one (all-versus-all, etc.)

Error-Correcting Output Codes (ECOC)

tree-based reduction

22 / 51

Multiclass Classification Reduction to binary classification

One-versus-all (OVA) (picture credit: link)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

23 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-all (OVA) (picture credit: link)
Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],
@ relabel examples with class k as +1, and all others as —1

@ train a binary classifier hj using this new dataset

23 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],

(picture credit: link)

@ relabel examples with class k as +1, and all others as —1
@ train a binary classifier hj using this new dataset
[| |
X1 X1 X1 X1 X1
x N X2 X2 X2 X2
X3 = X3 X3 X3 X3
X4 X4 X4 X4 X4
x; W X5 X5 X5 X5
hy ho h3 hy

23 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x

@ ask each hy: does this belong to class k7 (i.e. hi(x))

24 / 51

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all £'s s.t. hy(x) = +1.

24 / 51

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all £'s s.t. hy(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.

24 / 51

Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".

25 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)
Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k'),
@ relabel examples with class k as +1 and examples with class &’ as —1
@ discard all other examples

e train a binary classifier i ;) using this new dataset

25 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

(picture credit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k'),

@ relabel examples with class k as +1 and examples with class &’ as —1

@ discard all other examples

e train a binary classifier i ;) using this new dataset

M vs. Hvs. B | Hvs. VS. M vs. M vs.
X1 X1 X1 X1
X2 X2 X2+ X2 +
X3 X3 X3+ | X3
X4 X4 X4 X4
X5 X5 4+ | x5 + X5 +

3 3 ! 4 \ I
h(1-2) h(l,:}) ’1(3,4) h(4,2) h(m) h(:s.:))

25 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x

e ask each classifier (3 1) to vote for either class £ or K

26 / 51

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class £ or K

@ predict the class with the most votes (break tie in some way)

26 / 51

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class £ or K

@ predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

26 / 51

Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC) (picture credit: link)

Idea: based on a code M € {—1,+1}°*L, train L binary classifiers to
learn “is bit b on or off".

M|[1 2 3 4 5

m |+ + +
+ + +

m |+ +

+ + + +

27 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
Error-correcting output codes (ECOC)

Idea: based on a code M € {—1,+1}*L, train L binary

learn "“is bit b on or off".
Training: for each bit b € [L]

(picture credit: link)

classifiers to

M|1 2 3 5
o relabel example x,, as M, "+ + +
+ -
@ train a binary classifier h; using m|+ +
this new dataset. |+ + +
1 2 3 4 5
X1 X1 X1 X1 +ix1 +x
xo M X2 + | X2 X2 X2 X2
X3 = || x3 + | X3 xXx3 + | x3 +|X3
X4 X4 X4 X4 + | Xa + | Xa
x5 M X5 + | X5 X5 + | Xs X5
U U U U U
h ho hs hy hs

27 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x

e compute the predicted code ¢ = (hi(x),...,h (x))T

28 / 51

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x

e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

28 / 51

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M?

28 / 51

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M?

@ the more dissimilar the codes, the more robust

28 / 51

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M?

@ the more dissimilar the codes, the more robust

e if any two codes are d bits away, then prediction can tolerate about d/2
errors

28 / 51

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M?

@ the more dissimilar the codes, the more robust

e if any two codes are d bits away, then prediction can tolerate about d/2
errors

@ random code is often a good choice

28 / 51

Reduction to binary classification
Tree based method

Idea: train &~ C binary classifiers to learn “belongs to which half?".

29 / 51

Reduction to binary classification
Tree based method

Idea: train = C binary classifiers to learn "belongs to which half?".

Training: see pictures

.. | G | S h]_
X1 X1+ | x1 . N
X2 X2 X2 +
X3 X3 X3 \
X4 X4+ | X4
X5 X5 + | x5 h2 h3
b U’ U(| B | IS
hy ho h3

29 / 51

Multiclass Classification Reduction to binary classification

Tree based method

Idea: train = C binary classifiers to learn "belongs to which half?".

Training: see pictures

.. s | S h]_
X1 X1+ | x | . |
xo | X2 Xy +
X3 = || x3 X3 \
X4 X4+ | X4
X5 | X5 + X5 h2 h3
U U’ U(| B | IS
h ha h3

Prediction is also natural,

29 / 51

Reduction to binary classification
Tree based method

Idea: train = C binary classifiers to learn "belongs to which half?".

Training: see pictures

.. s | S h]_
X1 X1+ | x | . |
xo | X2 Xy +
X3 = || x3 X3 \
X4 X4+ | X4
x; M X5 + | x5 + h2 h3
U U’ U(| B | IS
h ha h3

Prediction is also natural, but is very fast! (think ImageNet where
C =~ 20K)

29 / 51

Multiclass Classification Reduction to binary classification

Comparisons

training

Reduction .
time

prediction
time

remark

training time: how many

training points are created

prediction time: how many

binary predictions are made

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra.mmg prec.llctlon remark
time time
OvA

training time: how many

training points are created

prediction time: how many

binary predictions are made

X1
X2
X3
X4
Xs5

X1
X2
X3
X4
Xs5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra.mmg prec.llctlon remark
time time
OvA CN

training time: how many

training points are created

prediction time: how many

binary predictions are made

X1
X2
X3
X4
Xs5

X1
X2
X3
X4
Xs5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra.mmg prec.llctlon remark
time time
OvA CN C

training time: how many

training points are created

prediction time: how many

binary predictions are made

X1
X2
X3
X4
Xs5

X1
X2
X3
X4
Xs5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra.mmg prec.llctlon remark
time time
OvA CN C not robust

training time: how many

training points are created

prediction time: how many

binary predictions are made

X1
X2
X3
X4
Xs5

X1
X2
X3
X4
Xs5

X1
X2
X3
X4

+ | x5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons
. trainin rediction
Reduction . g P . remark
time time

OvA CN C not robust

OovO
training time: hOW many | mvs Hvs. W | mvs. vs. s, Hvs
training points are created S U PSS VS (VR

- - .) xs W X5 + | X5 X5

prediction time: how many . ' . .

binary predictions are made faa

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons
- . . dicti
Reduction tra-mmg pre _|c ron remark
time time
OvA CN C not robust
OvO (C—1)N
training time: hOW many [| = vs. Hys W | Wvs. vs. s, Hys
training points are created S U PSS VS (VR
- - .) xs W X5 + | X5 X5
prediction time: how many . ' . .

binary predictions are made faa

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra-mmg prec_llctlon remark
time time

OvA CN C not robust

OvO (C—1)N 0(C?)
training time: hOW many | mvs HMvs. W | Wvs. vs. | mvs.m|mvs
training points are created - S D VRS I
prediction time: how many . SR ' o |

binary predictions are made

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra-mmg prec_llctlon remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error

training time: how many

training points are created

prediction time: how many

binary predictions are made

H M vs. Mvs B | Hvs. VS. M vs. M vs.
X1 X1 X1 X1
x M X2 X2 X2
X3 = X3 X3 X3
X4 X4 X4 Xa
xs M X5 t X5 X5
¥

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra-ining prec_liction remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1
X2
X3
X4
X5

X1

| X2
= | x3

X4

| X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra-ining prec_liction remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC LN

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1
X2
X3
X4
X5

X1

| X2
= | x3

X4

| X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra-ining prec_liction remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC LN L

training time: how many

training points are created

prediction time: how many
binary predictions are made

X1
X2
X3
X4
X5

X1

| X2
= | x3

X4

| X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

X1
X2
X3
X4
X5

Multiclass Classification Reduction to binary classification

Comparisons

. trainin rediction
Reduction . & P . remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
. . . [1 2 | 3 | 4 5
training time: how many o PR B A T [
.. . x; W X2 t+x +|x X2 X2
training points are created s B o= +lx o +x a4
Xa Xq Xq X4 + | x4 + | xa
prediction time: how many x o) > . Xsu‘v S
binary predictions are made hy hy h he hs

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra-ining prec_liction remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree

training time: how many

training points are created

prediction time: how many

binary predictions are made

h1
[.|
/ \
ho h3
m - W -

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra-ining prec_liction remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logy O)N)

training time: how many

training points are created

prediction time: how many

binary predictions are made

h1
[.|
/ \
ho h3
m - W -

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra-ining prec_liction remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logs CO)N) | O(log, C)

training time: how many

training points are created

prediction time: how many
binary predictions are made

h1
[.|
/ \
ho h3
m - W -

30 / 51

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra-ining prec_liction remark
time time
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logs CO)N) | O(log, C) good for “extreme classification”

training time: how many

training points are created

prediction time: how many
binary predictions are made

h1
[.|
/ \
ho h3
m - W -

30 / 51

Outline

© Neural Nets
@ Definition
@ Backpropagation
@ Preventing overfitting

31 /51

Linear models are not always adequate

it o + 20
15| o Ry Fat
EAAEE R A 15 .
oty Iatm PR o 3 . .
' P A s by .
TS e 10| . .
. +t *, + 4 -
o PR ol B A A 03| " el
+ + + 0 " anm
et weele & 0| .o e]
T LAY . B aum .
o - . s 8
B I e o . &
At L Ol gt s ® .
Wt a e R g 10|
B e S S YEowe oy M .
15 . .
\ E
05 0 0.5 1 15 R Y v 00 05 0 15 20

We can use a nonlinear mapping as discussed:

¢(x):x € RP — z ¢ RM

32 /51

Linear models are not always adequate

e + 4t i f 20
B I N g R
et T gl g s
L S S R R R B
P B R Rty 1
CL R * .
o PR R B AR A S 03| ay
. .
0T el B o o
T S IS P . PLL]
o I e g os| s = -
sy 3¥ WA Gy - -
R F e .
. Last R R 19
b % e
s
) E
05 o 05 1 15 270 -15 -10 -05 00 05] 15 20

We can use a nonlinear mapping as discussed:

¢(x):x € RP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

32 /51

Linear models are not always adequate

18] il pr» itt‘% 3 * *f#\’ 0
EAREET AR AR 15
LR GO R 5
ho TR e 1
sl g R iscdl
CLE L Y .
o PR R B AR A S 03| ay
+ + + N " s
st sl B 00] 3
R ML S e e
o W d oy e s e -0.5] . L r
O P .
&1 N ~
. Eorpttgy BT R 19
b % e
s
) E
05 o 05 1 15 2—0 -15 -10 -05 00 05 10 15 20

We can use a nonlinear mapping as discussed:
¢(x):x € RP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually

learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

32 /51

Linear model as a one-layer neural net

h(a) = a for linear model

33 /51

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use
Rectified Linear Unit (ReLU): h(a) = max{0,a}
sigmoid function: h(a) =

TanH: h(a) = &=

ett+e=®

1
I+e—@

a

many more

33 /51

More output nodes

o=h(Wax)

w

W e R¥3, b R4 - RY so h(a) = (hi(a1), ha(az), hs(as), ha(as))

34 /51

More output nodes

o=h(Wax)

w

W e R¥3, b R4 - RY so h(a) = (hi(a1), ha(az), hs(as), ha(as))

Can think of this as a nonlinear mapping: ¢(x) = h(Wx)

34 /51

Definition

More layers

Becomes a network:

35 / 51

More layers

Becomes a network:

Py each node iS ca | |ed a neuron input layer hidden layer 1 hidden layer 2 output layer

35 / 51

More layers

Becomes a network:

@ each node is called a neuron

@ h is called the activation function
o can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

35 / 51

More layers

Becomes a network:

o eaCh node iS ca | |ed a neuron input layer hidden layer 1 hidden layer 2 output layer

@ h is called the activation function
o can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

35 / 51

More layers

Becomes a network:

° each node iS ca | |ed a neuron input layer hidden layer 1 hidden layer 2 output layer

@ h is called the activation function
o can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

@ deep neural nets can have many layers and millions of parameters

35 / 51

More layers

Becomes a network:

° each node iS called a neuron input layer hidden layer 1 hidden layer 2 output layer
@ h is called the activation function
o can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a
o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
@ deep neural nets can have many layers and millions of parameters
@ this is a feedforward, fully connected neural net, there are many

variants (convolutional nets, residual nets, recurrent nets, etc.)

35 / 51

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

36 / 51

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

36 / 51

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

36 / 51

Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrhi 1 (Wp_1---hy (Wiz)))

37 /51

Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrhi 1 (Wp_1---hy (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input x, define recursively

o) = &, ay = WgOg_l, Oy — h,g(ag) (f = 1, PN L)
where
o W, € RPexDPe-1 is the weights between layer £ — 1 and /¢
e Dy =D,Dy,...,DL are numbers of neurons at each layer
e ay € RP! is input to layer ¢
e oy € RP¢ is output of layer ¢
e hy: RPr — RDP¢ js activation functions at layer £

37 /51

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N

1
F(Wl,...,WL):NZFn(Wl,...,WL)

n=1

38 / 51

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
1
F(Wy,...,W) = NZFn(Wl,...,WL)
n=1

where

I f(zn) — ynll3 for regression
F,(Wy,..., W) = I

(W1 L {ln (1 + D ktyn ef(w”)k*f(w")yn> for classification

38 / 51

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

39 / 51

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

39 / 51

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _0fog
ow 0g Ow

39 / 51

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:
e for a composite function f(g(w))
of _9f9g
ow 0g Ow

e for a composite function f(g1(w),...,ga(w))

f _ <~ 0f dgi
ow

i=1 dgi Ow

39 / 51

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _0fog
ow 0g Ow

e for a composite function f(g1(w),...,ga(w))

of 0g;
Z dg; Ow

the simplest example f(g1 (1), g2(w)) = g1 (w)ga(w)

39 / 51

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

40 / 51

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

OF, OF, Oa;
(911]@']' N 8ai Gwij

40 / 51

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

OF, _ 0F, da; _ OF, d(wijo))
Owij Oa; Qwi; da; Owi

40 / 51

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

8Fn o 8Fn 8@1- o 8Fn 8(wijoj) . 8Fn04
(911]@']' N 8ai Gwij - Bai 8’(1)1‘]' - Bai J

40 / 51

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

8Fn o 8Fn 8@1- o 8Fn 8(wijoj) . 8Fn

(911]@']' N 8ai Gwij Bai 8’(1)1‘]' - Bai Oj
OF, OF, do,
8ai N 802- 8ai

40 / 51

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

8Fn o 8Fn 8@1- o 8Fn 8(wijoj) . 8Fn04
(911]@']' N 8ai Gwij - Bai 8’(1)1‘]' - Bai J

oF, 0F,do; Z OF,, Oay,)
da; Do; da; Oay, do; i(ai

40 / 51

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

8Fn o 8Fn 8@1- o 8Fn 8(wijoj) . 8Fn04
(911]@']' N 8ai Gwij - Bai 8’(1)1‘]' - Bai J

oF, 0F, do; OF,, Oay, B OF, \.,
oa; N do; Oa; <Z Oday, Do;) a;) = (- day, wkl) hi(al)

40 / 51

Computing the derivative

Adding the subscript for layer:

OF, OF,
Owyi; Oag;

i | hpi(a
e — (0 g2 e ot

41 / 51

Computing the derivative

Adding the subscript for layer:

oF, _ OF,
awmj 8%1-

i | heilaei
e — (0 g2 e ot

For the last layer, for square loss

OF, _ O(hLi(aLs) — yni)?
Oay ; day ;

O¢—1,5

41 / 51

Computing the derivative

Adding the subscript for layer:

OF, OF,
Owyi; Oag;

i | hpi(a
e — (0 g2 e ot

For the last layer, for square loss

OF, _ O(hii(aci) — yni)® ,
da day ; (hri(aLi) — yni)hy (L)

41/ 51

Computing the derivative

Adding the subscript for layer:

OF, OF,
Owyi; Oag;

i | hpi(a
e — (0 g2 e ot

For the last layer, for square loss

OF, _ OhilaLs) ~ o) ,
da day ; (hri(aLi) — yni)hy ;(aLs)

O¢—1,5

Exercise: try to do it for logistic loss yourself.

41/ 51

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

OF, 8FnOT
oW, da, 1

c RDZXDZ—I

OF, _ <W£1 8?511) ohj(ar) ifl<L
Oay 2(hi(aL) —yn) o hi(aL) else

where v1 0 v = (v11V21, -+ , U1pV2p) IS the element-wise product (a.k.a.
Hadamard product).

Verify yourself!

42 / 51

T
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly.

43 / 51

T
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:
@ randomly pick one data point n € [N]

43 / 51

T
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer £ =1,...,L
o compute ay = Wy0p_1 and o, = hy(ay) (00 = x,)

43 / 51

T
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer £ =1,...,L

o compute ay = Wy0p_1 and o, = hy(ay) (00 = x,)
© backward propagation: foreach /= 1L,...,1

e compute

Zn dast1
day 2(hi(aL) —yn) o h{(aL) else

OF, {(Wg;l 08)ohj(ar) fl<L
e update weights
OF, OF,

ow, ~ "V T5a, %

Wz%Wz*U

43 / 51

T
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]
@ forward propagation: for each layer £ =1,...,L
o compute ay = Wy0p_1 and o, = hy(ay) (00 = x,)

© backward propagation: foreach /= 1L,...,1
e compute

80,144_1
8(1@

oF, _ [(Whi 2)onja) ife<L
2(hi(aL) —yn) o h{(aL) else

e update weights

oF, 0F,

oW, =We— 7767(”04—1
(Important: should W, be overwritten immediately in the last step?)

Wz%Wz*U

43 / 51

More tricks to optimize neural nets

Many variants based on Backprop

44 / 51

More tricks to optimize neural nets

Many variants based on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

44 / 51

o
More tricks to optimize neural nets

Many variants based on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

@ batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

44 / 51

More tricks to optimize neural nets

Many variants based on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

@ batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

e momentum: make use of previous gradients (taking inspiration from
physics)

44 / 51

SGD with momentum (a simple version)

Initialize wg and velocity v =0
Fort=1,2,...
@ form a stochastic gradient g;
@ update velocity v « awv + g; for some discount factor « € (0,1)

@ update weight wy + w1 — nv

45 / 51

SGD with momentum (a simple version)

Initialize wg and velocity v =0
Fort=1,2,...
@ form a stochastic gradient g;
@ update velocity v « awv + g; for some discount factor « € (0,1)

@ update weight wy + w1 — nv

Updates for first few rounds:
¢ w; = wo —Ng1
® w2 = w1 —ang: — 192

® ws =w2—0627791 — angz —ngs
° o« e

45 / 51

s
Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout

early stopping

46 / 51

Data augmentation

Data: the more the better. How do we get more data?

47 / 51

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine . Elastic
Distortion Noise Deformation

R on X [o g

Horizontal Rando
flip Translation

47 / 51

Regularization

L2 regularization: minimize

L
F(Wi,..., W) = F(Wi,.... W) + A Y Wi}
/=1

48 / 51

Regularization

L2 regularization: minimize
L
F(Wi,..., W) = FW,..., W) + A S [Will3

Simple change to the gradient:

OF' oF
8101‘] C{)w”

+ 2 w;;

48 / 51

Regularization

L2 regularization: minimize

L
F(Wi,..., W) = F(Wi,.... W) + A Y Wi}

Simple change to the gradient:

OF' oF
8101‘] C{)w”

+ 2 w;;

Introduce weight decaying effect

48 / 51

Neural Nets Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

PAVAY v !"'.

WL Kd f.‘.

'.‘oxtzvf;»‘.'.‘oztzvz. s

*'.ffs"\'.:'f:l"
LAAAN LARLA)

ORS00 /

l‘[’“\\ WOF
ARV
’A..A.

Very effective, makes training faster as well

49 / 51

s
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping

T T T
e—e Training set loss

— Validation set loss [

50 100 150 200 250
Time (epochs)

50 / 51

Conclusions for neural nets

Deep neural networks

@ are hugely popular, achieving best performance on many problems

51 / 51

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems

@ do need a lot of data to work well

51 / 51

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well

@ take a /ot of time to train (need GPUs for massive parallel computing)

51 / 51

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)

@ take some work to select architecture and hyperparameters

51 / 51

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)
@ take some work to select architecture and hyperparameters

@ are still not well understood in theory

51 / 51

	Review of Last Lecture
	Multiclass Classification
	Neural Nets

