
CSE 105
THEORY OF COMPUTATION

Spring 2018

http://cseweb.ucsd.edu/classes/sp18/cse105-ab/

http://cseweb.ucsd.edu/classes/sp18/cse105-ab/

Today's learning goals SipserCh 5.1, 5.3

• Define and explain core examples of computational

problems, include A**, E**, EQ**, HALTTM (for ** either DFA

or TM)

• Explain what it means for one problem to reduce to

another

• Define computable functions, and use them to give

mapping reductions between computational problems.

Decidable Undecidable

but

recognizable

Undecidable

and

unrecognizable

ADFA ATM ATM
C

EDFA

EQDFA

Give algorithm! Diagonalization

Idea Sipser pp. 215-216

If problem X is no harder than problem Y

…and if Y is decidable

…then X must also be decidable

If problem X is no harder than problem Y

…and if X is undecidable

…then Y must also be undecidable

“Problem X is no harder than problem Y” means

“Can convert questions about membership in X to questions about
membership in Y”

Mapping reduction Sipserp. 235

Problem A is mapping reducible to problem B means

there is a computable function f: Σ* → Σ* such that for all

strings x in Σ*

x is in A iff f(x) is in B

Computable function?

A function f: Σ* → Σ* is computable iff there is some Turing

machine such that, for each x, on input x halts with exactly

f(x) followed by all blanks on the tape

Computable functions (aka maps)
Which of the following functions are computable?
A. The string x maps to the string xx.
B. The string <M> (where M is a TM) maps to <M’> where M’ is

the Turing machine that acts like M does, except that if M
tries to reject, M’ goes into a loop; strings that are not the
codes of TMs map to ε.

C. The string x maps to y, where x is the binary representation
of the number n and y is the binary representation of the
number 2n

D. All of the above.
E. None of the above.

The halting problem!

HALTTM = { <M,w> | M is a TM and M halts on input w}

ATM = { <M,w> | M is a TM and w is in L(M)}

How is HALTTM related to ATM ?

A. They're the same set.

B. HALTTM is a subset of ATM

C. ATM is a subset of HALTTM

D. They have the same type of elements but

no other relation.

E. I don't know.

The halting problem!

HALTTM = { <M,w> | M is a TM and M halts on input w}

ATM = { <M,w> | M is a TM and w is in L(M)}

But subset inclusion doesn't determine difficulty!

The halting problem!

HALTTM = { <M,w> | M is a TM and M halts on input w}

ATM = { <M,w> | M is a TM and w is in L(M)}

Goal: build function f: Σ* → Σ* such that for every string x,

x is in ATM iff f(x) is in HALTTM

Reducing ATM to HALTTM Sipser Example 5.24

Desired function by cases:

• If x = <M,w> and w is in L(M): map to <M’, w’> in HALTTM

• If x = <M,w> and w is not in L(M): map to <M’, w’> not in HALTTM

• If x ≠ <M,w> : map to some string not in HALTTM

Reducing ATM to HALTTM Sipser Example 5.24

Desired function by cases:

• If x = <M,w> and w is in L(M): map to <M’, w’> in HALTTM

• If x = <M,w> and w is not in L(M): map to <M’, w’> not in HALTTM

• If x ≠ <M,w> : map to some string not in HALTTM

Pick some specific string constant not in HALTTM

Reducing ATM to HALTTM Sipser Example 5.24

Define computable function:

F = “On input x:

1. Type-check whether x= <M,w> for some TM M, and string w. If not,

output constout .

2. …

3. …

4. …. ”
F is defined by high-

level description of TM:

each step must be

algorithmic!

Reducing ATM to HALTTM Sipser Example 5.24

Define computable function:

F = “On input x:

1. Type-check whether x= <M,w> for some TM M, and string w. If not,

output constout .

2. Simulate M on w.

3. If accepts, accept. If rejects, reject.

4. …. ”
F is defined by high-

level description of TM:

each step must be

algorithmic!

Reducing ATM to HALTTM Sipser Example 5.24

Define computable function:

F = “On input x:

1. Type-check whether x= <M,w> for some TM M, and string w. If not,

output constout .

2. Construct the following machine M’
M’= “On input x:

1. Run M on x.

2. If M accepts, accept.

3. If M rejects, enter a loop.”

3. Output <M’, w>”

F is defined by high-

level description of TM:

each step must be

algorithmic!

Reducing ATM to HALTTM Sipser Example 5.24

Check how function behaves by cases:

• If x = <M,w> and w is in L(M): map to <M’, w’> in HALTTM?

• If x = <M,w> and w is not in L(M): map to <M’, w’> not in HALTTM ?

• If x ≠ <M,w> : map to some string not in HALTTM ?

Other direction?
Goal: build function that f: Σ* → Σ* such that for every string

x,

x is in HALTTM iff f(x) is in ATM

What function should be used for f(x) in the reduction?
A. Use the function F from previous reduction

B. Use the inverse of the function F from previous reduction

C. Use a different computable function

D. Impossible to find a computable function that works!

Next time
Pre-class reading Example 5.24, Theorems 5.22

