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Today's learning goals Sipser Ch5.1,53

Define and explain core examples of computational
problems, include A.., E.., EQ., HALT,, (for ** either DFA
or TM)

Explain what it means for one problem to reduce to
another

Define computable functions, and use them to give
mapping reductions between computational problems.



Decidable Undecidable Undecidable
but and
recognizable unrecognizable

ADFA ATM ATMC

EDFA

EQDFA

Diagonalization

Give algorithm!
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I d e a Sipser pp. 215-216

If problem X is no harder than problem Y
...and if Y is decidable
...then X must also be decidable

If problem X is no harder than problem Y
...and if Xis undecidable
...then Y must also be undecidable

“Problem X is no harder than problem Y” means

“Can convert questlons about membership in X to questions about
membership in Y~



Mapping reduction Spserp. 225

Y<eAuwlS
Probler@s mappngﬁeducible to probleeans
there is a computable function f: 2* - 2* such that for all

strings X in 2*
X |s in A Iff f(x) IS In B

Computable functi
A function %5 A" | computable Iff there Is some Turing
machine such that; Tor each x, on input x halts with exactly
f(x) followed by all blanks on the tape



Computable functions (aka maps)

hich of the following functions are computable?
The string x maps to the string xx.
The string <M> (where M is a TM) maps to <M’> where M’ is
the Turing machine that acts like M does, except that if M
tries to reject, M’ goes into a loop; strings that are not the
codes of TMs map to .
The string x maps to y, where X is the binary representation

of the number n and y is the binary representation of the
number 2"

All of the above.
None of the above.



The halting problem!
HALT, ={<M,w>|Misa TM and M iInput w}

M 0\(«,\{\" v
Ay = { <M,w>‘| Misa TM and w is in L(M)}

How is HALT;,, related to A, ?

They're the same set.

HALT,, is a subset of A,

Is a subset of HALTy,

They have the same type of elements but
no other relation.

E. I don't know.
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The halting problem!

HALT;, ={<M,w>| M is a TM and M halts on input w}
Ay ={<Mw>|MisaTM and w is in L(M)}

But subset inclusion doesn't determine difficulty!

W\ X Ao on NVV“Y) \(MVC\NO(\?



The halting problem!

HALT;, ={<M,w>| M is a TM and M halts on input w}
Ay ={<Mw>|MisaTM and w is in L(M)}

Goal: build function f: 2* = 2* such that for every string x,
rx isinAn | iff - f(x) isin HALTY,

("\L)\[’\’w _redunces AT
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REdUCIﬂg AFM tO HALTTM Sipser Example 5.24

Desired function by cases: )
Aﬂ'\ )

If X = <M,w>and w is in L(M): map to <M’, w’> in HALT+,,

r--/If X = <M,w> and w is not in L(M): map to <M’, w’> not inlIiALTT,\,I

S

* If x # <M,w> : map to some string not in HALT,
—_— =

#;K'M foo? ™




RGdUClng AFM tO HALTTM Sipser Example 5.24

Desired function by cases:

and w is in L(M): map to <M’, w’> in HALT,

nd w is not in L(M): map to <M’, w’> not in HALT,

* If x # <M,w> : map to some string not in HALT,
Pick some specific string constant not in HALT ¢,
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RedUClﬂg AFM tO HALTTM Sipser Example 5.24

Define computable function:

F =“On input x:
1. Type-check whether x= <M,w> for some TM M, and string w. If not,
output const, -

F is defined by high-
level description of TM:

each step must be
algorithmic!
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REdUCIﬂg AFM tO HALTTM Sipser Example 5.24

Define computable function:

F =“On input x:
1. Type-check whether x= <M,w> for some TM M, and string w. If not,
output const,,

F is defined by high-
level description of TM:

each step must be
algorithmic!
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RGdUClng AFM tO HALTTM Sipser Example 5.24

Define computable function: Does M e ceep o

F =“On input x: l/
1. Type-check whether x= <M,vv:lfor some TM M, and string w. If not,

output const,,,
2. Construct the following machine@
M’= "On input x: | F is defined by high-
1 RunMonx. $Similace A level description of TM:

2. If M accepts, accept. each step must be
3. If M rejects, enter a loop.a— AL p .
algorithmic!

3. Output <M’, w=>"
M oy e € e,q‘\'/"(i}oé/ \so\m('«g\
LCN\) — L(M /) ld"'\‘(, M ’ Ay M\v ACC 4—@%/‘60?%}«—({.‘



RGdUClng AFM tO HALTTM Sipser Example 5.24

Check how function behaves by cases:

* If x = <M,w>and w.is in L(M): map to <M’, w'> in HALT;,,? AT,
so M SmRaS W\ on W atd Sirce Vacags @ M wil \Aos

* If x = <M,w> and w.is not in L(M): map to <M’, w'> not in HALT, ?
Se M/. . ant X M‘oo"ifci‘ek‘\"» n o , M7 ‘0°]$N“‘°

- = = -

SO FC)(): f VRV Q/\—\P\L—-(TM .
* If x # <M,w> : map to some string not in HALT;,, ?

tr XEPan H FQEHACT,



Other direction?
Goal: build function that f: 2* - 2* such that for every string

X, ——
(_xisin HALT, ) Iff f(x) 1S In Aq,

What function should be used for f(x) in the reduction?
A Use the function F from previous reduction
Use the inverse of the function F from previous reduction
C. )Use a different computable function
P( Impossible to find a computable function that works!
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Next time

Pre-class reading Example 5.24, Theorems 5.22



