
CSE 153
Design of Operating

Systems

Summer 2022

Lecture 14/15: Page Replacement Policies

2

Memory Management

! Memory management systems
u Physical and virtual addressing; address translation
u Techniques: Partitioning, paging, segmentation
u Page table size, TLBs, VM tricks

! Policies
u Page replacement algorithms (3)

3

Demand Paging (OS)
! We use demand paging (similar to other caches):

u Pages loaded from disk when referenced
u Pages may be evicted to disk when memory is full
u Page faults trigger paging operations

! What is the alternative to demand paging?
u Some kind of prefetching

! Lazy vs. aggressive policies in systems

4

Demand Paging (Process)
! Demand paging when a process first starts up
! When a process is created, it has

u A brand new page table with all valid bits off
u No pages in memory

! When the process starts executing
u Instructions fault on code and data pages
u Faulting stops when all necessary code and data pages are in

memory
u Only code and data needed by a process needs to be loaded
u This, of course, changes over time…

5

Page Replacement
! When a page fault occurs, the OS loads the faulted page

from disk into a page frame of memory

! At some point, the process has used all of the page
frames it is allowed to use
u This is likely (much) less than all of available memory

! When this happens, the OS must replace a page for each
page faulted in
u It must evict a page to free up a page frame
u Written back only if it is has been modified (i.e., “dirty”)!

Page replacement policy
! What we discussed so far (page faults, swap, page

table structures, etc…) is mechanisms

! Page replacement policy: determine which page to
remove when we need a victim

! Does it matter?
u Yes! Page faults are super expensive
u Getting the number down, can improve the performance of the

system significantly

6

Considerations
! Page replacement support has to be simple during

memory accesses
u They happen all the time, we cannot make that part slow

! But it can be complicated/expensive when a page fault
occurs – why?
u Reason 1: if we are successful, this will be rare
u Reason 2: when it happens we are paying the cost of I/O

» I/O is very slow: can afford to do some extra computation
» Worth it if we can save some future page faults

! What makes a good page replacement policy?

7

8

Locality to the Rescue
! Recall that virtual memory works because of locality

u Temporal and spatial
u Work at different scales: for cache, at a line level, for VM, at

page level, and even at larger scales

! All paging schemes depend on locality
u What happens if a program does not have locality?
u High cost of paging is acceptable, if infrequent
u Processes usually reference pages in localized patterns,

making paging practical

9

Evicting the Best Page
! Goal is to reduce the page fault rate
! The best page to evict is the one never touched again

u Will never fault on it

! Never is a long time, so picking the page closest to
“never” is the next best thing
u Evicting the page that won’t be used for the longest period of

time minimizes the number of page faults
u Proved by Belady

! We’re now going to survey various replacement
algorithms, starting with Belady’s

10

Belady’s Algorithm
! Belady’s algorithm

u Idea: Replace the page that will not be used for the longest
time in the future

u Optimal? How would you show?
u Problem: Have to predict the future

! Why is Belady’s useful then?
u Use it as a yardstick/upper bound
u Compare implementations of page replacement algorithms

with the optimal to gauge room for improvement
» If optimal is not much better, then algorithm is pretty good

u What’s a good lower bound?
» Random replacement is often the lower bound

11

First-In First-Out (FIFO)
! FIFO is an obvious algorithm and simple to implement

u Maintain a list of pages in order in which they were paged in
u On replacement, evict the one brought in longest time ago

! Why might this be good?
u Maybe the one brought in the longest ago is not being used

! Why might this be bad?
u Then again, maybe it’s not
u We don’t have any info to say one way or the other

! FIFO suffers from “Belady’s Anomaly”
u The fault rate might actually increase when the algorithm is

given more memory (very bad)

Heuristic: Least frequently
used

! Keep track of whether a page is accessed since the
last page fault
u Increment a counter for each page that has been referenced

when a page fault occurs
» Infrequent operation, so overhead is ok

u When page fault occurs, remove the page with the lowest
counter

» Least frequently used

! Thoughts?
u What if a page that used to be popular is no longer popular?

» Age counter (reduce its value over time)

12

Another heuristic – Not
Recently Used

! Keep track of
u whether a page has been referenced or not
u whether it has been updated or not (updated page called dirty)

! When a page fault occurs, pick a page that has not
been referenced to be victim
u Prefer that victim pages are not dirty

» If not dirty, we don’t have to save it back to swap

! Periodically reset all the reference bits

13

14

Least Recently Used (LRU)
! LRU uses reference information to make a more

informed replacement decision
u Idea: We can’t predict the future, but we can make a guess

based upon past experience
u On replacement, evict the page that has not been used for the

longest time in the past (Belady’s: future)
u When does LRU do well? When does LRU do poorly?

! Implementation
u To be perfect, need to time stamp every reference (or

maintain a stack) – much too costly
u So we need to approximate it

15

Approximating LRU
! LRU approximations use the PTE reference bit

u Keep a counter for each page

u At regular intervals, for every page do:
» If ref bit = 0, increment counter

» If ref bit = 1, zero the counter

» Zero the reference bit

u The counter will contain the number of intervals since the last
reference to the page

u The page with the largest counter is the least recently used

! Some architectures don’t have a reference bit
u Can simulate reference bit using the valid bit to induce faults

17

LRU Clock

! Builds on Not Recently Used (NRU) – Used by Unix
u Replace page that is “old enough”
u Arrange all of physical page frames in a big circle (clock)
u A clock hand is used to select a good LRU candidate

» Sweep through the pages in circular order like a clock
» If the ref bit is off, it hasn’t been used recently

" What is the minimum “age” if ref bit is off?
» If the ref bit is on, turn it off and go to next page

u Arm moves quickly when pages are needed
u Low overhead when plenty of memory
u If memory is large, “accuracy” of information degrades

» What does it degrade to?
» One fix: use two hands (leading erase hand, trailing select hand)

LRU Clock

18

P1: 1

P2: 1

P3: 1

P8: 0

P7: 0

P6: 0

P5: 1

P4: 0

P1: 0

P2: 0

P3: 0

P8: 1

P7: 0

P6: 0

P5: 1

P4: 0

Example: gcc Page Replace

19

Example: Belady’s Anomaly

20

Other ideas
! Victim buffer

u Add a buffer (death row!) we put a page on when we decide to
replace it

u Buffer is FIFO
u If you get accessed while on death row – clemency!
u If you are the oldest page on death row – replacement!

21

CSE 153 – Lecture 18/19 – Page Replacement 22

Fixed vs. Variable Space
! In a multiprogramming system, we need a way to

allocate memory to competing processes
! Problem: How to determine how much memory to give

to each process?
u Fixed space algorithms

» Each process is given a limit of pages it can use
» When it reaches the limit, it replaces from its own pages
» Local replacement

" Some processes may do well while others suffer
u Variable space algorithms

» Process’ set of pages grows and shrinks dynamically
» Global replacement

" One process can ruin it for the rest

23

Working Set Model
! A working set of a process is used to model the

dynamic locality of its memory usage
u Defined by Peter Denning in 60s

! Definition
u WS(t,w) = {set of pages P, such that every page in P was

referenced in the time interval (t, t-w)}
u t – time, w – working set window (measured in page refs)

! A page is in the working set (WS) only if it was
referenced in the last w references

24

Working Set Size
! The working set size is the number of pages in the

working set
u The number of pages referenced in the interval (t, t-w)

! The working set size changes with program locality
u During periods of poor locality, you reference more pages
u Within that period of time, the working set size is larger

! Intuitively, want the working set to be the set of pages
a process needs in memory to prevent heavy faulting
u Each process has a parameter w that determines a working

set with few faults
u Denning: Don’t run a process unless working set is in

memory

Example: gcc Working Set

25

26

Working Set Problems
! Problems

u How do we determine w?
u How do we know when the working set changes?

! Too hard to answer
u So, working set is not used in practice as a page replacement

algorithm
! However, it is still used as an abstraction

u The intuition is still valid
u When people ask, “How much memory does Firefox need?”,

they are in effect asking for the size of Firefox’s working set

27

Page Fault Frequency (PFF)
! Page Fault Frequency (PFF) is a variable space

algorithm that uses a more ad-hoc approach
u Monitor the fault rate for each process
u If the fault rate is above a high threshold, give it more memory

» So that it faults less
» But not always (FIFO, Belady’s Anomaly)

u If the fault rate is below a low threshold, take away memory
» Should fault more
» But not always

! Hard to use PFF to distinguish between changes in
locality and changes in size of working set

28

Thrashing
! Page replacement algorithms avoid thrashing

u When most of the time is spent by the OS in paging data back
and forth from disk

u No time spent doing useful work (making progress)
u In this situation, the system is overcommitted

» No idea which pages should be in memory to reduce faults
» Could just be that there isn’t enough physical memory for all of

the processes in the system
» Ex: Running Windows95 with 4 MB of memory…

u Possible solutions
» Swapping – write out all pages of a process
» Buy more memory

29

Summary
! Page replacement algorithms

u Belady’s – optimal replacement (minimum # of faults)
u FIFO – replace page loaded furthest in past
u LRU – replace page referenced furthest in past

» Approximate using PTE reference bit
u LRU Clock – replace page that is “old enough”
u Working Set – keep the set of pages in memory that has

minimal fault rate (the “working set”)
u Page Fault Frequency – grow/shrink page set as a function of

fault rate
! Multiprogramming

u Should a process replace its own page, or that of another?

