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Prerequisites 

• CSE167 or equivalent introduction to 3D 
graphics 

• Familiarity with: 

– Vectors (dot products, cross products, etc.) 

– Matrices (4x4 homogeneous transforms, etc.) 

– Polygon rendering 

– Basic lighting (normals, Phong, etc.) 

– Object oriented programming 



Reading 

• Fundamentals of Computer Graphics, 
Peter Shirley, Steve Marschner 

• 2nd or 3rd edition 

 

• The book is optional for this class. It 
covers many of the topics we will go over 
in class, but we won’t follow the book 
exactly. 



Programming Projects 

• Project 1: Due 4/12 (Wednesday, week 2) 
– Basic ray tracer: render a box with basic lighting 

• Project 2: Due 4/26 (Wednesday, week 4) 
– Add spatial data structure to efficiently render complex 

geometry with shadows 

• Project 3: Due 5/10 (Wednesday, week 6) 
– Add reflections & materials 

• Project 4: Due 5/24 (Wednesday, week 8) 
– Add path tracing 

• Project 5: Due 6/16 (Friday, finals week) 
– Add your own choice of features and render a final image 



Programming Projects 

• You can use any programming language & 
operating system that you choose 

• However, I would recommend using C++ for the 
following reasons: 
– Rendering is slow and you want a compiled language 

that will give you the chance of the best performance 

– Graphics tends to fit very naturally into an object 
oriented framework 

– There are several situations where you will need to 
make use of virtual functions and derived classes 



Programming Assignment Turn-In 
• The project must be shown to the instructor or TA before 5:00pm on the due date 

(when class starts) 

• They will both be in the lab from 2:00-4:50 on due days, but you can turn them in 
early as well 

• If necessary, projects can be turned in immediately after class on due days if you 
speak to the instructor before hand (for example if there are too many projects to 
grade in time) 

• If you finish on time but for some strange reason can’t turn it in personally, you 
can email the code and images to the instructor and TA and demo it personally 
some time in the following week for full credit 

• If you don’t finish on time, you can turn what you have in for partial credit. Either 
way, you can turn it in late during the following week for -4 points. So for example 
on a 15 point assignment, you can turn it in for partial credit and get 6, but then 
finish it and turn it in late for up to 11 points 

• Anything after 1 week can still be turned in but for -8 points 

• Note that all projects build upon each other so you have to do them eventually… 



Final Project 

• For the final project, you can implement some 
rendering features of your choice and render 
out a final image 

• You will have to do a 5 minute presentation to 
the class during the 3 hour ‘final’ 



Grading 

• Project 1: 15% 

• Project 2: 15% 

• Project 3: 15% 

• Project 4: 15% 

• Project 5: 15% 

• Midterm: 10% 

• Final:  15% 



Course Outline 

1. Introduction 
2. Ray Intersections &  

Scenes 
3. Fresnel Surfaces 
4. Materials 
5. Shadows & Area Lights 
6. Spatial Data Structures 
7. Antialiasing 
8. Texture mapping 
9. Random sampling 
10. (Midterm) 

 

11. BRDFs 
12. Cameras 
13. Adaptive sampling 
14. Light physics 
15. Path tracing 
16. Volumetric rendering 
17. High dynamic range (HDR) 
18. Bezier surfaces & 

tessellation 
19. Procedural texturing 
20. (In-class Final) 



Rendering Overview 



Computer Graphics 

• The subject of computer graphics has grown 
over its 50 year history to include a wide range 
of topics 

• Still, however, it is often convenient to divide 
it into three traditional sub-topics: modeling, 
rendering, and animation 



Modeling 

• Modeling deals with geometry representation, 
creation, and analysis 

• The subject of modeling includes: 
– Techniques used to specify geometry (triangles, curved surfaces, 

implicit surfaces, point clouds…) 

– Operations used to generate geometry (extrusions, tessellations, 
Boolean, L-systems…) 

– Higher level procedural modeling (procedural plants, terrain 
generation…) 

– Techniques for acquiring models from the real world (laser scanning, 
photographic techniques…) 



Animation 

• Animation is the subject of movement and 
change over time. 

• Some topics include: 
– Matrix & quaternion manipulation 

– Character animation (skeletons, skinning, 
blending, state machines…) 

– Physics simulation (particles, rigid bodies, fluid 
dynamics, deformable bodies, fracture…) 

– Dynamic visual effects, etc. 



Rendering 

• Rendering is the process of generating a 2D 
image from 3D geometry, lights, materials, and 
camera information 

• Rendering could be further split into sub-topics: 
photoreal rendering, and non-photoreal 
rendering (NPR) 

• Or another way to divide it up would be into 
realtime rendering, and non-realtime rendering 

• For this discussion, I’ll break it into three topics: 
photoreal, NPR, and realtime 



Rendering 
• Realtime: 

– The goal of realtime rendering is to generate a high quality image as quickly as possible 
(typically around 1/60th of a second) 

– This is generally based on special-purpose hardware (GPUs) and makes use of shader 
programming and other graphics-specific languages (OpenGL, Direct3D, GLSL, Cg…) 

– Inspired by physics and photorealism, but compromises are required to run fast 

– Typically used for video games and other interactive applications 

• Photoreal: 
– Photoreal rendering refers to the goal of making an image that is indistinguishable from 

a photograph 

– Photoreal rendering is based on a simulation of the actual physics of light 

– General-purpose photoreal rendering was a major goal of the graphics research 
community and practical solutions didn’t really exist until around the year 2000 

• Non-photoreal: 
– NPR refers to all other types of rendering where the goal is not to achieve photorealism 

– This mainly includes various artistic types of rendering such as methods that imitate the 
appearance artistic media like pencils, watercolors, and oil paints, or artistic styles such 
as impressionism, or even methods that imitate the styles of specific artists 

– NPR also includes methods for graphical display for non-artistic purposes, such as clear 
illustration of complex mechanical designs, etc. 



CSE168: Rendering Algorithms 

• In this class, we will focus mainly on photoreal 
rendering algorithms 

• We may have a little time to spend on NPR, but we will 
not be spending any time on realtime rendering 

• There have been many approaches to photoreal 
rendering developed in the past, however, one 
particular class of algorithms has proven to be the 
most successful and general-purpose 

• These are the ray-based approaches that evolved from 
the original ray tracing algorithm, such as path tracing 
and photon mapping and these will be the main focus 
of the class 



History 
• This is a timeline of some key developments in ray-

based photoreal rendering: 

 

• 1963: ‘Sketchpad’, a project at MIT led by Ivan 
Sutherland, that is often considered the birth of 
computer graphics 

• 1980: ‘Ray-Tracing’, a rendering algorithm 
developed by Turner Whitted that greatly improved 
the quality of rendered images by adding complex 
shadows, reflections, and refraction 

• 1984: ‘Distribution Tracing’, an extension to ray 
tracing that traced a distribution of multiple rays to 
allow for soft and blurry effects such as soft 
shadows, blurry reflections, motion blur, and 
camera focus 



History 
• 1986: ‘Path Tracing’, a method introduced in James 

Kajiya’s seminal paper called ‘The Rendering Equation’, 
that further extended ray tracing to become the first 
truly photoreal rendering algorithm, capable of all 
previous effects plus full global illumination and diffuse 
light bouncing. Path tracing was capable of great things, 
but was very slow on the hardware of the day 

• 1995: ‘Photon Mapping’, a method introduced by 
UCSD’s professor Henrik Wann Jensen that works in 
conjunction with all previous ray based methods. 
Photon mapping improves the performance of many 
rendering situations and also makes it much more 
practical to handle focused light effects such as 
‘caustics’ created by curved glass or mirrors, or the 
dancing lights at the bottom of a swimming pool 

• 1998: Volumetric Photon Mapping: The photon 
mapping algorithm was extended to handle volumetric 
scattering in media like fog 

 



Linear Algebra Review 



Coordinate Systems 

• Right handed coordinate system 

y 

x 

z 



Vector Arithmetic 

𝐚 = 𝑎𝑥 𝑎𝑦 𝑎𝑧  

𝐛 = 𝑏𝑥 𝑏𝑦 𝑏𝑧  

𝐚 + 𝐛 = 𝑎𝑥 + 𝑏𝑥 𝑎𝑦 + 𝑏𝑦 𝑎𝑧 + 𝑏𝑧  

𝐚 − 𝐛 = 𝑎𝑥 − 𝑏𝑥 𝑎𝑦 − 𝑏𝑦 𝑎𝑧 − 𝑏𝑧  

−𝐚 = −𝑎𝑥 −𝑎𝑦 −𝑎𝑧  

𝑠𝐚 = 𝑠𝑎𝑥 𝑠𝑎𝑦 𝑠𝑎𝑧  



Vector Magnitude 

• The magnitude (length) of a vector is: 

 

 

• A vector with length=1.0 is called a unit vector 

• We can also normalize a vector to make it a 
unit vector: 

𝐯 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

𝐯

𝐯
 



Dot Product 

𝐚 ∙ 𝐛 = 𝑎𝑖𝑏𝑖 

𝐚 ∙ 𝐛 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧 

𝐚 ∙ 𝐛 = 𝐚 𝐛 cos𝜃 

𝐚 ∙ 𝐛 = 𝐚𝑇𝐛 

𝐚 ∙ 𝐛 = 𝑎𝑥 𝑎𝑦 𝑎𝑧

𝑏𝑥
𝑏𝑦
𝑏𝑧

 



Properties of the Dot Product 

• 𝐚 ∙ 𝐛 is a scalar value that tells us about the 
relationship of two vectors 

• If the dot product is positive, it means the 
angle between the vectors is less than 90 
degrees and if its negative, the angle is more 
than 90 degrees 

• If the dot product is 0, then the two vectors 
are either perpendicular or one or both are 
degenerate (0,0,0) 



Cross Product 

𝐚 × 𝐛 =

𝑖 𝑗 𝑘
𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧

 

𝐚 × 𝐛 = 𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦 𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥  



Properties of the Cross Product 

• 𝐚 × 𝐛 is a vector perpendicular to both a and 
b, in the direction defined by the right hand 
rule 

 

• The magnitude of the cross product: 

 𝐚 × 𝐛 = 𝐚 𝐛 sin𝜃 

 𝐚 × 𝐛 = area of parallelogram ab 

 𝐚 × 𝐛 = 0 if a and b are parallel 

 



Translation 

• Let’s say we have a 3D model that has an array of 
position vectors describing its shape: vn where     
0 ≤ n < NumVerts 

• Say we want to move our 3D model from its 
current location to somewhere else… 

• We want to compute a new array of positions v’n 
representing the new location 

• If the vector d represents the relative offset that 
we want to move our object by, then we can 
compute v’n= vn+d to compute the new array of 
positions 



Transformations 

 v’n = vn + d 
 
• This translation represents a very simple example of an 

object transformation 
• The result is that the entire object gets moved or translated 

by d 
• From now on, we will drop the n subscript and just write 
 

 v’ = v + d 
 
• Just keep in mind that this is actually a loop over several 

different vn vectors applying the same vector d every time 



Rotation 

• Now, let’s rotate the object in the xy plane by an angle 
θ, as if we were spinning it around the z axis 

 

 𝑣′𝑥 = 𝑣𝑥 cos 𝜃 − 𝑣𝑦sin 𝜃 

 𝑣′𝑦 = 𝑣𝑥 sin 𝜃 + 𝑣𝑦 cos 𝜃 

 𝑣′𝑧 = 𝑣𝑧 

 

• Note: a positive rotation will rotate the object 
counterclockwise when the rotation axis (z) is pointing 
towards the observer 



Rotation 

 𝑣′𝑥 = 𝑣𝑥 cos 𝜃 − 𝑣𝑦sin 𝜃 

 𝑣′𝑦 = 𝑣𝑥 sin 𝜃 + 𝑣𝑦 cos 𝜃 

 𝑣′𝑧 = 𝑣𝑧 

• We can re-write this in matrix form as: 

 

 

 

 

• Or just: 

𝑣′𝑥
𝑣′𝑦
𝑣′𝑧

=
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

∙

𝑣𝑥
𝑣𝑦
𝑣𝑧

 

𝐯′ = 𝐌 ∙ 𝐯 



Matrix Transformations 

• We can rotate a vector by multiplying it by a 3x3 
rotation matrix 

• We can also do other linear transformations with 
a 3x3 matrix such as: 

– Uniform & non-uniform scale 

– Shear (i.e., turning a rectangle into a parallelogram) 

– Reflection 

• However, we can’t use a 3x3 matrix to perform a 
translation 



Homogeneous Transforms 

• So, in computer graphics, we use 4x4 homogeneous 
matrices to combine translations with rotations (and 
shears, scales, and reflections) 

• We can also integrate viewing transformations such 
as perspective projections into this system, however 
it turns out that we won’t need to do that in this 
class, and all of our 4x4 transformation matrices will 
have the form: 

𝐌 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

 



Positions & Directions 

• Both positions and directions can be represented 
as 3D vectors 

• When we transform a 3D vector with a 4x4 
matrix, we have to turn the 3D vector into a 4D 
vector 

• For positions, we put a 1 in the 4th coordinate (w-
coordinate), and for directions, we put a 0 in the 
4th coordinate 

• The result is that a position gets rotated & 
translated by the matrix, but a direction only gets 
rotated 



Positions & Directions 

𝐩 =

𝑝𝑥
𝑝𝑦
𝑝𝑧
→

𝑝𝑥
𝑝𝑦
𝑝𝑧
1

 

𝐧 =

𝑛𝑥
𝑛𝑦
𝑛𝑧
→

𝑛𝑥
𝑛𝑦
𝑛𝑧
0

 

𝐩′ =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

∙

𝑝𝑥
𝑝𝑦
𝑝𝑧
1

 

𝐧′ =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

∙

𝑛𝑥
𝑛𝑦
𝑛𝑧
0

 



Object Space 

• The space that an object is defined in is called 
object space or local space 

• Usually, the object is located at or near the origin 
and is aligned with the xyz axes in some 
reasonable way 

• The units in this space can be whatever we 
choose (i.e., meters, etc.) 

• A 3D object would be stored on disk and in 
memory in this coordinate system 

• When we go to draw the object, we will want to 
transform it into a different space 



World Space 

• We will define a new space called world space or global 
space 

• This space represents a 3D world or scene and may contain 
several objects placed in various locations 

• Every object in the world needs a matrix that transforms its 
vertices from its own object space into this world space 

• We will call this the object’s world matrix, or often, we will 
just call it the object’s matrix 

• For example, if we have 100 chairs in the room, we only 
need to store the object space data for the chair once, and 
we can use 100 different matrices to transform the chair 
model into 100 locations in the world 



ABCD Vectors 

 

 

 

• As the bottom row of our 4x4 matrices will always be 0 0 0 1, 
we can really think of the matrix as having only 12 relevant 
numbers, broken into 4 vectors, a, b, c, and d 

• Vector d represents the translation of the matrix 

• If we think of the matrix as transforming from object space to 
world space, then the a vector represents the object’s x-axis 
rotated into world space, b is its y-axis in world space and c is 
its z-axis 

𝐌 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

 



Ray Tracing 



Ray Tracing 

• Ray tracing involves tracing virtual rays throughout a 
3D environment to determine object visibility and 
lighting 

• Classic ray tracing shoots rays out from the camera 
position through each pixel to determine the first 
surface (triangle) hit 

• From there, other rays can be spawned from the 
intersection point towards each light source to 
determine if the point is lit or in shadow 

• Additional rays can be traced to simulate reflections off 
of mirrored surfaces or refraction through surfaces 
such as glass 



Recursive Ray Tracing 



Recursive Ray Tracing 



Recursive Ray Tracing 



Recursive Ray Tracing 

etc. 



Rays 

• We think of a ray as starting at an origin p and 
then shooting off infinitely in some direction d 

𝐫 𝑡 = 𝐩 + 𝑡𝐝 

• Where r(t) is a function representing the ray and t 
is the distance traveled along the ray 

• Usually, when we’re rendering, we’re interested 
in finding the first surface hit along the ray’s 
travel from the origin, or the intersection with the 
smallest value of t (but larger than 0) 



Ray Class 

class Ray { 

public: 

 glm::vec3 Origin; 

 glm::vec3 Direction; 

}; 

 

 

NOTE: All data is public because the ray is a low-level class 
storing simple data. 



Ray Intersection 

• The fundamental operation in a ray tracer is the ray 
intersection routine 

• The ray starts at a point known as the ray origin and shoots 
off in a 3D direction 

• The ray shoots into a 3D environment with potentially 
millions of triangles or other primitives 

• We are interested in knowing the first surface the ray hits 
• The ray intersection routine takes a ray as input, as well as a 

scene containing geometry, and determines if and where 
the ray hits 
 

      bool Scene::Intersect(const Ray &ray,Intersection &hit); 



Intersection Class 
class Intersection { 

public: 

        Intersection() {Mtl=0; Obj=0; HitDistance=1e10;} 

 

        // Results of intersection test 

        float HitDistance; 

        glm::vec3 Position; 

        glm::vec3 Normal; 

        Material *Mtl; 

 

        // Results of shading 

        Color Shade; 

}; 

 

NOTE: We will talk about Materials and Colors in a future lecture 



Shading 

• Once we have found an intersection (and the 
associated normal and material properties) we 
can do the process of shading 

• Shading involves all of the calculations that 
compute the color reflected back along the 
initial ray towards the viewer 

• This may (and often does) involve recursively 
tracing additional rays to determine shadows, 
reflections, and refractions 



Ray Intersection & Shading 

• Together, ray intersection and shading make 
up the two main routines in a ray tracer 

• They are also the fundamental routines used 
in extensions such as path tracing and photon 
mapping 



Ray Intersection Performance 

• The fundamental issue of ray intersection is handling large scene 
complexity with reasonable performance 

• Scenes often contain millions of triangles and one must trace 
millions of rays to render an image 

• Consider a 800 x 600 image with two light sources and no reflective 
or refractive materials 

• One must trace 800 x 600 = 480000 initial rays from the camera 
• Assuming 2/3 of these hit objects (1/3 hit the sky), we then have to 

spawn two additional shadow rays, for an additional 640000 ray 
intersections and a total of 1.12 million rays 

• High quality lighting and rendering effects often involve testing 
hundreds or thousands of rays per pixel 

• Therefore, the performance of the ray intersection test is critical 



Shading Performance 

• Shading functions are called many times, but less 
than ray intersection (maybe 10%-50% as often) 

• Shading functions often contain relatively quick 
computations and so aren’t usually too expensive 
in themselves 

• However, most shading involves recursively 
spawning more rays, which means more 
intersection and more shading 

• Therefore, optimizing shading functions typically 
involves making them spawn as few rays as 
possible to produce the desired image quality 



Triangles 
• Triangles are used throughout computer graphics as the 

primitive of choice for rendering 

• Most ray tracers only support triangles at the low level, and 
only perform actual ray intersection testing with triangles 

• However, other surface types (such as curved surfaces, 
NURBS, subdivision surfaces, spheres, cylinders, implicit 
surfaces…) can still be supported as long as they can be 
tessellated into a bunch of small triangles 

• This way, any surface type can be supported as long as they 
provide a tessellation routine 

• Optionally, one could also implement ray intersection routines 
for each of those surface types, but in most cases, it 
significantly impacts the performance of ray intersection 
testing, and this is generally not done in commercial renderers 



Ray-Triangle Intersection 

• The ray-triangle intersection test is at the 
heart of the ray intersection problem, and 
often makes up the single biggest 
performance bottleneck in most ray tracers 

• We will look at some ray-triangle intersection 
algorithms in an upcoming lecture 



Vertex Class 

class Vertex { 

public: 

 glm::vec3 Position; 

 glm::vec3 Normal; 

 glm::vec2 TexCoord; 

}; 



Triangle Class 

class Triangle { 
public: 
 Triangle(); 
 
 bool Intersect(const Ray &ray, Intersection &hit); 
 
private: 
 Vertex *Vtx[3]; 
 Material *Mtl; 
}; 



Cameras 



Camera Data 

• The camera contains all of the information 
about how we are going to generate a 2D 
image from our 3D scene 

• At a minimum, this includes: 
– Matrix: position & orientation of the camera 

– Field of view (FOV): determines the ‘zoom’ of the 
lens (i.e., ranges from wide angle to telephoto) 

– Resolution: x & y resolution of the image we want 
to render 



Additional Camera Data 

• Later in the quarter, we will extend the 
concept of a camera to include: 

– Focus range (depth of field) 

– Sub-pixel sampling (antialiasing) 

– Exposure settings (high dynamic range imaging) 

– Lens diffusion and imperfections 

– Shutter speed (motion blur) 



Camera Matrix 

• The camera matrix is a 3D matrix that positions the camera 
in the world 

• Like any 3D matrix, it contains the a, b, c, and d column 
vectors 

• The d vector is the position of the camera 
• The c vector points backwards (-c is the direction of 

viewing) 
• The a vector points to the right of the camera 
• The b vector points to the up direction, relative to the 

camera 
• The camera matrix is almost always orthonormal, so a, b, 

and c are unit length and perpendicular to each other 



‘Look-At’ Function 

• It is often convenient to define the camera matrix using a ‘look-at’ function 
• This takes a camera position, a target object position, and a world ‘up’ vector 

(typically the y-axis), and then builds a matrix: 
 
 glm ∷ vec3 𝐝 = 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 
 glm ∷ vec3 𝐜 = glm ∷ normalize(𝐝 − 𝐭𝐚𝐫𝐠𝐞𝐭) 
 glm ∷ vec3 𝐚 = glm ∷ normalize(glm ∷ cross 𝐮𝐩, 𝐜 ) 
 glm ∷ vec3 𝐛 = glm ∷ cross(𝐜, 𝐚) 
 
 glm::mat4x4 cam(a.x,a.y,a.z,0, b.x,b.y,b.z,0, c.x,c.y,c.z,0, d.x,d.y,d.z,1) 

 
• Note: b will be length 1.0 automatically, being the cross product of two orthogonal 

unit vectors 
• Also note that glm has a lookAt function, but theirs computes the ‘view’ matrix, 

which is the inverse of the ‘camera’ matrix 



Field of View 

• If we are rendering a rectangular image, then the viewable camera volume is 
shaped like a pyramid, with the tip at the camera position 

• We therefore have two relevant field of view (FOV) angles- one for the horizontal 
FOV and one for the vertical FOV 

• The image itself is a rectangle, and therefore, its shape can be defined by as aspect 
ratio, which is the ratio of the image width to the height: 

  𝑎𝑠𝑝𝑒𝑐𝑡 =
𝑤𝑖𝑑𝑡ℎ

ℎ𝑒𝑖𝑔ℎ𝑡
 

• However, it is important to notice that this is not the same as the ratio of the 
horizontal to vertical FOVs: 

  𝑎𝑠𝑝𝑒𝑐𝑡 ≠
ℎ𝑓𝑜𝑣

𝑣𝑓𝑜𝑣
 

• Because the final image aspect ratio is typically determined by the viewing format 
(HDTV, film, etc.), it is useful to be able to set up the virtual camera lens by 
specifying the aspect and one of the FOVs 

 

• It is traditional to define a camera lens by its vertical FOV and image aspect ratio 



Field of View 

• By examining some right triangles, the 
relationship between vertical and horizontal 
field of view can be found: 

 

ℎ𝑓𝑜𝑣 = 2 ∙ tan−1 𝑎𝑠𝑝𝑒𝑐𝑡 ∙ tan
𝑣𝑓𝑜𝑣

2
 



Pixel Aspect 

• The image aspect ratio is the ratio of the width to the height of the 
actual image 

• However, this says nothing about the aspect ratio of the actual 
pixels of the image 

• On most modern display hardware (monitors, tablets, phones…) the 
pixels themselves are square (aspect 1.0) 

• If the pixels are square then the image aspect ratio is the same as 
the ratio of the horizontal to vertical resolution XRes/YRes 

• However, it isn’t too uncommon to come across display systems 
with non-square pixels 

• In that case, the actual pixel aspect ratio is: 
 
 Pixel Aspect = (ImageWidth*YRes) / (ImageHeight*XRes) 



Camera Class 
class Camera { 

public: 

 Camera(); 

 

 void SetFOV(float f); 

 void SetAspect(float a); 

 void SetResolution(int x,int y); 

 void LookAt(glm::vec3 &pos,glm::vec3 &target,glm::vec3 &up); 

 

 void Render(Scene &s); 

 void SaveBitmap(char *filename); 

private: 

 int XRes,YRes; 

 glm::mat4x4 WorldMatrix; 

 float VerticalFOV; 

 float Aspect; 

 Bitmap BMP; 

}; 



Image Rendering 

• When we ray-trace an image, we start by generating rays at the 
camera and shoot them through each pixel into the scene 

• For example, we have a loop something like this: 
 

Camera::Render() { 
 int x,y; 
 for(y=0; y<YRes; y++) { 
  for(x=0; x<XRes; x++) { 
   RenderPixel(x,y); 
  } 
 } 
} 



Camera Rays 

• We start by ‘shooting’ rays from the camera out into the scene 

• We can render the pixels in any order we choose (even in random order!), but we 
will keep it simple and go from top to bottom, and left to right 

• We loop over all of the pixels and generate an initial primary ray (also called a 
camera ray or eye ray) 

• The ray origin is simply the camera’s position in world space 

• The direction is computed by first finding location of a ‘virtual pixel’ on a ‘virtual 
image plane’, and then computing a normalized direction from the camera 
position to the virtual pixel 

Camera position Virtual image 

Primary ray 



Project 1 

• Project 1 will be a basic ray tracer that can 
render a box 

• It will be defined in detail in the next lecture 

• If you want to get started early, you can start 
with the Ray, Intersection, Vertex, and Triangle 
classes defined within and implement the 
function Triangle::Intersect() 


