
CSE 168: Rendering Algorithms

Steve Rotenberg

UCSD

Spring 2017

CSE168

• Rendering Algorithms

• Instructor: Steve Rotenberg (srotenberg@ucsd.edu)

• TA: Matteo Mannino (mtmannin@eng.ucsd.edu)

• Lecture: WLH 2205 (MW 5:00 – 6:20pm)

• Office: EBU3 4106 (MW 3:50 – 4:50pm)

• Lab: EBU3 basement

• Discussion: York 4080A (M 11:00 – 11:50am)

• Web page:
– https://cseweb.ucsd.edu/classes/sp17/cse168-a/index.html

mailto:srotenberg@ucsd.edu
mailto:mtmannin@eng.ucsd.edu

Prerequisites

• CSE167 or equivalent introduction to 3D
graphics

• Familiarity with:

– Vectors (dot products, cross products, etc.)

– Matrices (4x4 homogeneous transforms, etc.)

– Polygon rendering

– Basic lighting (normals, Phong, etc.)

– Object oriented programming

Reading

• Fundamentals of Computer Graphics,
Peter Shirley, Steve Marschner

• 2nd or 3rd edition

• The book is optional for this class. It
covers many of the topics we will go over
in class, but we won’t follow the book
exactly.

Programming Projects

• Project 1: Due 4/12 (Wednesday, week 2)
– Basic ray tracer: render a box with basic lighting

• Project 2: Due 4/26 (Wednesday, week 4)
– Add spatial data structure to efficiently render complex

geometry with shadows

• Project 3: Due 5/10 (Wednesday, week 6)
– Add reflections & materials

• Project 4: Due 5/24 (Wednesday, week 8)
– Add path tracing

• Project 5: Due 6/16 (Friday, finals week)
– Add your own choice of features and render a final image

Programming Projects

• You can use any programming language &
operating system that you choose

• However, I would recommend using C++ for the
following reasons:
– Rendering is slow and you want a compiled language

that will give you the chance of the best performance

– Graphics tends to fit very naturally into an object
oriented framework

– There are several situations where you will need to
make use of virtual functions and derived classes

Programming Assignment Turn-In
• The project must be shown to the instructor or TA before 5:00pm on the due date

(when class starts)

• They will both be in the lab from 2:00-4:50 on due days, but you can turn them in
early as well

• If necessary, projects can be turned in immediately after class on due days if you
speak to the instructor before hand (for example if there are too many projects to
grade in time)

• If you finish on time but for some strange reason can’t turn it in personally, you
can email the code and images to the instructor and TA and demo it personally
some time in the following week for full credit

• If you don’t finish on time, you can turn what you have in for partial credit. Either
way, you can turn it in late during the following week for -4 points. So for example
on a 15 point assignment, you can turn it in for partial credit and get 6, but then
finish it and turn it in late for up to 11 points

• Anything after 1 week can still be turned in but for -8 points

• Note that all projects build upon each other so you have to do them eventually…

Final Project

• For the final project, you can implement some
rendering features of your choice and render
out a final image

• You will have to do a 5 minute presentation to
the class during the 3 hour ‘final’

Grading

• Project 1: 15%

• Project 2: 15%

• Project 3: 15%

• Project 4: 15%

• Project 5: 15%

• Midterm: 10%

• Final: 15%

Course Outline

1. Introduction
2. Ray Intersections &

Scenes
3. Fresnel Surfaces
4. Materials
5. Shadows & Area Lights
6. Spatial Data Structures
7. Antialiasing
8. Texture mapping
9. Random sampling
10. (Midterm)

11. BRDFs
12. Cameras
13. Adaptive sampling
14. Light physics
15. Path tracing
16. Volumetric rendering
17. High dynamic range (HDR)
18. Bezier surfaces &

tessellation
19. Procedural texturing
20. (In-class Final)

Rendering Overview

Computer Graphics

• The subject of computer graphics has grown
over its 50 year history to include a wide range
of topics

• Still, however, it is often convenient to divide
it into three traditional sub-topics: modeling,
rendering, and animation

Modeling

• Modeling deals with geometry representation,
creation, and analysis

• The subject of modeling includes:
– Techniques used to specify geometry (triangles, curved surfaces,

implicit surfaces, point clouds…)

– Operations used to generate geometry (extrusions, tessellations,
Boolean, L-systems…)

– Higher level procedural modeling (procedural plants, terrain
generation…)

– Techniques for acquiring models from the real world (laser scanning,
photographic techniques…)

Animation

• Animation is the subject of movement and
change over time.

• Some topics include:
– Matrix & quaternion manipulation

– Character animation (skeletons, skinning,
blending, state machines…)

– Physics simulation (particles, rigid bodies, fluid
dynamics, deformable bodies, fracture…)

– Dynamic visual effects, etc.

Rendering

• Rendering is the process of generating a 2D
image from 3D geometry, lights, materials, and
camera information

• Rendering could be further split into sub-topics:
photoreal rendering, and non-photoreal
rendering (NPR)

• Or another way to divide it up would be into
realtime rendering, and non-realtime rendering

• For this discussion, I’ll break it into three topics:
photoreal, NPR, and realtime

Rendering
• Realtime:

– The goal of realtime rendering is to generate a high quality image as quickly as possible
(typically around 1/60th of a second)

– This is generally based on special-purpose hardware (GPUs) and makes use of shader
programming and other graphics-specific languages (OpenGL, Direct3D, GLSL, Cg…)

– Inspired by physics and photorealism, but compromises are required to run fast

– Typically used for video games and other interactive applications

• Photoreal:
– Photoreal rendering refers to the goal of making an image that is indistinguishable from

a photograph

– Photoreal rendering is based on a simulation of the actual physics of light

– General-purpose photoreal rendering was a major goal of the graphics research
community and practical solutions didn’t really exist until around the year 2000

• Non-photoreal:
– NPR refers to all other types of rendering where the goal is not to achieve photorealism

– This mainly includes various artistic types of rendering such as methods that imitate the
appearance artistic media like pencils, watercolors, and oil paints, or artistic styles such
as impressionism, or even methods that imitate the styles of specific artists

– NPR also includes methods for graphical display for non-artistic purposes, such as clear
illustration of complex mechanical designs, etc.

CSE168: Rendering Algorithms

• In this class, we will focus mainly on photoreal
rendering algorithms

• We may have a little time to spend on NPR, but we will
not be spending any time on realtime rendering

• There have been many approaches to photoreal
rendering developed in the past, however, one
particular class of algorithms has proven to be the
most successful and general-purpose

• These are the ray-based approaches that evolved from
the original ray tracing algorithm, such as path tracing
and photon mapping and these will be the main focus
of the class

History
• This is a timeline of some key developments in ray-

based photoreal rendering:

• 1963: ‘Sketchpad’, a project at MIT led by Ivan
Sutherland, that is often considered the birth of
computer graphics

• 1980: ‘Ray-Tracing’, a rendering algorithm
developed by Turner Whitted that greatly improved
the quality of rendered images by adding complex
shadows, reflections, and refraction

• 1984: ‘Distribution Tracing’, an extension to ray
tracing that traced a distribution of multiple rays to
allow for soft and blurry effects such as soft
shadows, blurry reflections, motion blur, and
camera focus

History
• 1986: ‘Path Tracing’, a method introduced in James

Kajiya’s seminal paper called ‘The Rendering Equation’,
that further extended ray tracing to become the first
truly photoreal rendering algorithm, capable of all
previous effects plus full global illumination and diffuse
light bouncing. Path tracing was capable of great things,
but was very slow on the hardware of the day

• 1995: ‘Photon Mapping’, a method introduced by
UCSD’s professor Henrik Wann Jensen that works in
conjunction with all previous ray based methods.
Photon mapping improves the performance of many
rendering situations and also makes it much more
practical to handle focused light effects such as
‘caustics’ created by curved glass or mirrors, or the
dancing lights at the bottom of a swimming pool

• 1998: Volumetric Photon Mapping: The photon
mapping algorithm was extended to handle volumetric
scattering in media like fog

Linear Algebra Review

Coordinate Systems

• Right handed coordinate system

y

x

z

Vector Arithmetic

𝐚 = 𝑎𝑥 𝑎𝑦 𝑎𝑧

𝐛 = 𝑏𝑥 𝑏𝑦 𝑏𝑧

𝐚 + 𝐛 = 𝑎𝑥 + 𝑏𝑥 𝑎𝑦 + 𝑏𝑦 𝑎𝑧 + 𝑏𝑧

𝐚 − 𝐛 = 𝑎𝑥 − 𝑏𝑥 𝑎𝑦 − 𝑏𝑦 𝑎𝑧 − 𝑏𝑧

−𝐚 = −𝑎𝑥 −𝑎𝑦 −𝑎𝑧

𝑠𝐚 = 𝑠𝑎𝑥 𝑠𝑎𝑦 𝑠𝑎𝑧

Vector Magnitude

• The magnitude (length) of a vector is:

• A vector with length=1.0 is called a unit vector

• We can also normalize a vector to make it a
unit vector:

𝐯 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

𝐯

𝐯

Dot Product

𝐚 ∙ 𝐛 = 𝑎𝑖𝑏𝑖

𝐚 ∙ 𝐛 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧

𝐚 ∙ 𝐛 = 𝐚 𝐛 cos𝜃

𝐚 ∙ 𝐛 = 𝐚𝑇𝐛

𝐚 ∙ 𝐛 = 𝑎𝑥 𝑎𝑦 𝑎𝑧

𝑏𝑥
𝑏𝑦
𝑏𝑧

Properties of the Dot Product

• 𝐚 ∙ 𝐛 is a scalar value that tells us about the
relationship of two vectors

• If the dot product is positive, it means the
angle between the vectors is less than 90
degrees and if its negative, the angle is more
than 90 degrees

• If the dot product is 0, then the two vectors
are either perpendicular or one or both are
degenerate (0,0,0)

Cross Product

𝐚 × 𝐛 =

𝑖 𝑗 𝑘
𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧

𝐚 × 𝐛 = 𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦 𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥

Properties of the Cross Product

• 𝐚 × 𝐛 is a vector perpendicular to both a and
b, in the direction defined by the right hand
rule

• The magnitude of the cross product:

 𝐚 × 𝐛 = 𝐚 𝐛 sin𝜃

 𝐚 × 𝐛 = area of parallelogram ab

 𝐚 × 𝐛 = 0 if a and b are parallel

Translation

• Let’s say we have a 3D model that has an array of
position vectors describing its shape: vn where
0 ≤ n < NumVerts

• Say we want to move our 3D model from its
current location to somewhere else…

• We want to compute a new array of positions v’n
representing the new location

• If the vector d represents the relative offset that
we want to move our object by, then we can
compute v’n= vn+d to compute the new array of
positions

Transformations

 v’n = vn + d

• This translation represents a very simple example of an

object transformation
• The result is that the entire object gets moved or translated

by d
• From now on, we will drop the n subscript and just write

 v’ = v + d

• Just keep in mind that this is actually a loop over several

different vn vectors applying the same vector d every time

Rotation

• Now, let’s rotate the object in the xy plane by an angle
θ, as if we were spinning it around the z axis

 𝑣′𝑥 = 𝑣𝑥 cos 𝜃 − 𝑣𝑦sin 𝜃

 𝑣′𝑦 = 𝑣𝑥 sin 𝜃 + 𝑣𝑦 cos 𝜃

 𝑣′𝑧 = 𝑣𝑧

• Note: a positive rotation will rotate the object
counterclockwise when the rotation axis (z) is pointing
towards the observer

Rotation

 𝑣′𝑥 = 𝑣𝑥 cos 𝜃 − 𝑣𝑦sin 𝜃

 𝑣′𝑦 = 𝑣𝑥 sin 𝜃 + 𝑣𝑦 cos 𝜃

 𝑣′𝑧 = 𝑣𝑧

• We can re-write this in matrix form as:

• Or just:

𝑣′𝑥
𝑣′𝑦
𝑣′𝑧

=
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

∙

𝑣𝑥
𝑣𝑦
𝑣𝑧

𝐯′ = 𝐌 ∙ 𝐯

Matrix Transformations

• We can rotate a vector by multiplying it by a 3x3
rotation matrix

• We can also do other linear transformations with
a 3x3 matrix such as:

– Uniform & non-uniform scale

– Shear (i.e., turning a rectangle into a parallelogram)

– Reflection

• However, we can’t use a 3x3 matrix to perform a
translation

Homogeneous Transforms

• So, in computer graphics, we use 4x4 homogeneous
matrices to combine translations with rotations (and
shears, scales, and reflections)

• We can also integrate viewing transformations such
as perspective projections into this system, however
it turns out that we won’t need to do that in this
class, and all of our 4x4 transformation matrices will
have the form:

𝐌 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

Positions & Directions

• Both positions and directions can be represented
as 3D vectors

• When we transform a 3D vector with a 4x4
matrix, we have to turn the 3D vector into a 4D
vector

• For positions, we put a 1 in the 4th coordinate (w-
coordinate), and for directions, we put a 0 in the
4th coordinate

• The result is that a position gets rotated &
translated by the matrix, but a direction only gets
rotated

Positions & Directions

𝐩 =

𝑝𝑥
𝑝𝑦
𝑝𝑧
→

𝑝𝑥
𝑝𝑦
𝑝𝑧
1

𝐧 =

𝑛𝑥
𝑛𝑦
𝑛𝑧
→

𝑛𝑥
𝑛𝑦
𝑛𝑧
0

𝐩′ =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

∙

𝑝𝑥
𝑝𝑦
𝑝𝑧
1

𝐧′ =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

∙

𝑛𝑥
𝑛𝑦
𝑛𝑧
0

Object Space

• The space that an object is defined in is called
object space or local space

• Usually, the object is located at or near the origin
and is aligned with the xyz axes in some
reasonable way

• The units in this space can be whatever we
choose (i.e., meters, etc.)

• A 3D object would be stored on disk and in
memory in this coordinate system

• When we go to draw the object, we will want to
transform it into a different space

World Space

• We will define a new space called world space or global
space

• This space represents a 3D world or scene and may contain
several objects placed in various locations

• Every object in the world needs a matrix that transforms its
vertices from its own object space into this world space

• We will call this the object’s world matrix, or often, we will
just call it the object’s matrix

• For example, if we have 100 chairs in the room, we only
need to store the object space data for the chair once, and
we can use 100 different matrices to transform the chair
model into 100 locations in the world

ABCD Vectors

• As the bottom row of our 4x4 matrices will always be 0 0 0 1,
we can really think of the matrix as having only 12 relevant
numbers, broken into 4 vectors, a, b, c, and d

• Vector d represents the translation of the matrix

• If we think of the matrix as transforming from object space to
world space, then the a vector represents the object’s x-axis
rotated into world space, b is its y-axis in world space and c is
its z-axis

𝐌 =

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

𝑐𝑥 𝑑𝑥
𝑐𝑦 𝑑𝑦

𝑎𝑧 𝑏𝑧
0 0

𝑐𝑧 𝑑𝑧
0 1

Ray Tracing

Ray Tracing

• Ray tracing involves tracing virtual rays throughout a
3D environment to determine object visibility and
lighting

• Classic ray tracing shoots rays out from the camera
position through each pixel to determine the first
surface (triangle) hit

• From there, other rays can be spawned from the
intersection point towards each light source to
determine if the point is lit or in shadow

• Additional rays can be traced to simulate reflections off
of mirrored surfaces or refraction through surfaces
such as glass

Recursive Ray Tracing

Recursive Ray Tracing

Recursive Ray Tracing

Recursive Ray Tracing

etc.

Rays

• We think of a ray as starting at an origin p and
then shooting off infinitely in some direction d

𝐫 𝑡 = 𝐩 + 𝑡𝐝

• Where r(t) is a function representing the ray and t
is the distance traveled along the ray

• Usually, when we’re rendering, we’re interested
in finding the first surface hit along the ray’s
travel from the origin, or the intersection with the
smallest value of t (but larger than 0)

Ray Class

class Ray {

public:

 glm::vec3 Origin;

 glm::vec3 Direction;

};

NOTE: All data is public because the ray is a low-level class
storing simple data.

Ray Intersection

• The fundamental operation in a ray tracer is the ray
intersection routine

• The ray starts at a point known as the ray origin and shoots
off in a 3D direction

• The ray shoots into a 3D environment with potentially
millions of triangles or other primitives

• We are interested in knowing the first surface the ray hits
• The ray intersection routine takes a ray as input, as well as a

scene containing geometry, and determines if and where
the ray hits

 bool Scene::Intersect(const Ray &ray,Intersection &hit);

Intersection Class
class Intersection {

public:

 Intersection() {Mtl=0; Obj=0; HitDistance=1e10;}

 // Results of intersection test

 float HitDistance;

 glm::vec3 Position;

 glm::vec3 Normal;

 Material *Mtl;

 // Results of shading

 Color Shade;

};

NOTE: We will talk about Materials and Colors in a future lecture

Shading

• Once we have found an intersection (and the
associated normal and material properties) we
can do the process of shading

• Shading involves all of the calculations that
compute the color reflected back along the
initial ray towards the viewer

• This may (and often does) involve recursively
tracing additional rays to determine shadows,
reflections, and refractions

Ray Intersection & Shading

• Together, ray intersection and shading make
up the two main routines in a ray tracer

• They are also the fundamental routines used
in extensions such as path tracing and photon
mapping

Ray Intersection Performance

• The fundamental issue of ray intersection is handling large scene
complexity with reasonable performance

• Scenes often contain millions of triangles and one must trace
millions of rays to render an image

• Consider a 800 x 600 image with two light sources and no reflective
or refractive materials

• One must trace 800 x 600 = 480000 initial rays from the camera
• Assuming 2/3 of these hit objects (1/3 hit the sky), we then have to

spawn two additional shadow rays, for an additional 640000 ray
intersections and a total of 1.12 million rays

• High quality lighting and rendering effects often involve testing
hundreds or thousands of rays per pixel

• Therefore, the performance of the ray intersection test is critical

Shading Performance

• Shading functions are called many times, but less
than ray intersection (maybe 10%-50% as often)

• Shading functions often contain relatively quick
computations and so aren’t usually too expensive
in themselves

• However, most shading involves recursively
spawning more rays, which means more
intersection and more shading

• Therefore, optimizing shading functions typically
involves making them spawn as few rays as
possible to produce the desired image quality

Triangles
• Triangles are used throughout computer graphics as the

primitive of choice for rendering

• Most ray tracers only support triangles at the low level, and
only perform actual ray intersection testing with triangles

• However, other surface types (such as curved surfaces,
NURBS, subdivision surfaces, spheres, cylinders, implicit
surfaces…) can still be supported as long as they can be
tessellated into a bunch of small triangles

• This way, any surface type can be supported as long as they
provide a tessellation routine

• Optionally, one could also implement ray intersection routines
for each of those surface types, but in most cases, it
significantly impacts the performance of ray intersection
testing, and this is generally not done in commercial renderers

Ray-Triangle Intersection

• The ray-triangle intersection test is at the
heart of the ray intersection problem, and
often makes up the single biggest
performance bottleneck in most ray tracers

• We will look at some ray-triangle intersection
algorithms in an upcoming lecture

Vertex Class

class Vertex {

public:

 glm::vec3 Position;

 glm::vec3 Normal;

 glm::vec2 TexCoord;

};

Triangle Class

class Triangle {
public:
 Triangle();

 bool Intersect(const Ray &ray, Intersection &hit);

private:
 Vertex *Vtx[3];
 Material *Mtl;
};

Cameras

Camera Data

• The camera contains all of the information
about how we are going to generate a 2D
image from our 3D scene

• At a minimum, this includes:
– Matrix: position & orientation of the camera

– Field of view (FOV): determines the ‘zoom’ of the
lens (i.e., ranges from wide angle to telephoto)

– Resolution: x & y resolution of the image we want
to render

Additional Camera Data

• Later in the quarter, we will extend the
concept of a camera to include:

– Focus range (depth of field)

– Sub-pixel sampling (antialiasing)

– Exposure settings (high dynamic range imaging)

– Lens diffusion and imperfections

– Shutter speed (motion blur)

Camera Matrix

• The camera matrix is a 3D matrix that positions the camera
in the world

• Like any 3D matrix, it contains the a, b, c, and d column
vectors

• The d vector is the position of the camera
• The c vector points backwards (-c is the direction of

viewing)
• The a vector points to the right of the camera
• The b vector points to the up direction, relative to the

camera
• The camera matrix is almost always orthonormal, so a, b,

and c are unit length and perpendicular to each other

‘Look-At’ Function

• It is often convenient to define the camera matrix using a ‘look-at’ function
• This takes a camera position, a target object position, and a world ‘up’ vector

(typically the y-axis), and then builds a matrix:

 glm ∷ vec3 𝐝 = 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧
 glm ∷ vec3 𝐜 = glm ∷ normalize(𝐝 − 𝐭𝐚𝐫𝐠𝐞𝐭)
 glm ∷ vec3 𝐚 = glm ∷ normalize(glm ∷ cross 𝐮𝐩, 𝐜)
 glm ∷ vec3 𝐛 = glm ∷ cross(𝐜, 𝐚)

 glm::mat4x4 cam(a.x,a.y,a.z,0, b.x,b.y,b.z,0, c.x,c.y,c.z,0, d.x,d.y,d.z,1)

• Note: b will be length 1.0 automatically, being the cross product of two orthogonal

unit vectors
• Also note that glm has a lookAt function, but theirs computes the ‘view’ matrix,

which is the inverse of the ‘camera’ matrix

Field of View

• If we are rendering a rectangular image, then the viewable camera volume is
shaped like a pyramid, with the tip at the camera position

• We therefore have two relevant field of view (FOV) angles- one for the horizontal
FOV and one for the vertical FOV

• The image itself is a rectangle, and therefore, its shape can be defined by as aspect
ratio, which is the ratio of the image width to the height:

 𝑎𝑠𝑝𝑒𝑐𝑡 =
𝑤𝑖𝑑𝑡ℎ

ℎ𝑒𝑖𝑔ℎ𝑡

• However, it is important to notice that this is not the same as the ratio of the
horizontal to vertical FOVs:

 𝑎𝑠𝑝𝑒𝑐𝑡 ≠
ℎ𝑓𝑜𝑣

𝑣𝑓𝑜𝑣

• Because the final image aspect ratio is typically determined by the viewing format
(HDTV, film, etc.), it is useful to be able to set up the virtual camera lens by
specifying the aspect and one of the FOVs

• It is traditional to define a camera lens by its vertical FOV and image aspect ratio

Field of View

• By examining some right triangles, the
relationship between vertical and horizontal
field of view can be found:

ℎ𝑓𝑜𝑣 = 2 ∙ tan−1 𝑎𝑠𝑝𝑒𝑐𝑡 ∙ tan
𝑣𝑓𝑜𝑣

2

Pixel Aspect

• The image aspect ratio is the ratio of the width to the height of the
actual image

• However, this says nothing about the aspect ratio of the actual
pixels of the image

• On most modern display hardware (monitors, tablets, phones…) the
pixels themselves are square (aspect 1.0)

• If the pixels are square then the image aspect ratio is the same as
the ratio of the horizontal to vertical resolution XRes/YRes

• However, it isn’t too uncommon to come across display systems
with non-square pixels

• In that case, the actual pixel aspect ratio is:

 Pixel Aspect = (ImageWidth*YRes) / (ImageHeight*XRes)

Camera Class
class Camera {

public:

 Camera();

 void SetFOV(float f);

 void SetAspect(float a);

 void SetResolution(int x,int y);

 void LookAt(glm::vec3 &pos,glm::vec3 &target,glm::vec3 &up);

 void Render(Scene &s);

 void SaveBitmap(char *filename);

private:

 int XRes,YRes;

 glm::mat4x4 WorldMatrix;

 float VerticalFOV;

 float Aspect;

 Bitmap BMP;

};

Image Rendering

• When we ray-trace an image, we start by generating rays at the
camera and shoot them through each pixel into the scene

• For example, we have a loop something like this:

Camera::Render() {
 int x,y;
 for(y=0; y<YRes; y++) {
 for(x=0; x<XRes; x++) {
 RenderPixel(x,y);
 }
 }
}

Camera Rays

• We start by ‘shooting’ rays from the camera out into the scene

• We can render the pixels in any order we choose (even in random order!), but we
will keep it simple and go from top to bottom, and left to right

• We loop over all of the pixels and generate an initial primary ray (also called a
camera ray or eye ray)

• The ray origin is simply the camera’s position in world space

• The direction is computed by first finding location of a ‘virtual pixel’ on a ‘virtual
image plane’, and then computing a normalized direction from the camera
position to the virtual pixel

Camera position Virtual image

Primary ray

Project 1

• Project 1 will be a basic ray tracer that can
render a box

• It will be defined in detail in the next lecture

• If you want to get started early, you can start
with the Ray, Intersection, Vertex, and Triangle
classes defined within and implement the
function Triangle::Intersect()

