
CSE 274 (WI 2022) Homework 4
Harmonic Functions

Exercise 4.1 — Harmonic functions (10 pts). Let M be a compact and connected Rie-
mannian manifold. A function u : M → R (i.e. a 0-form u ∈ Ω0(M)) is said to be har-
monic if

−∆u = δdu = 0. (1)

(a) Show that if ∂M = � then every harmonic function is constant. (You can use the
fact that u is constant if and only if du = 0 if and only if ‖du‖2 = 0.)

(b) Give an example of a non-constant harmonic function when M has boundary. (You
can pick your own M.)

Hint ⟪dα, β⟫ = ⟪α, δβ⟫ if M has no boundary. �

Foucault Pendulum
The Foucault pendulums are large and heavy pendulums displayed in several science museums
over the world. They swing like a usual pendulum in a vertical plane. After several hours (say
a day), this vertical plane will turn with a certain angle. This is the result of the Gauss–Bonnet
theorem for parallel transported tangent vector.

The direction of the pendulum is a tangent vector of the earth. The rotation of the globe
brings the entire device (the museum building) along the circle of constant latitude counted
from the equator), and in the least dissipative manner (adiabatic process) the tangent vector
(pendulum’s swinging direction) is parallel transported along this circle.

Exercise 4.2 — Foucault pendulum (10 pts). UCSD is located approximately at32.9◦N,
117.2◦ W. If we set up a Foucault pendulum in UCSD, in how many degrees (clockwise or
counterclockwise?) would the swing direction rotate after a full rotation of the earth (i.e. in
23 hours 56 minutes 4.091 seconds)? �

Connections on Vector Bundles
We have a descent idea of what a tangent vector �eld on a manifold is. A tangent vector �eld
X ∈ Γ(TM) on a manifold M is an assignment of a tangent vector Xp ∈ TpM at each point
p ∈ M. Since at di�erent points p,q ∈ M the vector spaces TpM,TqM are two di�erent spaces,
a priori there isn’t a comparison like “Xq − Xp” we can make to measure derivative of a tangent
vector �eld. That’s why we have covariant derivative, also called connection derivative, for
measuring rate of change of a tangent vector �eld. On a manifold with metric (Riemannian
manifold), there is a canonical Levi-Civita connection for this connection. The discovery of
the uniqueness of the Levi-Civita connection (fundamental theorem of Riemannian geometry)
basically removes all the ambiguity of what the rate of change of a tangent vector means.

What about a more general vector-valued �eld that is not necessarily tangent vector �eld?
In the general case there is not a unique connection like Levi-Civita connection.

A vector bundle E over M is the union of vector spaces E =
⋃

p∈M Ep based at p. (Of
course, an example is Ep = TpM and E = TM.) A section ψ ∈ Γ(E) is an assignment of
ψp ∈ Ep per point p ∈ M. (For example, a tangent vector �eld is a section of the tangent bundle
E = TM.)
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Figure 1 Vector bundle E and a section ψ ∈ Γ(E).

Definition 1 — Connection. A connection is an operator

∇(#1)(#2) : TM × Γ(E) → Γ(E) (2)

such that
• ∇(#1)(#2) is linear in the �rst entry; i.e. ∇c1X1+c2X2ψ = c1∇X1ψ + c2∇X2ψ;
• ∇(#1)(#2) is additive in the second entry; i.e. ∇X (ψ1 + ψ2) = ∇Xψ1 + ∇Xψ2;
• Scalar function multiplication obeys the product rule for the second entry of∇(#1)(#2);

i.e. ∇X (fψ) = (dX f )ψ + f∇Xψ for any f : M → R. Here dX f = df (X ) denotes the
standard directional derivative of f .

The last property makes ∇ a bit “non-linear” as scalar (functions) don’t just factor out. In
fact it is the product rule that makes connection behave more like a derivative; otherwise it is

just some pointwise linear operator Ep
linear
−−−−→ Ep.

Definition 2 — Tensorial. An operator A : Γ(E) → Γ(E) is said to be tensorial if
• It is additive; i.e. A(ψ1 + ψ2) = Aψ1 + Aψ2;
• Scalar function multiplication factors out; i.e. A(fψ) = fA(ψ) for all f : M → R and
ψ ∈ Γ(E).

∇X (·) are not tensorial because of the product rule.

Exercise 4.3 — Offsets between connections (5 pts). Let ∇, ∇̃ be two connections
for the vector bundle E. De�ne A(#1)(#2) : TM × Γ(E) → Γ(E) by the di�erence between
the two connections:

AX (ψ) B ∇̃Xψ − ∇Xψ. (3)

Show that AX (·)must be tensorial (i.e. check that it is additive and scalar function multipli-
cation factors out).

This exercise shows that every connection ∇̃ onE can always be expressed by∇+A using
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any other connection ∇ and some endomorphism-valued 1-form A.a �

aAXψ is linear in the tangent vector X so it is a 1-form. AX (·) at each point p is a linear map from Ep to Ep
and hence an endomorphism.

Ok, so far everything is exciting. We can do calculus. Given a �eld ψ ∈ Γ(E), and a di�eren-
tial operator∇, we have a di�erential∇ψ. And what is∇ψ? It is a E-valued 1-form; it is a 1-form
because it is to be linearly paired with some X ∈ TpM so that ∇Xψ is some element in Ep. So,
E-valued k-form seems important. We will use the notation

Ω
k(M;E) B space of E-valued k-forms. (4)

For example, ψ ∈ Γ(E) = Ω0(M;E) and ∇ψ ∈ Ω1(M;E). Neat.
From here we can build the whole exterior calculus for di�erential forms just that everything

is E-valued.
Definition 3 — Connection exterior derivative. Given a connection ∇, extend it to

d∇ : Ωk(M;E) → Ωk+1(M;E) (5)

so that
• For ψ ∈ Γ(E) = Ω0(M;E), we have the base case d∇ψ = ∇ψ;
• Leibniz rule. For a real-valued k-form α ∈ Ωk(M;R) and an E-valued `-form Ψ ∈
Ω`(M;E), we have

d∇(α ∧ Ψ) = (dα) ∧ Ψ + (−1)kα ∧ (d∇Ψ). (6)

Exercise 4.4 — (5 pts). Apply the Leibniz rule and show that for every α ∈ Ωk(M;R)
andΨ ∈ Ω`(M;E)

d∇d∇(α ∧ Ψ) = α ∧ d∇d∇Ψ. (7)

That is, d∇d∇ is tensorial. �

Definition 4 — Curvature of a connection. The curvature of a connection ∇ is the
endomorphism-valued 2-form F∇ de�ned by

F∇ ∧ Ψ = d∇d∇Ψ. (8)

As a matter of fact, for a 2-dimensional surface M and for its tangent bundle TM with Levi-
Civita connection ∇, the curvature tensor F∇ is F∇ = − iKσ where i is the 90◦ rotation op-
erator, K the Gaussian curvature and σ the area 2-form. (Can you see it using some Stokes
theorem and some version of the Gauss–Bonnet theorem?)

Another fact. When there is a shift in connection ∇̃ = ∇ + A, the connection exterior
derivative is changed into d∇̃ = d∇ +A∧ , and the curvature is modi�ed by (this is actually easy
to check)

F ∇̃ = F∇ + d∇A + A ∧ A. (9)

In particular, for complex line bundle with ∇ = d + iα, the curvature is F∇ = idα.

3



If you are interested in science �ction here are some stories. In the Yang–Mills theory in
the standard model of particle physics, the main energy is given by the L2-norm of the term
d∇A+A∧A. You can also check that we always have d∇F = 0, which is called the 2nd Bianchi
identity. (Hint, start with d∇d∇d∇Ψ = d∇(F∇∧Ψ) = F∇∧d∇Ψ and apply Leibniz rule.) IfE
is the tangent bundle of the 4D spacetime, and ∇ is the Levi-Civita connection, then d∇F = 0
says that there is some quantity that is conserved (it is saying that a 2 form is closed after all).
By equating that quantity (known as the Einstein tensor) with the energy and matter of the
universe (which we also believe is conserved) then we obtain Einstein’s �eld equation of general
relativity. In summary, the state of the art physics is characterized in terms of some curvatures
of some connections of some bundles over the world.

Now, in the end of this short quarter, you have learned exterior calculus and the most general
bundle-valued exterior calculus. In the case where the connection for the bundle is not flat,
we have some nonzero d∇ ◦ d∇ and that is the curvature. In the implementation part, we are
once again reprising the Laplace matrix. But this time, we are building it using some d∇ with
curvature. What do we expect for the Dirichlet∇ energy minimizing �eld?

Implementation Part (40 pts)

Figure 2 The ground state cross �eld on the bunny.

The implementation is the best way to understand the complex line bundle �eld design
in geometry processing.

The goal is to
• (40 pts) Compute the “smoothest cross �eld” as shown in the �gure above by the smallest

eigenvalue problem of a complex Laplacian.
• (Bonus +10 pts) Find and visualize all the singularities of the cross �eld as shown in the

�gure.

4



Representation of the cross field
In the template �lehw4.hipnc, the �nal cross �eld is generated by copying the cross geometry
(or any quarter-turn symmetric geometry) to all the points of the mesh with a certain orientation
de�ned pointwise. This orientation has been setup in the pointwrangle node “setup_orientation.”

Indeed the cross orientation on each 2D tangent plane has only one rotation-about-normal
degree of freedom. As shown there, a reference direction “vector basis” is given by the
direction of a half-edge i@hedge sourced from this point. (The point attribute i@hedge
has been set up for you; it is a pointer from point to vertex as an arbitrary half-edge sourced
from this point.) With respect to this base direction “basis”, the cross �eld’s orientation is
the rotation by angle @phase/4 about the normal from this direction. The division by 4 in
@phase/4 makes it so that as @phase traverses from 0 to 2π, the actual rotation traverses
from 0 to π/2 (quarter turn). Indeed the cross �eld returns to the original state after only a
quarter turn.

Now go to the pointwrangle node “select_eigenfunction” where

@phase = atan2(Im(ψ),Re(ψ)) = arg(ψ), i.e. ψ = re i(@phase) (10)

for some C value ψ (with magnitude r). That is, the unknown @phase is now encoded in
the complex-valued function ψ de�ned on points. Again, as @phase traverses from 0 to 2π,
the cross �eld rotates by a quarter turn and returns to the original state, and simultaneously the
complex variable ψ also traverses through all complex phases and returns to the original state.

Smallest eigenvalue problem of the connection Laplacian
To measure how the neighboring cross �elds are parallel to each other, we take their di�erence:
let ij be a half-edge

(d∇ψ)ij = e−iαijψj − ψi (11)

where the angle-valued 1-form α (the vertex attribute f@A in the Houdini �le) is necessary to
account for the fact that the reference directions (i@hedge) are also chosen incoherently on
each point.

The crucial part is to implement a correct α otherwise the resulting cross �eld would just
be a random mess.

Suppose a correct α is given, then minimizing∑
(ij)∈hedges

(
hedge
weight

)
ij

��(d∇ψ)ij ��2 (12)

is accomplished by �nding the eigenfunction corresponding to the smallest eigenvalue of the
eigenvalue problem

d∇
ᵀ
?1 d∇︸      ︷︷      ︸
L

ψ = λ ?0 ψ. (13)

Here the conjugate-transpose (·)
ᵀ

is called the Hermitian transpose. (In scipy.sparse,
while transpose() gives the transpose of the matrix, getH() gives the Hermitian tran-
pose of the matrix.)

Suppose you have α, you can modify the familiar Laplacian into this connection Laplacian
(by modifying d to d∇).
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The connection α (f@A)
In the context of vector �eld (rather than cross �eld) the standard connection is the Levi-Civita
connection given by the following.

Let i, j be neighboring points connected by the half-edge ij as well as ji. Using the reference
direction (labeled as 1i and 1j) we can assign the angle φij and φji of the shared half edges ij and
ji respectively. This angle φij, φji is the partial sum of the scaled interior angles (labeled as β′k and
γ′
`
) where β′k =

2π∑
` β`

βk and similarly for all other vertices.
Now insisting that the shared half-edge vectors e iφij (in reference to 1i) and e iφji (in reference

to 1j) are parallel vectors but with opposite signs, we know that the Levi-Civita connectionαLC
ij

must satisfy

e iαLCij e iφij = −e iφji (14)

Since −1 = e iπ the above equation simply states

αLC
ij = φji − φij − π mod 2π. (15)

How about the connection α for the cross �eld? Since a rotation e iαψ by angle α to the
complex numberψ amounts to only rotating α/4 of the actual physical cross �eld in the tangent
plane, we would need to set

αij = 4αLC
ij . (16)

Input: A closed triangle mesh. A reference half edge per point.
1: For each point i, assign φij as the angle of the half-edge ij relative to the reference half edge

at i.
2: Compute the Levi-Civita connection αLC

ij for the tangent bundle.
3: Compute the connection for cross �elds αij = 4αLC

ij .
4: Build the covariant derivative matrix d∇ so that (d∇ψ)ij = e−iαijψj − ψi.
5: Build?0,?1 by the area weights and cotan weights as usual, and build L = d∇

ᵀ
?1 d∇.

6: Solve the smallest eigenvalue problem Lψ = λ ?0 ψ.
7: Let@phasebe the complex phase ofψ. Then set the cross �eld direction as the one rotated

from the reference half edge direction by angle @phase/4.
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By the way...
the cross �eld is a quarter-turn symmetric object. You can replace the “4” by any n in the entire
setup then you will obtain an n-direction �eld. An n-direction symmetric object will return to
its original state after a 2π/n turn. For n = 1 we have vector �eld. For n = 2 we have bidirection
�eld. n = 3,5,6 also gives interesting patterns.

A singularity of an n direction �eld is that, as we walk around that singularity, the �eld has
turned m · 2π/n for some integer m analogous to the Poincaré index for vector �elds. The total
sum of indices m will be nχ(M) = (2 − 2g)n.

In fact, this hairyball formula does not prevent us from considering n = 1/2, since the Euler
characteristic is always even. The corresponding n-direction �eld would be objects that returns
to original state only after 4π turn! (Quaternions are like that.) The n-direction �elds with n =
1/2 are called the spinor fields. This is what it means in quantum physics that some elementary
particles are spin-1/2; though in that context M is a 4D spacetime.
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