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Schedule 

• Last class  
– We started local features 

• Today 
– More on local features 

• Readings for today: Forsyth and Ponce 
Chapter 5 
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A hard feature matching problem 

NASA Mars Rover images 



Overview 

 
• Corners (Harris Detector) 

 
• Blobs  

 
• Descriptors 

 
 



Harris corner detector summary 
• Good corners  

– High contrast 
– Sharp change in edge orientation 

• Image features at good corners 
– Large gradients that change direction sharply 

• Will have 2 large eigenvalues 

• Compute matrix H by summing over window 



Overview 

 
• Corners (Harris Detector) 

 
• Blobs  

 
• Descriptors 

 
 



Blob detection with scale selection 

 



Achieving scale covariance 
• Goal: independently detect corresponding 

regions in scaled versions of the same image 
• Need scale selection mechanism for finding 

characteristic region size that is covariant 
with the image transformation 



Recall: Edge detection 
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Edge detection, Take 2 
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From edges to blobs 
• Edge = ripple 
• Blob = superposition of two ripples 

Spatial selection: the magnitude of the Laplacian 
response will achieve a maximum at the center of 
the blob, provided the scale of the Laplacian is 
“matched” to the scale of the blob 

maximum 



Estimating scale - I 
• Assume we have detected a corner  
• How big is the neighborhood? 
• Use Laplacian of Gaussian filter 

– Details on next slide 
– Kernel looks like fuzzy dark blob on pale light foreground  
– Scale (sigma) of Gaussian gives size of dark, light blob 

• Strategy 
– Apply Laplacian of Gaussian at different scales at corner 

• response is a function of scale 

– Choose the scale that gives the largest response 
• the scale at which the neighborhood looks “most like” a fuzzy blob 

– This is covariant  



Scale selection 

Why does this happen? 

increasing σ original signal 
(radius=8) 

• We want to find the characteristic scale of the blob 
by convolving it with Laplacians at several scales 
and looking for the maximum response 

• However, Laplacian response decays as scale 
increases: 



Scale normalization 

• The response of a derivative of Gaussian filter 
to a perfect step edge decreases as σ 
increases 
 

πσ 2
1

Presenter
Presentation Notes
The area under the first derivative of Gaussian from –infinity to 0 is equal to the value of the Gaussian at zero



Scale normalization 

• The response of a derivative of Gaussian filter 
to a perfect step edge decreases as σ 
increases 

• To keep response the same (scale-invariant), 
must multiply Gaussian derivative by σ 

• Laplacian is the second Gaussian derivative, so 
it must be multiplied by σ2 



Effect of scale normalization 

Scale-normalized Laplacian response 

Unnormalized Laplacian response Original signal 

maximum 



Blob detection in 2D 

• Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D 
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Blob detection in 2D 

• Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D 









∂
∂

+
∂
∂

=∇ 2

2

2

2
22

norm y
g

x
gg σScale-normalized: 



Scale selection 

• At what scale does the Laplacian achieve a 
maximum response to a binary circle of 
radius r? 

r 

image Laplacian 



Scale selection 
• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r? 
• To get maximum response, the zeros of the Laplacian have 

to be aligned with the circle 
• Zeros of Laplacian is given by (up to scale): 

 
 

• Therefore, the maximum response occurs at  
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Characteristic scale 
• We define the characteristic scale of a blob as 

the scale that produces peak of Laplacian 
response in the blob center 

characteristic scale 
T. Lindeberg (1998). "Feature detection with automatic scale selection." 
International Journal of Computer Vision 30 (2): pp 77--116.  

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Scale-space blob detector 

1. Convolve image with scale-normalized 
Laplacian at several scales 

2. Find maxima of squared Laplacian response 
in scale-space 



Scale-space blob detector: Example 



Scale-space blob detector: Example 

 



Scale-space blob detector: Example 



• Approximating the Laplacian with a difference 
of Gaussians: 

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

(Laplacian) 

(Difference of Gaussians) 

Efficient implementation 



Efficient implementation 

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004.  

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Scale Invariant Detectors 

• Harris-Laplacian1 
Find local maximum of: 
– Harris corner detector in 

space (image coordinates) 
– Laplacian in scale 

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001 
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004 
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• Difference of 
Gaussians 

• a.k.a. SIFT (Lowe)2 
Find local maximum of: 

– Difference of Gaussians in space 
and scale 
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Scale Invariant Detectors 

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001 

• Experimental evaluation of detectors  
w.r.t. scale change 

Repeatability rate: 

# correspondences 
# possible correspondences 



Invariance and covariance 
properties 

• Laplacian (blob) response is invariant w.r.t. 
rotation and scaling 

• Blob location is covariant w.r.t. rotation and 
scaling 



Estimating scale - summary 
• Assume we have detected a corner  
• How big is the neighborhood? 
• Use Laplacian of Gaussian filter 

– Details on next slide 
– Kernel looks like fuzzy dark blob on pale light foreground  
– Scale (sigma) of Gaussian gives size of dark, light blob 

• Strategy 
– Apply Laplacian of Gaussian at different scales at corner 

• response is a function of scale 

– Choose the scale that gives the largest response 
• the scale at which the neighborhood looks “most like” a fuzzy blob 

– This is covariant  



Estimating scale - summary 
• Laplacian of a function 

 
 

• Gaussian 
 

• So Laplacian of Gaussian 
 

• Convolve with image 



Overview 

 
• Corners (Harris Detector) 

 
• Blobs  

 
• Descriptors 

 
 



Basic idea: 
• Take 16x16 square window around detected feature 
• Compute edge orientation (angle of the gradient - 90°) for each pixel 
• Throw out weak edges (threshold gradient magnitude) 
• Create histogram of surviving edge orientations 

Scale Invariant Feature Transform 

Adapted from slide by David Lowe 

0 2π 
angle histogram 

David Lowe IJCV 2004 



SIFT features 
• Very strong record of effectiveness in matching 

applications 
– use orientations to suppress intensity change effects 
– use histograms so neighborhood need not be exactly 

localized 
– weight large gradients higher than small gradients 
– Weighting processes are different 
– SIFT features behave very well using nearest 

neighbors matching 
• i.e. the nearest neighbor to a query patch is usually a 

matching patch 



Orientation Histogram 

• 4x4 spatial bins (16 bins total) 
• Gaussian center-weighting 
• 8-bin orientation histogram per bin 
• 8 x 16 = 128 dimensions total 
• Normalized to unit norm 



SIFT Features 



Neighborhoods and SIFT - Key 
Points 

• Algorithms to find neighborhoods  
– Represented by location, scale and orientation 
– Neighborhood is covariant 

• If image is translated, scaled, rotated 
• Neighborhood is translated, scaled, rotated 
• Important property for matching 

– Affine covariant constructions are available 

• Once found, describe with SIFT features 
– A representation of local orientation histograms, 

comparable to HOG 
– Normalized differently 



SIFT – Scale Invariant Feature Transform1 

• Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, and to 
moderate affine transformations 

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004 
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003 

Scale = 2.5 
Rotation = 450 



SIFT invariances 

• Spatial binning gives tolerance to small 
shifts in location and scale 

• Explicit orientation normalization 
• Photometric normalization by making all 

vectors unit norm 
• Orientation histogram gives robustness to 

small local deformations 
 
 



Summary of SIFT 
Extraordinarily robust matching technique 

– Can handle changes in viewpoint 
• Up to about 60 degree out of plane rotation 

– Can handle significant changes in illumination 
• Sometimes even day vs. night (below) 

– Fast and efficient—can run in real time 
– Lots of code available 

• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT  

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT


Summary 
• We started last class with linear filters 

• including filter construction and separability, 
convolution methods and image blurring 

• This week we discussed filter derivatives and 
scale space/pyramids 

• including 1st and 2nd derivatives of the Gaussian filters, 
the Gaussian pyramid and the Laplacian pyramid 

• In this lecture we discussed how DoG filters 
detect edges and how post-processing works 

• specifically we focused on the Canny edge detector and 
its post-processing techniques 
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Slide Credits 

• David A. Forsyth - UIUC 
• Svetlana Lazebnik – UIUC 
• Rob Fergus – NYU 
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Next class 

• Texture 
• Readings for next lecture:  

– Forsyth and Ponce 6.1 – 6.4, Szelinski 10.5 
(optional) 

• Readings for today:  
– Forsyth and Ponce 5; Szeliski 3.1-3.3  
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Questions 
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