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CSE 473: Artificial Intelligence

Bayesian Networks - Learning

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, 
Stuart Russell, Andrew Moore & Luke Zettlemoyer
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What action 
next?

Percepts Actions

Environment

Static vs. Dynamic

Fully 
vs.

Partially 
Observable

Perfect
vs.

Noisy

Deterministic 
vs. 

Stochastic

Instantaneous 
vs. 

Durative
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AI Topics 
§ Search

§ Problem Spaces
§ BFS, DFS, UCS, A* (tree and 

graph)
§ Completeness and Optimality
§ Heuristics: admissibility, consistency 

& creation
§ Pattern databases

§ Games
§ Minimax, Alpha-beta pruning, 

Expectimax, Evaluation Functions
§ MDPs

§ Bellman equations
§ Value iteration & policy iteration
§ RTDP,
§ POMDPs 

§ Reinforcement Learning
§ Exploration vs. Exploitation
§ Model-based vs. model-free
§ Q-learning
§ Linear value function approx.

§ Hidden Markov Models
§ Markov chains
§ Forward algorithm
§ Particle Filter

§ Bayesian Networks
§ Basic definition, independence (d-sep)
§ Variable elimination
§ Gibbs sampling

§ Learning
§ BN parameters with data complete &

incomplete (Expectation Maximization)
§ Structure learning as search
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Search thru a 

§ Set of states
§ Operators [and costs]
§ Start state
§ Goal state [test]

• Path: start Þ a state satisfying goal test
• [May require shortest path]
• [Sometimes just need state passing test]

• Input:

• Output:

Problem Space / State Space 
Ex.  Proving a trig identity, e.g.  sin2(x) = ½ - ½ cos(2x)  
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Today

§ Bonus Topic – Hybrid Bayes Nets
§ Learning

§ Parameter Learning & Priors
§ Expectation Maximization
§ Structure Learning
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Bayes Nets

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(E=t) Pr(E=f)
0.01    0.99

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio
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Continuous Variables

Earthquake

Pr(E=t) Pr(E=f)
0.01    0.99

So far: assuming variables have discrete values, e.g. True / False
Could also allow continuous values, E Î R, eg 7.9  (on the Richter scale)
How specify probabilities?  (explicit CPT would be infinitely large)
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Continuous Variables

Earthquake

Pr(E=t) Pr(E=f)
0.01    0.99

So far: assuming variables have discrete values
Could also allow continuous values, E Î R, 
Specify probabilities with a pre-defined continuous distribution, eg Gaussian
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Continuous Variables

Earthquake

Pr(E=x)
mean: µ = 6

variance: s = 2

So far: assuming variables have discrete values
Could also allow continuous values, E Î R, 
And specify probabilities using a continuous distribution, such as a Gaussian
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Continuous Variables
with Discrete Parents

Earthquake

Aliens

Pr(E|A)
a µ = 6

s = 2
a µ = 1

s = 3

Pr(A=t) Pr(A=f)
0.01    0.99
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End Bonus Topic…

?
Back to:

Learning
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What is Machine Learning?

Study of algorithms that
§ improve their performance
§ at some task
§ with experience
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Space of ML Problems

W
hat is Being Learned?

Type of Supervision 
(eg, Experience, Feedback)

Labeled
Examples

Reward Nothing

Discrete 
Function

Classification Clustering

Continuous 
Function

Regression

Policy Apprenticeship 
Learning

Reinforcement
Learning
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Supremacy of Machine Learning

§ Machine learning is preferred approach to
§ Speech recognition, Natural language processing
§ Web search – result ranking
§ Computer vision
§ Medical outcomes analysis
§ Robot control
§ Computational biology
§ Sensor networks
§ …

§ This trend is accelerating
§ Improved machine learning algorithms 
§ Improved data capture, networking, faster computers
§ Software too complex to write by hand
§ New sensors / IO devices
§ Demand for self-customization to user, environment

15
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Reinforcement Learning
Study of algorithms that
§ improve their performance
§ at some task
§ with experience

Ability to 
accumulate reward

Executing actions

Executing actions

17
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Bayes Net Learning
Study of algorithms that
§ improve their performance
§ at some task
§ with experience

Prediction accuracy

Answering probabilistic queries
Seeing labeled data

18
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Learning Bayes Networks
§ Learning Parameters for a Bayesian Network

§ Fully observable variables
§ Maximum Likelihood (ML), MAP & Bayesian estimation 
§ Example: Naïve Bayes for text classification

§ Hidden variables 
§ Expectation Maximization (EM)

§ Learning the Structure of Bayesian Networks

19
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Learning Bayes Nets

Suppose …
1. Know structure & get complete observations of every var

2. Know structure & get observations only of some vars
Others are hidden  (learn with EM)

3. Don’t even know structure!

21
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Parameter Estimation and Bayesian 
Networks

E B R A J M

T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...We have: 

- Bayes Net structure and observations
- We need: Bayes Net parameters

22

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(B) = ?

P(¬B) = 1- P(B) 

= 0.4

= 0.6

23
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Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = 0.5

24

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = 1.0 ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

25
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Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

26

Estimation: Laplace Smoothing

§ Laplace’s estimate:
pretend you saw every outcome 
once more than you actually did

Another name for computing the MAP estimate with Dirichlet priors
(Bayesian justification)

H H T

(2+1) / (3+2)
= 3/5

PLAP(H) = 

41
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Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = 2 / 3.   Laplacian smoothing:  imaginary T, F
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

42

Output of Learning

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(E=t) Pr(E=f)
0.02    0.98
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Did Learning Work Well?

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Pr(B=t) Pr(B=f)
0.05    0.95

Calculate P(data) 
Assuming learned parameters

Pr(E=t) Pr(E=f)
0.02    0.98

53

Did Learning Work Well?

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Pr(B=t) Pr(B=f)
0.05    0.95

Calculate P(data) 
Assuming learned parameters

Pr(E=t) Pr(E=f)
0.02    0.98

0.02 * 0.95 * 0.2 *….
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Topics
§ Another Useful Bayes Net

§ Hybrid Discrete / Continuous
§ Learning Parameters for a Bayesian Network

§ Fully observable
§ Hidden variables (EM algorithm)

§ Learning Structure of Bayesian Networks

55

Why Learn Hidden Variables?

56
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How Learn Hidden Variables?

57
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Chicken & Egg Problem

§ If we knew whether patient had disease
§ It would be easy to learn CPTs

Fully observable!
§ But we can’t observe states, so we don’t!

Slide by Daniel S. Weld

• If we knew CPTs
– It would be easy to predict if patient had disease
– But we don’t, so we can’t!

58
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Face It…

59

59

60

60
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Continuous Variables

Earthquake

Aliens

Pr(E|A)
a µ = 6

s = 2
a µ = 1

s = 3

Pr(A=t) Pr(A=f)
0.01    0.99 hidden

61
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Learning with Continuous Variables

Earthquake

Pr(E=x)
mean: µ = ?

variance: s = ?

62
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Continuous Variables

Earthquake

Aliens

Pr(E|A)
a µ = 6

s = 2
a µ = 1

s = 3

Pr(A=t) Pr(A=f)
0.01    0.99 hidden

63
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Simplest Version
§ Mixture of two distributions

§ Know: form of distribution & variance,
σ = .5

§ Just need mean of each distribution

.01   .03   .05   .07   .09

Slide by Daniel S. Weld
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Input Looks Like

.01     .03     .05     .07     .09

Slide by Daniel S. Weld

65

66

We Want to Predict

.01     .03     .05     .07     .09

?

Slide by Daniel S. Weld

Aliens CausedNaturally Caused

66
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Chicken & Egg

.01     .03     .05     .07     .09

Note that coloring instances would be easy 
if we knew Gausians….

Slide by Daniel S. Weld
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Chicken & Egg

.01     .03     .05     .07     .09

And finding Gausian parameters would be easy
If we knew the coloring

Slide by Daniel S. Weld
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Expectation Maximization (EM)

§ Pretend we do know the parameters
§ Initialize randomly: set  q1=?;   q2=?

.01   .03   .05   .07   .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)
§ Pretend we do know the parameters

§ Initialize randomly
§ [E step] Compute probability of instance having 

each possible value of the hidden variable

.01     .03     .05     .07     .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)
§ Pretend we do know the parameters

§ Initialize randomly
§ [E step] Compute probability of instance having 

each possible value of the hidden variable

.01     .03     .05     .07     .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)
§ Pretend we do know the parameters

§ Initialize randomly
§ [E step] Compute probability of instance having 

each possible value of the hidden variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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ML Mean of Single Gaussian

Uml = argminuSi(xi – u)2

.01   .03   .05   .07   .09
Slide by Daniel S. Weld
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Expectation Maximization (EM)

§ [E step] Compute probability of instance having 
each possible value of the hidden variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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Expectation Maximization (EM)

§ [E step] Compute probability of instance having 
each possible value of the hidden variable

.01     .03     .05     .07     .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)

§ [E step] Compute probability of instance having 
each possible value of the hidden variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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Expectation Maximization (EM)

§ [E step] Compute probability of instance having 
each possible value of the hidden variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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Expectation Maximization

§ Guaranteed to converge to fixed point 
solution

§ NOT guaranteed to find optimal solution 
(one with highest likelihood given data)

§ Used everywhere!

78
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Topics
§ Another Useful Bayes Net

§ Hybrid Discrete / Continuous
§ Learning Parameters for a Bayesian Network

§ Fully observable
§ Maximum Likelihood (ML), 
§ Maximum A Posteriori (MAP)

§ Hidden variables (EM algorithm)
§ Learning Structure of Bayesian Networks

79

What if we don’t know 
structure?

80
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Learning The Structure
of Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

81

Learning The Structure
of Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

82
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Learning The Structure
of Bayesian Networks

§ Search thru the space… 
§ of possible network structures!

§ For each structure, learn parameters
§ As just shown…

§ Pick the one that fits observed data best
§ Learn best parameter values for that structure
§ Calculate P(data)

83

A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

Two problems:
• Fully connected will be most probable
• Exponential number of structures

84
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Learning The Structure
of Bayesian Networks

§ Search thru the space… 
§ of possible network structures!

§ For each structure, learn parameters
§ As just shown…

§ Pick the one that fits observed data best
§ Calculate P(data)

Two problems:
• Fully connected will be most probable

• Add penalty term (regularization) µ model complexity
• Exponential number of structures

• Local search

85

Overfitting

Can represent strictly more P distributions

Can represent NOISE in training data

Often preforms WORSE on test data

86
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Augment Score Function

§ Bayesian Information Criterion (BIC)
§ P(D | BN) – penalty
§ Penalty = α complexity
§ Penalty = α [½ (# parameters) Log (# data points)]

© Daniel S. Weld 87

Instance of “regularization”

Solves problem of “overfitting”

87

A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

Hill-climbing Search

89
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Tuning on Held-Out Data
§ Now we’ve got two kinds of unknowns

§ Parameters: the probabilities P(Y|X), P(Y)
§ Hyperparameters, like 

§ the amount of smoothing to do: k, or
§ regularization penalty, α

§ Where to learn?
§ Learn parameters from training data
§ Must tune hyperparameters on different data

§ Why?
§ For each value of the hyperparameters, train and 

test on the held-out data
§ Choose the best value and do a final test on the 

test data

90
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Topics
§ Another Useful Bayes Net

§ Hybrid Discrete / Continuous
§ Learning Parameters for a Bayesian Network

§ Fully observable
§ Maximum Likelihood (ML), 
§ Maximum A Posteriori (MAP)

§ Hidden variables (EM algorithm)
§ Learning Structure of Bayesian Networks

92
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AI Topics 
§ Search

§ Problem Spaces
§ BFS, DFS, UCS, A* (tree and 

graph)
§ Completeness and Optimality
§ Heuristics: admissibility, consistency 

& creation
§ Pattern databases

§ Games
§ Minimax, Alpha-beta pruning, 

Expectimax, Evaluation Functions
§ MDPs

§ Bellman equations
§ Value iteration & policy iteration
§ RTDP,
§ POMDPs 

§ Reinforcement Learning
§ Exploration vs. Exploitation
§ Model-based vs. model-free
§ Q-learning
§ Linear value function approx.

§ Hidden Markov Models
§ Markov chains
§ Forward algorithm
§ Particle Filter

§ Bayesian Networks
§ Basic definition, independence (d-sep)
§ Variable elimination
§ Gibbs sampling

§ Learning
§ BN parameters with data complete &

incomplete (Expectation Maximization)
§ Structure learning as search

93
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Search thru a 

§ Set of states
§ Operators [and costs]
§ Start state
§ Goal state [test]

• Path: start Þ a state satisfying goal test
• [May require shortest path]
• [Sometimes just need state passing test]

• Input:

• Output:

Problem Space / State Space 
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