CSE 473: Artificial Intelligence

Bayesian Networks - Learning

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller,
Stuart Russell, Andrew Moore & Luke Zettlemoyer
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Al Topics

= Search . .
= Problem Spaces R-e Irgf;;greartri:)ennvtsLIEeiﬁgiltggon
= BFS, DFS, UCS, A* (tree and = Model-based vs. model-free
graph) = Q-learning

- Comple_teness z?nd. C_).ptimality_ = Linear value function approx.
= Heuristics: admissibility, consistency Hidden Markov Models

= gacilt'z?r?cc)igtabases * Markov chains
= Forward algorithm

= Games = Particle Filter

= Minimax, Alpha-beta pruning, = Bayesian Networks

Expectimax, Evaluation Functions = Basic definition, independence (d-sep)

= MDPs = Variable elimination

= Bellman equations .

= Value iteration & policy iteration = Learning

- = BN parameters with data complete &

= POMDPs incomplete (Expectation Maximization)

= Structure learning as search

Search thru a
Problem Space / State Space

Ex. Proving a trig identity, e.g. sin?(x) = %2 - Y2 cos(2x)

* Input:
= Set of states
= Operators [and costs]
= Start state
= Goal state [test]

* Output:
« Path: start = a state satisfying goal test

* [May require shortest path]
» [Sometimes just need state passing test]




Today

= Bonus Topic — Hybrid Bayes Nets

= Learning

» Parameter Learning & Priors
» Expectation Maximization

» Structure Learning

Bayes Nets
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Continuous Variables

Pr(E=1) Pr(E=f)
0.01 0.99

Earthquake

So far: assuming variables have discrete values, e.g. True / False
Could also allow continuous values, E € R, eg 7.9 (on the Richter scale)

How specify probabilities? (explicit CPT would be infinitely large)

© Daniel S _Weld

7

Continuous Variables

Pr(E=t) Pr(E=f)
Earthquake

0.01 0.99
So far: assuming variables have discrete values
Could also allow continuous values, E € R,

Specify probabilities with a pre-defined continuous distribution, eg Gaussian

© Daniel S _Weld
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Continuous Variables
Pr(E=x)

mean: 1 = 6
Earthquake variance: ¢ = 2

So far: assuming variables have discrete values
Could also allow continuous values, E € R,

And specify probabilities using a continuous distribution, such as a Gaussian

—(z-p)?
e 202

Pz | p,0) =

Continuous Variables
with Discrete Parents

Pr(A=t) Pr(A=f)

0.01 0.99

Pr(E|A)

Earthquake
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End Bonus Topic...
?

Back to:

Learning %
I

11

What is Machine Learning?

Study of algorithms that
» improve their performance
= at some task
= with experience

12
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Space of ML Problems

Type of Supervision
(eg, Experience, Feedback)

=

5 Labeled Reward

g Examples

w IS ECY Classification Clustering
‘:—‘: Function

Q FINTHIEIE] Regression

g': Function

3 o] [[3A Apprenticeship  Reinforcement

° Learning Learning

-~

14
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Supremacy of Machine Learning

= Machine learning is preferred approach to
Speech recognition, Natural language processing
Web search — result ranking

Computer vision

Medical outcomes analysis

Robot control

Computational biology

Sensor networks

= This trend is accelerating
= Improved machine learning algorithms
Improved data capture, networking, faster computers
Software too complex to write by hand
New sensors / IO devices
Demand for self-customization to user, environment

15
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Reinforcement Learning

Study of algorithms that

= improve their performance o, reward
® gt some @( Executing actions

= with experience

Executing actiong

17
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Bayes Net Learning

Study of algorithms that

= improve their performance Prediction accyrac,
= at some task

= with experience

An i
Swering Probabilistic Queries

Seeing labeleq data

18
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Learning Bayes Networks

» Learning Parameters for a Bayesian Network

» Fully observable variables
= Maximum Likelihood (ML), MAP & Bayesian estimation
= Example: Naive Bayes for text classification

» Hidden variables
= Expectation Maximization (EM)

» Learning the Structure of Bayesian Networks

19

Learning Bayes Nets

Suppose ...

1. Know structure & get complete observations of every var

2. Know structure & get observations only of some vars
Others are hidden (learn with EM)

3. Don’t even know structure!

© Daniel S. Weld
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Parameter Estimation and Bayesian
Networks
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We have: :
- Bayes Net structure and observations
- We need: Bayes Net parameters
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Parameter Estimation and Bayesian
Networks
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Earthquake

@0\

P(A|-E,-B) = 0.5

Parameter Estimation and Bayesian

Networks
N
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P(AJE,~B) = 1.0?

Parameter Estimation and Bayesian

Networks
@ BN
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Parameter Estimation and Bayesian
Networks

Earthquake Burgla

H

/ T|F T
(&) HE E
F|F T
Quacad [F[T| [F
P(A|E,B) =?
26

Estimation: Laplace Smoothing

= Laplace’s estimate:

pretend you saw every outcome @ @ @
once more than you actually did

_c(x)+1
Prap(z) = o) = 1]
_cx)+1 Pure(H) = gz/;n / (3+2)
N+ |X]|

Another name for computing the MAP estimate with Dirichlet priors
(Bayesian justification)

41
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Parameter Estimation and Bayesian
Networks

Ear’rhquake @ m -

P(A|E,mB) =2/ 3. Laplacian smoothing: imaginary T, F

m| M ™M M|
—A|mM|{Hd|™m| ™
m| ||
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: Output of Learnin
0.02 0.98 p g

Pr(B=1) Pr(B=f)
0.05 0.95
Earthquake Burglc
Pr(AIE,B)
b| 0.9 (0.1)

b 0.2 (0.8)

eb| 0.85(0.15)
,b] 0.01(0.99)

0
o
o
o \

M| AT D>
M| | |7 |-
A Ha4|=Z

52

13



=== Did Learning Work Well?

0.02 0.98

4f|| 0 (;5 0 9;

Earthquake ) -
Pr(A|E,B)
0.9 (0.1)

0.2 (0.8)

0.85 (0.15)
0.01 (0.99)

E|B|R|A|J|M
T|F|T|T|F|T
FIFIETELELT Calcula_te P(data)
FlITIElTITIT Assuming learned parameters
FIF|F|{T|T|T
FIT|F|F|F|F
53
=memm DIid Learning Work Well?
0.02 0.98
Awoéa 095
_—
Pr(A|E,B)
0.9 (0.1)
0.2 (0.8)
0.85 (0.15)
0.01 (0.99)
E|B|R|A|[J|M
FIT|T|F|T
Calculate P(data)
Assuming learned parameters
0.02*0.95*0.2"....
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Topics

= Another Useful Bayes Net
» Hybrid Discrete / Continuous

» Learning Parameters for a Bayesian Network

» Hidden variables (EM algorithm)
= Learning Structure of Bayesian Networks

55

Why Learn Hidden Variables?

56
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How Learn Hidden Variables?

54
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Chicken & Egg Problem

» |f we knew whether patient had disease
» |t would be easy to learn CPTs
Fully observable!
= But we can’t observe states, so we don’t!

e |f we knew CPTs

— It would be easy to predict if patient had disease
— But we don’t, so we can’t!

Slide by Daniel S. Weld

58

58

3/13/20

16



3/13/20

Face It...

17



Continuous Variables

Pr(A=1) Pr(A=f)
001 099 hidden

Pr(E|A)
L 2 a n= 6
Earthquake _ =2
a p=1
c=3

© Daniel S _Weld
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Learning with Continuous Variables

; / 1 Pr(E=x)
L2z=2 Earthquake mean: = ?
variance: ¢ = ?
1 N
. _ 1 .
UMLE N Z: 7
=1
2 1 X 2
OVMLE = NZ (z; — 1)
=1

© Daniel S _Weld
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Continuous Variables

Pr(A=1) Pr(A=f)
001 099 hidden

Pr(E|A)
L 2 a n = 6
Earthquake o=2
a p=1
c=3

© Daniel S _Weld
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Simplest Version
= Mixture of two distributions

.01 .Oq .05..07 ;09 .
= Know: form of distribution & variance,

o=.5
= Just need mean of each distribution

64

ide by Daniel S. Weld
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Input Looks Like

11 e W 1T 1T

Slide by Daniel S. Weld

.01 .03 .05 .07 .09

65
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We Want to Predict

Naturally Caused Aliens Caused

/o,

I TR AR, 1

Slide by Daniel S. Weld

.01 .03 .06 .07 .09

66

66
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Chicken & Egg

Note that coloring instances would be easy
if we knew Gausians....

W N

.01 .03 .05 .07 .09

Slide by Daniel S. Weld 67
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Chicken & Egg

And finding Gausian parameters would be easy
If we knew the coloring

1 1111 W A1 T

.01 .03 .06 .07 .09

Slide by Daniel S. Weld 68

68
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Expectation Maximization (EM)

* Pretend we do know the parameters
= |nitialize randomly: set 04=7; 0,="

Vs

.01 .03 .05 .07 .09

Slide by Daniel S. Weld 69

69

Expectation Maximization (EM)

» Pretend we do know the parameters
= |nitialize randomly

= [E step] Compute probability of instance having
each possible value of the hidden variable

L I1 R [ N
01 03 .05 .07 .09
70

Slide by Daniel S. Weld

70

22



Expectation Maximization (EM)

* Pretend we do know the parameters
» |nitialize randomly

» [E step] Compute probability of instance having
each possible value of the hidden variable

AR [ AN TTT -
.01 03 .05 .07 .09
71

Slide by Daniel S. Weld

71

Expectation Maximization (EM)

» Pretend we do know the parameters
= |nitialize randomly

= [E step] Compute probability of instance having
each possible value of the hidden variable

[M step] Treating each instance as fractionally
halvmg both values compute the new parameter
values

NN AN 1] 1T
.01 03 .05 .07 .09
72

Slide by Daniel S. Weld
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ML Mean of Single Gaussian

U = argmin, zi(xi —u)?

.01 .03 .05 .07 .09

Slide by Daniel S. Weld 73

73

Slide by Daniel S. Weld

Expectation Maximization (EM)

[M step] Treating each instance as fractionally
halvmg both values compute the new parameter
values

LI L1 L [ 1
.01 .03 .05 .07 .09
74

74
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Expectation Maximization (EM)

» [E step] Compute probability of instance having
each possible value of the hidden variable

L1 11 L 1 1L | |
01 .03 .05 .07 .09

Slide by Daniel S. Weld 75

75

Expectation Maximization (EM)

= [E step] Compute probability of instance having
each possible value of the hidden variable

[M step] Treating each instance as fractionall
halvmg both values compute the new parameter
values

L1 1l L1 i [ |
01 03 .05 .07 .09
76

Slide by Daniel S. Weld
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Slide by Daniel S. Weld

Expectation Maximization (EM)

» [E step] Compute probability of instance having

each possible value of the hidden variable

[M step] Tr'ea‘rinlg each instance as fractionall
u

having both va

es compute the new parameter
values

.01 .03 .05 .07 .09
77
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Expectation Maximization

= Guaranteed to converge to fixed point
solution

= NOT guaranteed to find optimal solution
(one with highest likelihood given data)

= Used everywhere!

78

78

3/13/20

26



Topics

= Another Useful Bayes Net
» Hybrid Discrete / Continuous
» Learning Parameters for a Bayesian Network

= Fully observable
= Maximum Likelihood (ML),
= Maximum A Posteriori (MAP)
» Hidden variables (EM algorithm)

= Learning Structure of Bayesian Networks

© Daniel 5. Weld

79

What if we don’t know
structure?

80
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Learning The Structure
of Bayesian Networks

Burglary

E{B|R|A|J | M
T|F|T|T|F|T
FIF|F|F|F|T
FI|T|F|T|T|T
FIF|F|T|T|T
FIT|F|F|F|F
81
Learning The Structure
of Bayesian Networks
E|B|R|A|J M
T|F|T|T|F|T
FIF|F|F|F|T
FIT|F|T|T|T
FIF|F|T|T|T
FIT|F|F|F|F
82
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Learning The Structure

of Bayesian Networks

= Search thru the space...
» of possible network structures!

» For each structure, learn parameters
= As just shown...

= Pick the one that fits observed data best
» Learn best parameter values for that structure
» Calculate P(data)

83

5 0
® 0O

Two problems:
» Fully connected will be most probable
* Exponential number of structures

84
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Learning The Structure

of Bayesian Networks

= Search thru the space...
» of possible network structures!

= For each structure, learn parameters
= As just shown...

= Pick the one that fits observed data best
» Calculate P(data)

Two problems:
» Fully connected will be most probable

* Add penalty term (regularization) oC model complexity
» Exponential number of structures
* Local search

85

Overfitting

Earthquake Garthquake) —— Gurglary)

== R
G @— G

W N
@rzcad  Qrical) — Qarzca)

Can represent strictly more P distributions

Can represent NOISE in training data

Often preforms WORSE on test data

86
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Augment Score Function

» Bayesian Information Criterion (BIC)
= P(D | BN) — penalty
» Penalty = a complexity
= = o [/2 (# parameters) Log (# data points)]

Instance of “regularization”

Solves problem of “overfitting”

© Daniel S. Weld 7.

87

Hill-climbing Search ()

89
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Tuning on Held-Out Data

= Now we’ve got two kinds of unknowns
= Parameters: the probabilities P(Y|X), P(Y)
* Hyperparameters, like training

= the amount of smoothing to do: k, or >
= regularization penalty, « %
p -
>
= Where to learn? o |held-out
© test

= Learn parameters from training data
= Must tune hyperparameters on different data
= Why? o
= For each value of the hyperparameters, train and
test on the held-out data

= Choose the best value and do a final test on the
test data

90

Topics

= Another Useful Bayes Net
= Hybrid Discrete / Continuous
= Learning Parameters for a Bayesian Network

= Fully observable
= Maximum Likelihood (ML),
= Maximum A Posteriori (MAP)
» Hidden variables (EM algorithm)

= Learning Structure of Bayesian Networks

© Daniel S. Weld
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Al Topics

= Search . .
= Problem Spaces R-e Irgf;;greartri:)ennvtsLIEeiﬁgiltggon
= BFS, DFS, UCS, A* (tree and = Model-based vs. model-free
graph) = Q-learning

- Comple_teness z?nd. C_).ptimality_ = Linear value function approx.
= Heuristics: admissibility, consistency Hidden Markov Models

& creation X
= Markov chains
= Pattern databases = Forward algorithm
= Games = Particle Filter
= Minimax, Alpha-beta pruning, = Bayesian Networks
Expectimax, Evaluation Functions = Basic definition, independence (d-sep)
= MDPs = Variable elimination
= Bellman equations .
= Value iteration & policy iteration = Learning
" = BN parameters with data complete &
= POMDPs incomplete (Expectation Maximization)
= Structure learning as search
93
Search thru a
Problem Space / State Space
* Input:
= Set of states
= Operators [and costs]
= Start state
= Goal state [test]
* Output: o
« Path: start = a state satisfying goal test
* [May require shortest path]
» [Sometimes just need state passing test]
94
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