CSE 473: Artificial Intelligence

Bayesian Networks - Learning

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, Stuart Russell, Andrew Moore \& Luke Zettlemoyer

1

2

Al Topics

- Search
- Problem Spaces
- BFS, DFS, UCS, A* (tree and graph)
- Completeness and Optimality
- Heuristics: admissibility, consistency \& creation
- Pattern databases
- Games
- Minimax, Alpha-beta pruning, Expectimax, Evaluation Functions
- MDPs
- Bellman equations
- Value iteration \& policy iteration
- POMDPs
- Reinforcement Learning
- Exploration vs. Exploitation
- Model-based vs. model-free
- Q-learning
- Linear value function approx.
- Hidden Markov Models
- Markov chains
- Forward algorithm
- Particle Filter
- Bayesian Networks
- Basic definition, independence (d-sep)
- Variable elimination
- Learning
- BN parameters with data complete \& incomplete (Expectation Maximization)
- Structure learning as search

Search thru a Problem Space / State Space

Ex. Proving a trig identity, e.g. $\sin ^{2}(x)=1 / 2-1 / 2 \cos (2 x)$

- Input:
- Set of states
- Operators [and costs]
- Start state
- Goal state [test]
- Output:
- Path: start \Rightarrow a state satisfying goal test
- [May require shortest path]
- [Sometimes just need state passing test]

Today

- Bonus Topic - Hybrid Bayes Nets
- Learning
- Parameter Learning \& Priors
- Expectation Maximization
- Structure Learning

Bayes Nets

Continuous Variables

$\frac{\operatorname{Pr}(E=t) \operatorname{Pr}(E=f)}{}$
 $0.01 \quad 0.99$

Earthquake

So far: assuming variables have discrete values, e.g. True / False Could also allow continuous values, $\mathrm{E} \in \mathrm{R}$, eg 7.9 (on the Richter scale) How specify probabilities? (explicit CPT would be infinitely large)

Continuous Variables

$\operatorname{Pr}(E=t) \operatorname{Pr}(E=f)$ $0.01 \quad 0.99$

Earthquake

So far: assuming variables have discrete values
Could also allow continuous values, $\mathrm{E} \in \mathrm{R}$,
Specify probabilities with a pre-defined continuous distribution, eg Gaussian

8

Continuous Variables

So far: assuming variables have discrete values
Could also allow continuous values, $\mathrm{E} \in \mathrm{R}$,
And specify probabilities using a continuous distribution, such as a Gaussian

$$
P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

© Daniel S. Weld
9

Continuous Variables with Discrete Parents

$\frac{\operatorname{Pr}(A=t) \operatorname{Pr}(A=f)}{0.010 .99}$

End Bonus Topic...

Back to:

Learning

11

What is Machine Learning?

Study of algorithms that

- improve their performance
- at some task
- with experience

Space of ML Problems

Type of Supervision

(eg, Experience, Feedback)

	Labeled Examples	Reward	Nothing
Discrete Function	Classification		Clustering
Continuous Function	Regression		
Policy	Apprenticeship Learning	Reinforcement Learning	

Supremacy of Machine Learning

- Machine learning is preferred approach to
- Speech recognition, Natural language processing
- Web search - result ranking
- Computer vision
- Medical outcomes analysis
- Robot control
- Computational biology
- Sensor networks
- ...
- This trend is accelerating
- Improved machine learning algorithms
- Improved data capture, networking, faster computers
- Software too complex to write by hand
- New sensors / IO devices
- Demand for self-customization to user, environment

Reinforcement Learning

Study of algorithms that

- improve their performance

Ability to
accumulate reward

- at some task
- with experience

Executing actions
Executing actions

Bayes Net Learning

Study of algorithms that

- improve their performance ${ }^{\text {Predicition accuracy }}$
- at some task Answering probabilistic queries
- with experience Seeing labeled data

Learning Bayes Networks

- Learning Parameters for a Bayesian Network
- Fully observable variables
- Maximum Likelihood (ML), MAP \& Bayesian estimation
- Example: Naïve Bayes for text classification
- Hidden variables
- Expectation Maximization (EM)
- Learning the Structure of Bayesian Networks

Learning Bayes Nets

Suppose ...

1. Know structure \& get complete observations of every var
2. Know structure \& get observations only of some vars Others are hidden (learn with EM)
3. Don't even know structure!

Parameter Estimation and Bayesian Networks

We have:

\mathbf{E}	\mathbf{B}	\mathbf{R}	\mathbf{A}	\mathbf{J}	\mathbf{M}
T	F	T	T	F	T
F	F	F	F	F	T
F	T	F	T	T	T
F	F	F	T	T	T
F	T	F	F	F	F
\ldots					

- Bayes Net structure and observations
-We need: Bayes Net parameters

Parameter Estimation and Bayesian Networks

$$
\begin{array}{ll}
P(B)=? & =0.4 \\
P(\neg B)=1-P(B) & =0.6
\end{array}
$$

Parameter Estimation and Bayesian Networks


```
\(P(A \mid E, B)=\) ?
\(P(A \mid E, \neg B)=?\)
\(P(A \mid \neg E, B)=\) ?
\(\mathrm{P}(\mathrm{A} \mid \neg \mathrm{E}, \neg \mathrm{B})=0.5\)
```

Parameter Estimation and Bayesian Networks

$P(A \mid E, B)=$?
$P(A \mid E, \neg B)=1.0$?
$P(A \mid \neg E, B)=$?
$P(A \mid \neg E, \neg B)=$?

Parameter Estimation and Bayesian Networks

$P(A \mid E, B)=$?
$\mathrm{P}(\mathrm{A} \mid \mathrm{E}, \neg \mathrm{B})=$?
$P(A \mid \neg E, B)=$?
$P(A \mid \neg E, \neg B)=$?

Estimation: Laplace Smoothing

- Laplace's estimate:
pretend you saw every outcome once more than you actually did

$$
\begin{aligned}
P_{L A P}(x) & =\frac{c(x)+1}{\sum_{x}[c(x)+1]} \\
& =\frac{c(x)+1}{N+|X|}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{LAP}}(\mathrm{H}) & =(2+1) /(3+2) \\
& =3 / 5
\end{aligned}
$$

Another name for computing the MAP estimate with Dirichlet priors (Bayesian justification)

Parameter Estimation and Bayesian Networks

$P(A \mid E, B)=$?
$P(A \mid E, \neg B)=2 / 3$. Laplacian smoothing: imaginary T, F $P(A \mid \neg E, B)=$?
$P(A \mid \neg E, \neg B)=$?

\mathbf{E}	\mathbf{B}	\mathbf{R}	\mathbf{A}	\mathbf{J}	\mathbf{M}
T	F	T	T	F	T
F	F	F	F	F	T
F	T	F	T	T	T
F	F	F	T	T	T
F	T	F	F	F	F
\ldots					

Calculate P(data)
Assuming learned parameters

Did Learning Work Well?

\mathbf{E}	\mathbf{B}	\mathbf{R}	\mathbf{A}	\mathbf{J}	\mathbf{M}
T	F	T	T	F	T

Calculate P(data)
Assuming learned parameters

$$
0.02 \text { * } 0.95 \text { * } 0.2 \text { *.... }
$$

Topics

- Another Useful Bayes Net
- Hybrid Discrete / Continuous
- Learning Parameters for a Bayesian Network
- Fully observable
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks

Why Learn Hidden Variables?

How Learn Hidden Variables?

57

Chicken \& Egg Problem

- If we knew whether patient had disease
- It would be easy to learn CPTs

Fully observable!

- But we can't observe states, so we don't!

- If we knew CPTs
- It would be easy to predict if patient had disease
- But we don't, so we can't!

Face It...

Continuous Variables

Learning with Continuous Variables

$$
\begin{aligned}
\widehat{\mu}_{M L E} & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\widehat{\sigma}_{M L E}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
\end{aligned}
$$

Continuous Variables

Simplest Version

- Mixture of two distributions

- Know: form of distribution \& variance, $\sigma=.5$
- Just need mean of each distribution

Input Looks Like

We Want to Predict

Chicken \& Egg

Note that coloring instances would be easy if we knew Gausians....

Chicken \& Egg

And finding Gausian parameters would be easy If we knew the coloring

Expectation Maximization (EM)

- Pretend we do know the parameters
- Initialize randomly: set $\theta_{1}=$?; $\quad \theta_{2}=$?

Expectation Maximization (EM)

- Pretend we do know the parameters - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable

Expectation Maximization (EM)

- Pretend we do know the parameters - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable

Slide by Daniel S. Weld
71
71

Expectation Maximization (EM)

- Pretend we do know the parameters
- Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable
[M step] Treating each instance as fractionally having both values compute the new parameter values

Slide by Daniel S. Weld
72

ML Mean of Single Gaussian

$$
\mathrm{U}_{\mathrm{ml}}=\operatorname{argmin}_{\mathrm{u}} \sum_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{u}\right)^{2}
$$

Expectation Maximization (EM)

Expectation Maximization (EM)

- [E step] Compute probability of instance having each possible value of the hidden variable

Expectation Maximization (EM)

- [E step] Compute probability of instance having each possible value of the hidden variable
[M step] Treating each instance as fractionally having both values compute the new parameter values

Slide by Daniel S. Weld
76

Expectation Maximization (EM)

- [E step] Compute probability of instance having each possible value of the hidden variable
[M step] Treating each instance as fractionally having both values compute the new parameter values

Expectation Maximization

- Guaranteed to converge to fixed point solution
- NOT guaranteed to find optimal solution (one with highest likelihood given data)
- Used everywhere!

Topics

- Another Useful Bayes Net
- Hybrid Discrete / Continuous
- Learning Parameters for a Bayesian Network
- Fully observable
- Maximum Likelihood (ML),
- Maximum A Posteriori (MAP)
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks

What if we don't know structure?

Learning The Structure of Bayesian Networks

\mathbf{E}	\mathbf{B}	\mathbf{R}	\mathbf{A}	\mathbf{J}	\mathbf{M}
T	F	T	T	F	T
F	F	F	F	F	T
F	T	F	T	T	T
F	F	F	T	T	T
F	T	F	F	F	F
\ldots					

Learning The Structure of Bayesian Networks

\mathbf{E}	\mathbf{B}	\mathbf{R}	\mathbf{A}	\mathbf{J}	\mathbf{M}
T	F	T	T	F	T
F	F	F	F	F	T
F	T	F	T	T	T
F	F	F	T	T	T
F	T	F	F	F	F
\ldots					

Learning The Structure of Bayesian Networks

- Search thru the space...
- of possible network structures!
- For each structure, learn parameters
- As just shown...
- Pick the one that fits observed data best
- Learn best parameter values for that structure
- Calculate P(data)

Two problems:

- Fully connected will be most probable
- Exponential number of structures

Learning The Structure of Bayesian Networks

- Search thru the space...
- of possible network structures!
- For each structure, learn parameters
- As just shown...
- Pick the one that fits observed data best
- Calculate P(data)

Two problems:

- Fully connected will be most probable
- Add penalty term (regularization) \propto model complexity
- Exponential number of structures
- Local search

Overfitting

Can represent strictly more P distributions
Can represent NOISE in training data

Augment Score Function

- Bayesian Information Criterion (BIC)
- P(D | BN) - penalty
- Penalty = α complexity
- $\quad=\alpha[1 / 2$ (\# parameters) Log (\# data points) $]$

Instance of "regularization"
Solves problem of "overfitting"

Tuning on Held-Out Data

- Now we've got two kinds of unknowns
- Parameters: the probabilities $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}), \mathrm{P}(\mathrm{Y})$
- Hyperparameters, like
- the amount of smoothing to do: k, or
- regularization penalty, α
- Where to learn?
- Learn parameters from training data
- Must tune hyperparameters on different data
- Why?

α
- For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data

Topics

- Another Useful Bayes Net
- Hybrid Discrete / Continuous
- Learning Parameters for a Bayesian Network
- Fully observable
- Maximum Likelihood (ML),
- Maximum A Posteriori (MAP)
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks

Al Topics

- Search
- Problem Spaces
- BFS, DFS, UCS, A* (tree and graph)
- Completeness and Optimality
- Heuristics: admissibility, consistency . Linear value function approx. \& creation
- Pattern databases
- Games
- Minimax, Alpha-beta pruning, Expectimax, Evaluation Functions
- MDPs
- Bellman equations
- Value iteration \& policy iteration
- POMDPs
- Reinforcement Learning
- Exploration vs. Exploitation
- Model-based vs. model-free
- Q-learning
- Hidden Markov Models
- Markov chains
- Forward algorithm
- Particle Filter
- Bayesian Networks
- Basic definition, independence (d-sep)
- Variable elimination
-
- Learning
- BN parameters with data complete \& incomplete (Expectation Maximization)
- Structure learning as search

Search thru a Problem Space / State Space

- Input:
- Set of states
- Operators [and costs]
- Start state
- Goal state [test]
- Output:
- Path: start \Rightarrow a state satisfying goal test
- [May require shortest path]
- [Sometimes just need state passing test]

