CSE 5243 INTRO. TO DATA MINING

Locality Sensitive Hashing

Yu Su, CSE@The Ohio State University

MMDS Secs. 3.2-3.4.

Slides adapted from: J. Leskovec, A. Rajaraman,

J. Ullman: Mining of Massive Datasets,

http://www.mmds.org

FINDING SIMILAR ITEMS

5

10 nearest neighbors from a collection of 20,000 images

10 nearest neighbors from a collection of 2 million images

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Users who visited similar websites

Problem for Today's Lecture

- \square Given: High dimensional data points $x_1, x_2, ...$
 - For example: Image is a long vector of pixel colors

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- \square And some distance function $d(x_1, x_2)$
 - \square Which quantifies the "distance" between x_1 and x_2
- □ Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_j) \le s$
- □ **Note:** Naïve solution would take $O(N^2)$ \otimes where N is the number of data points
- \square MAGIC: This can be done in O(N)!! How?

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- □ Applications:
 - \blacksquare Mirror websites, or approximate mirrors \rightarrow remove duplicates
 - \square Similar news articles at many news sites \rightarrow cluster

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- □ Applications:
 - \blacksquare Mirror websites, or approximate mirrors \rightarrow remove duplicates
 - \square Similar news articles at many news sites \rightarrow cluster

What are the challenges?

Task: Finding Similar Documents

- □ Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors → remove duplicates
 - Similar news articles at many news sites → cluster

□ Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

Two Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity

Host of follow up applications
e.g. Similarity Search
Data Placement
Clustering etc.

The Big Picture

SHINGLING

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

- □ Step 1: Shingling: Convert documents to sets
- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- □ A different way: Shingles!

Define: Shingles

- \square A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples

Define: Shingles

- \square A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- □ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}

Define: Shingles

- \square A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- □ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}

■ Another option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Shingles: How to treat white-space chars?

Example 3.4: If we use k = 9, but eliminate whitespace altogether, then we would see some lexical similarity in the sentences "The plane was ready for touch down". and "The quarterback scored a touchdown". However, if we retain the blanks, then the first has shingles touch dow and ouch down, while the second has touchdown. If we eliminated the blanks, then both would have touchdown. \Box

It makes sense to replace any sequence of one or more white-space characters (blank, tab, newline, etc.) by a single blank.

This way distinguishes shingles that cover two or more words from those that do not.

How to choose K?

- Documents that have lots of shingles in common have similar text,
 even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - $\mathbf{k} = 5$ is OK for short documents
 - $\mathbf{k} = 10$ is better for long documents

Compressing Shingles

- □ To compress long shingles, we can hash them to (say) 4 bytes
 - □ Like a Code Book
 - □ If #shingles manageable → Simple dictionary suffices

```
e.g., 9-shingle => bucket number [0, 2<sup>32</sup> - 1] (using 4 bytes instead of 9)
```

Compressing Shingles

- □ To compress long shingles, we can hash them to (say) 4 bytes
 - □ Like a Code Book
 - □ If #shingles manageable → Simple dictionary suffices
- \square Doc represented by the set of hash/dict. values of its k-shingles
 - □ **Idea:** Two documents could appear to have shingles in common, when the hash-values were shared

Compressing Shingles

- □ To compress long shingles, we can hash them to (say) 4 bytes
 - □ Like a Code Book
 - □ If #shingles manageable → Simple dictionary suffices
- \square Doc represented by the set of hash/dict. values of its k-shingles
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$ Hash the singles: $h(D_1) = \{1, 5, 7\}$

Similarity Metric for Shingles

- \square Document D_1 is a set of its k-shingles $C_1 = S(D_1)$
- \square Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- □ A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Motivation for Minhash/LSH

- lacksquare Suppose we need to find similar documents among N=1 million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs

- $N(N-1)/2 \approx 5*10^{11}$ comparisons
- At 10⁵ secs/day and 10⁶ comparisons/sec, it would take **5 days**
- \square For N=10 million, it takes more than a year...

MINHASHING

Step 2: Minhashing: Convert large variable length sets to short fixed-length signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- □ Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example:** $C_1 = 101111$; $C_2 = 10011$
 - \square Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - □ Distance: $d(C_1, C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

Rows = elements (shingles)

Note: Transposed Document Matrix

Documents

- Columns = sets (documents)
 - □ 1 in row **e** and column **s** if and only if **e** is a valid shingle of document represented by s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!

	Documents					
Shingles	1	1	1	0		
	1	1	0	1		
	0	1	0	1		
	0	0	0	1		
	1	0	0	1		
	1	1	1	0		
	1	0	1	0		

□ So far:

- \square A documents \rightarrow a set of shingles
- Represent a set as a boolean vector in a matrix

Sningles	1	1	1	0
	1	1	0	1
	0	1	0	1
	0	0	0	1
	1	0	0	1
	1	1	1	0

Documents

- □ So far:
 - \square A documents \rightarrow a set of shingles
 - Represent a set as a boolean vector in a matrix
- Next goal: Find similar columns while computing small signatures

■ Similarity of columns == similarity of signatures

Documents Shingles 0 0 0

□ Next Goal: Find similar columns, Small signatures

- Naïve approach:
 - 1) Signatures of columns: small summaries of columns

□ Next Goal: Find similar columns, Small signatures

■ Naïve approach:

- 1) Signatures of columns: small summaries of columns
- 2) Examine pairs of signatures to find similar columns
 - **Essential:** Similarities of signatures and columns are related
- □ 3) Optional: Check that columns with similar signatures are really similar

□ Next Goal: Find similar columns, Small signatures

■ Naïve approach:

- 1) Signatures of columns: small summaries of columns
- 2) Examine pairs of signatures to find similar columns
 - **Essential:** Similarities of signatures and columns are related
- □ 3) Optional: Check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Hashing Columns (Signatures): LSH principle

- \square Key idea: "hash" each column C to a small signature h(C), such that:
 - \Box (1) h(C) is small enough that the signature fits in RAM
 - \square (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Hashing Columns (Signatures): LSH principle

- Key idea: "hash" each column C to a small signature h(C), such that:
 - \square (1) h(C) is small enough that the signature fits in RAM
 - \square (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Goal: Find a hash function $h(\cdot)$ such that:

 - □ If $sim(C_1,C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$ □ If $sim(C_1,C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hashing Columns (Signatures): LSH principle

- \square Key idea: "hash" each column C to a small signature h(C), such that:
 - \Box (1) h(C) is small enough that the signature fits in RAM
 - \square (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- □ Goal: Find a hash function $h(\cdot)$ such that:
 - □ If $sim(C_1,C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - □ If $sim(C_1,C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

- □ Goal: Find a hash function $h(\cdot)$ such that:
 - \square if $sim(C_1,C_2)$ is high, then with high prob. $h(C_1)=h(C_2)$
 - □ if $sim(C_1,C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- □ Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function

- □ Goal: Find a hash function $h(\cdot)$ such that:
 - \square if $sim(C_1,C_2)$ is high, then with high prob. $h(C_1)=h(C_2)$
 - □ if $sim(C_1,C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- □ Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

 \blacksquare Imagine the rows of the boolean matrix permuted under random permutation π

- \blacksquare Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

- \blacksquare Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

□ Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

- \blacksquare Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

□ Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Zoo example (shingle size k=1)

```
Universe \longrightarrow { dog, cat, lion, tiger, mouse} \pi_1 \longrightarrow [ cat, mouse, lion, dog, tiger] \pi_2 \longrightarrow [ lion, cat, mouse, dog, tiger] A = \{ \text{ mouse, lion } \}
```

Zoo example (shingle size k=1)

```
Universe \longrightarrow { dog, cat, lion, tiger, mouse}
        \pi_1 \longrightarrow [\text{cat, mouse, lion, dog, tiger}]
       \pi_2 \longrightarrow [lion, cat, mouse, dog, tiger]
            A = { mouse, lion }
mh_1(A) = min ( \pi_1 \{ mouse, lion \} ) = mouse
mh_2(A) = min ( \pi_2\{ mouse, lion \} ) = lion
```

Permutation π

Input matrix (Shingles x Documents)

2

3

7

6

1

5 ----4

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

Permutation π In

Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1

Permutation π Input matrix (Shingles x Documents)

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

52

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):

Min-Hash Signatures

- □ Pick K=100 random permutations of the rows
- □ Think of sig(C) as a column vector
- \square sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- \square Note: The sketch (signature) of document C is small ~ 100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Key Fact

For two sets A, B, and a min-hash function $mh_i()$:

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for *Sim* using *K* hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A,B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$

Permutation π

Input matrix (Shingles x Documents)

Signature matrix M

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

Co

	1-3			3-4	
ol/Col	0.75	0.75	0	0	
ig/Sig	0.75 0.67	1.00	0	0	

- $lue{}$ Choose a random permutation π
- $\Box \quad \underline{\mathsf{Claim:}} \ \mathsf{Pr}[h_{\pi}(\mathsf{C}_1) = h_{\pi}(\mathsf{C}_2)] = \mathsf{sim}(\mathsf{C}_1, \, \mathsf{C}_2)$
- Why?

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position **y**

- $lue{}$ Choose a random permutation π
- Why?
 - □ Let X be a doc (set of shingles), $y \in X$ is a shingle

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position **y**

- $lue{}$ Choose a random permutation π
- Why?
 - \square Let X be a doc (set of shingles), $y \in X$ is a shingle
 - □ Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position **y**

- \square Choose a random permutation π
- Why?
 - Let X be a doc (set of shingles), $y \in X$ is a shingle
 - □ Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
 - Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

0 0 0

One of the two cols had to have 1 at position \boldsymbol{y}

- $lue{}$ Choose a random permutation π
- Why?
 - \square Let X be a doc (set of shingles), $y \in X$ is a shingle
 - □ Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the **min** element
 - Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

One of the two cols had to have 1 at position **y**

 \mathbf{O}

0

- \blacksquare So the prob. that **both** are true is the prob. $\mathbf{y} \in C_1 \cap C_2$
- □ $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2|=sim(C_1, C_2)$

The Min-Hash Property (Take 2: simpler proof)

- \blacksquare Choose a random permutation π
- $\square \ \underline{\mathsf{Claim:}} \ \mathsf{Pr}[h_{\pi}(\mathsf{C}_1) = h_{\pi}(\mathsf{C}_2)] = \mathit{sim}(\mathsf{C}_1, \, \mathsf{C}_2)$
- □ Why?
 - □ Given a set X, the probability that any one element is the minhash under π is 1/|X| \leftarrow (0)
 - It is equally likely that any $y \in X$ is mapped to the *min* element
 - □ Given a set X, the probability that one of any \mathbf{k} elements is the min-hash under π is $\mathbf{k}/|\mathbf{X}|$ \leftarrow (1)
 - □ For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) \leftarrow (2)
 - □ For any C_1 and C_2 , the probability of choosing the same min-hash under π is $|C_1 \cap C_2|/|C_1 \cup C_2|$ from (1) and (2)

Similarity for Signatures

- □ We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- □ **Note:** Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Permutation π

Input matrix (Shingles x Documents)

Signature matrix M

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

C Sig

	1-3			3-4	
ol/Col	0.75	0.75	0	0	
ig/Sig	0.67	1.00	0	0	

Min-Hash Signatures

- □ Pick K=100 random permutations of the rows
- □ Think of sig(C) as a column vector
- \square sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- \square Note: The sketch (signature) of document C is small ~ 100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Approximate Linear Permutation Hashing
- Pick K independent hash functions (use a, b below)
 - Apply the hash function on each column (document) for each hash function and get minhash signature

How to pick a random hash function h(x)?

Universal hashing:

```
h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N
where:
a,b ... random integers
p ... prime number (p > N)
```

Summary: 2 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID

- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations