CSE 5243 INTRO. TO DATA MINING

Locality Sensitive Hashing

Yu Su, CSE@The Ohio State University

MMDS Secs. 3.2-3.4.
Slides adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

FINDING SIMILAR ITEMS

Scene Completion Problem

,

Scene Completion Problem

Scene Completion Problem

10 nearest neighbors from a collection of 20,000 images

Scene Completion Problem

10 nearest neighbors from a collection of $\mathbf{2}$ million images

A Common Metaphor

\square Many problems can be expressed as finding "similar" sets:
\square Find near-neighbors in high-dimensional space
\square Examples:
\square Pages with similar words

- For duplicate detection, classification by topic
\square Customers who purchased similar products
- Products with similar customer sets
\square Images with similar features
- Users who visited similar websites

Problem for Today's Lecture

\square Given: High dimensional data points x_{1}, x_{2}, \ldots

- For example: Image is a long vector of pixel colors

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 2 & 1 \\
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lllllllll}
1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0
\end{array}\right]
$$

\square And some distance function $d\left(x_{1}, x_{2}\right)$
\square Which quantifies the "distance" between \boldsymbol{x}_{1} and \boldsymbol{x}_{2}
\square Goal: Find all pairs of data points $\left(x_{i}, x_{j}\right)$ that are within some distance threshold $\boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right) \leq \boldsymbol{s}$
\square Note: Naïve solution would take $\boldsymbol{O}\left(N^{2}\right)$ (:) where N is the number of data points
\square MAGIC: This can be done in $O(N)!$ How?

Task: Finding Similar Documents

\square Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
\square Applications:
\square Mirror websites, or approximate mirrors \rightarrow remove duplicates
\square Similar news articles at many news sites \rightarrow cluster

Task: Finding Similar Documents

\square Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
\square Applications:
\square Mirror websites, or approximate mirrors \rightarrow remove duplicates
\square Similar news articles at many news sites \rightarrow cluster

What are the challenges?

Task: Finding Similar Documents

\square Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
\square Applications:

- Mirror websites, or approximate mirrors \rightarrow remove duplicates
- Similar news articles at many news sites \rightarrow cluster
\square Problems:
\square Many small pieces of one document can appear out of order in another
\square Too many documents to compare all pairs
\square Documents are so large or so many that they cannot fit in main memory

Two Essential Steps for Similar Docs

1. Shingling: Convert documents to sets
2. Min-Hashing: Convert large sets to short signatures, while preserving similarity

Host of follow up applications
e.g. Similarity Search

Data Placement
Clustering etc.

The Big Picture

The set
of strings
of length k
that appear
in the document

SHINGLING

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

\square Step 1: Shingling: Convert documents to sets
\square Simple approaches:

- Document $=$ set of words appearing in document
\square Document $=$ set of "important" words
\square Don't work well for this application. Why?
\square Need to account for ordering of words!
\square A different way: Shingles!

Define: Shingles

\square A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
\square Tokens can be characters, words or something else, depending on the application
\square Assume tokens $=$ characters for examples

Define: Shingles

\square A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
\square Tokens can be characters, words or something else, depending on the application
\square Assume tokens $=$ characters for examples
\square Example: $\mathbf{k = 2 ;}$; document $\mathbf{D}_{\mathbf{1}}=$ abcab
Set of 2-shingles: $\mathbf{S}\left(\mathbf{D}_{1}\right)=\{a b, b c, c a\}$

Define: Shingles

\square A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
\square Tokens can be characters, words or something else, depending on the application
\square Assume tokens $=$ characters for examples
\square Example: $\mathbf{k = 2 ;}$; document $\mathbf{D}_{\mathbf{1}}=$ abcab
Set of 2-shingles: $\mathbf{S}\left(\mathbf{D}_{1}\right)=\{a b, b c, c a\}$
\square Another option: Shingles as a bag (multiset), count ab twice: $\mathbf{S}^{\prime}\left(D_{1}\right)=$ \{ab, bc, ca, ab\}

Shingles: How to treat white-space chars?

Example 3.4: If we use $k=9$, but eliminate whitespace altogether, then we would see some lexical similarity in the sentences "The plane was ready for touch down". and "The quarterback scored a touchdown". However, if we retain the blanks, then the first has shingles touch dow and ouch down, while the second has touchdown. If we eliminated the blanks, then both would have touchdown.

It makes sense to replace any sequence of one or more white-space characters (blank, tab, newline, etc.) by a single blank.

This way distinguishes shingles that cover two or more words from those that do not.

How to choose K?

\square Documents that have lots of shingles in common have similar text, even if the text appears in different order
\square Caveat: You must pick \boldsymbol{k} large enough, or most documents will have most shingles
$\square \boldsymbol{k}=5$ is OK for short documents
$\square \mathbf{k}=10$ is better for long documents

Compressing Shingles

To compress long shingles, we can hash them to (say) 4 bytes

- Like a Code Book
\square If \#shingles manageable \rightarrow Simple dictionary suffices
e.g., 9-shingle $=>$ bucket number $\left[0,2^{\wedge} 32-1\right]$
(using 4 bytes instead of 9)

Compressing Shingles

\square To compress long shingles, we can hash them to (say) 4 bytes

- Like a Code Book
\square If \#shingles manageable \rightarrow Simple dictionary suffices
\square Doc represented by the set of hash/dict. values of its \boldsymbol{k}-shingles
\square Idea: Two documents could appear to have shingles in common, when the hash-values were shared

Compressing Shingles

\square To compress long shingles, we can hash them to (say) 4 bytes

- Like a Code Book
\square If \#shingles manageable \rightarrow Simple dictionary suffices
\square Doc represented by the set of hash/dict. values of its \boldsymbol{k}-shingles
\square Example: $\mathbf{k = 2}$; document $\mathbf{D}_{\mathbf{1}}=$ abcab Set of 2-shingles: $\mathbf{S}\left(\mathrm{D}_{1}\right)=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ca}\}$ Hash the singles: $\mathbf{h}\left(\mathbf{D}_{1}\right)=\{1,5,7\}$

Similarity Metric for Shingles

\square Document D_{1} is a set of its k-shingles $C_{1}=S\left(D_{1}\right)$
\square Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
\square Each unique shingle is a dimension
\square Vectors are very sparse
\square A natural similarity measure is the Jaccard similarity:

$$
\operatorname{sim}\left(D_{1}, D_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|
$$

Motivation for Minhash/LSH

\square Suppose we need to find similar documents among $N=1$ million documents
\square Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
$\square N(N-1) / 2 \approx 5^{*} 10^{11}$ comparisons
\square At 10^{5} secs $/$ day and 10^{6} comparisons $/ \mathrm{sec}$, it would take 5 days
\square For $N=\mathbf{1 0}$ million, it takes more than a year...

MINHASHING

Step 2: Minhashing: Convert large variable length sets to short fixed-length signatures, while preserving similarity

Encoding Sets as Bit Vectors

- Many similarity problems can be formalized as finding subsets that have significant intersection

Encoding Sets as Bit Vectors

- Many similarity problems can be formalized as finding subsets that have significant intersection

\square Encode sets using 0/1 (bit, boolean) vectors
\square One dimension per element in the universal set
\square Interpret set intersection as bitwise AND, and set union as bitwise OR

Encoding Sets as Bit Vectors

- Many similarity problems can be formalized as finding subsets that have significant intersection

\square Encode sets using 0/1 (bit, boolean) vectors
\square One dimension per element in the universal set
\square Interpret set intersection as bitwise AND, and set union as bitwise OR
\square Example: $\mathbf{C}_{1}=10111$; $\mathbf{C}_{\mathbf{2}}=10011$
\square Size of intersection $=3$; size of union $=4$,
\square Jaccard similarity (not distance) $=3 / 4$
\square Distance: $d\left(C_{1}, C_{2}\right)=1-($ Jaccard similarity $)=1 / 4$

From Sets to Boolean Matrices

\square Rows = elements (shingles)

Note: Transposed Document Matrix

\square Columns = sets (documents)

- 1 in row \mathbf{e} and column s if and only if \mathbf{e} is a valid shingle of document represented by s
\square Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!

Documents			
1	1	1	0
1	1	0	1
0	1	0	1
	0	0	0
	0	0	1
1	1	1	0
1	0	1	0

Outline: Finding Similar Columns

\square So far:
\square A documents \rightarrow a set of shingles
\square Represent a set as a boolean vector in a matrix

Documents			
1	1	1	0
1	1	0	1
0	1	0	1
0	$=0$	0	0
$=[$	1		
1	0	0	1
1	1	1	0
1	0	1	0

Outline: Finding Similar Columns

So far:\square A documents \rightarrow a set of shingles
\square Represent a set as a boolean vector in a matrixNext goal: Find similar columns while computing small signatures
\square Similarity of columns $==$ similarity of signatures

Documents				
	1	1	1	0
	1	1	0	1
	0	1	0	1
$\stackrel{0}{9}$	0	0	0	1
	1	0	0	1
	1	1	1	0
	1	0	1	0

Outline: Finding Similar Columns

Next Goal: Find similar columns, Small signatures
\square Naïve approach:

- 1) Signatures of columns: small summaries of columns

Outline: Finding Similar Columns

Next Goal: Find similar columns, Small signatures
\square Naïve approach:
\square 1) Signatures of columns: small summaries of columns
\square 2) Examine pairs of signatures to find similar columns

- Essential: Similarities of signatures and columns are related
\square 3) Optional: Check that columns with similar signatures are really similar

Outline: Finding Similar Columns

Next Goal: Find similar columns, Small signatures

\square Naïve approach:
\square 1) Signatures of columns: small summaries of columns
\square 2) Examine pairs of signatures to find similar columns

- Essential: Similarities of signatures and columns are related
\square 3) Optional: Check that columns with similar signatures are really similar

\square Warnings:

- Comparing all pairs may take too much time: Job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is

Hashing Columns (Signatures) : LSH principle

\square Key idea: "hash" each column \mathbf{C} to a small signature $h(C)$, such that:
$\square(1) h(C)$ is small enough that the signature fits in RAM
$\square(2) \operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$

Hashing Columns (Signatures) : LSH principle

\square Key idea: "hash" each column C to a small signature $h(C)$, such that:
$\square(1) h(C)$ is small enough that the signature fits in RAM
$\square(2) \operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$
Goal: Find a hash function $h(\cdot)$ such that:
\square If $\operatorname{sim}\left(C_{1} C_{2}\right)$ is high, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right)=\boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right) \neq \boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$

Hashing Columns (Signatures) : LSH principle

\square Key idea: "hash" each column C to a small signature $h(C)$, such that:
$\square(1) h(C)$ is small enough that the signature fits in RAM
$\square(2) \operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$

Goal: Find a hash function $h(\cdot)$ such that:

\square If $\operatorname{sim}\left(C_{1} C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=\boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq \boldsymbol{h}\left(C_{2}\right)$
\square Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

\square Goal: Find a hash function $h(\cdot)$ such that:
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
\square Clearly, the hash function depends on the similarity metric:
\square Not all similarity metrics have a suitable hash function

Min-Hashing

\square Goal: Find a hash function $h(\cdot)$ such that:
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
\square Clearly, the hash function depends on the similarity metric:
\square Not all similarity metrics have a suitable hash function
\square There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

\square Imagine the rows of the boolean matrix permuted under random permutation π

Min-Hashing

\square Imagine the rows of the boolean matrix permuted under random permutation π
\square Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

Min-Hashing

\square Imagine the rows of the boolean matrix permuted under random permutation π
\square Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

\square Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Min-Hashing

\square Imagine the rows of the boolean matrix permuted under random permutation π
\square Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

\square Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Zoo example (shingle size $\mathrm{k}=1$)

Universe $\longrightarrow\{$ dog, cat, lion, tiger, mouse\}
$\pi_{1} \longrightarrow$ [cat, mouse, lion, dog, tiger]
$\pi_{2} \longrightarrow$ [lion, cat, mouse, dog, tiger]

$$
\text { A = \{ mouse, lion }\}
$$

Zoo example (shingle size $\mathrm{k}=1$)

Universe \longrightarrow \{ dog, cat, lion, tiger, mouse $\}$
$\pi_{1} \longrightarrow$ [cat, mouse, lion, dog, tiger]
$\pi_{2} \longrightarrow$ [lion, cat, mouse, dog, tiger]

$$
\text { A = \{ mouse, lion }\}
$$

$\operatorname{mh}_{1}(A)=\min \left(\quad \pi_{1}\right.$ \{mouse, lion $\left.\}\right)=$ mouse
$\operatorname{mh}_{2}(\mathrm{~A})=\min \left(\quad \pi_{2}\{\right.$ mouse, lion $\left.\}\right)=$ lion

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Min-Hashing Example

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)

2	4
3	2
7	1
6	3
1	6
5	7
4	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

Min-Hashing Example

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)

| 2 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Min-Hashing Example

Signature matrix M

Min-Hash Signatures

\square Pick $\mathrm{K}=100$ random permutations of the rows

- Think of $\operatorname{sig}(\mathbf{C})$ as a column vector
$\square \boldsymbol{\operatorname { s i g }}(\mathbf{C})[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(\mathrm{C})[\mathrm{i}]=\min \left(\pi_{\mathrm{i}}(\mathrm{C})\right)
$$

\square Note: The sketch (signature) of document C is small ~ 100 bytes!
\square We achieved our goal! We "compressed" long bit vectors into short signatures

Key Fact

For two sets A, B, and a min-hash function $m h_{i}()$:

$$
\operatorname{Pr}\left[m h_{i}(A)=m h_{i}(B)\right]=\operatorname{Sim}(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

Unbiased estimator for Sim using K hashes (notation policy - this is a different K from size of shingle)

$$
\operatorname{Sim}(A, B)=\frac{1}{k} \sum_{i=1: k} I\left[m h_{i}(A)=m h_{i}(B)\right]
$$

Min-Hashing Example

Permutation π Input matrix (Shingles \times Documents)
Signature matrix M

| 2 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	$1-3$	$2-4$	$1-2$	$3-4$
$\mathbf{C o l} / \mathbf{C o l}$	0.75	0.75	0	0
$\mathbf{S i g} / \mathbf{S i g}$	0.67	1.00	0	0

The Min-Hash Property

\square Choose a random permutation π
$\square \underline{\text { Claim: }} \operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
\square Why?

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position y

The Min-Hash Property

- Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?
\square Let \mathbf{X} be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position \boldsymbol{y}

The Min-Hash Property

- Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?
\square Let \mathbf{X} be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle
\square Then: $\operatorname{Pr}[\pi(y)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $\boldsymbol{y} \in \boldsymbol{X}$ is mapped to the min element

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position y

The Min-Hash Property

- Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?
- Let \mathbf{X} be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle
\square Then: $\operatorname{Pr}[\pi(y)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $\boldsymbol{y} \in \boldsymbol{X}$ is mapped to the min element

0	0
0	0
1	1
0	0
0	1
1	0

\square Let y be s.t. $\pi(y)=\min \left(\pi\left(C_{1} \cup C_{2}\right)\right)$
\square Then either:

$$
\begin{aligned}
& \pi(y)=\min \left(\pi\left(C_{1}\right)\right) \text { if } y \in C_{1}, \text { or } \\
& \pi(y)=\min \left(\pi\left(C_{2}\right)\right) \text { if } y \in C_{2}
\end{aligned}
$$

One of the two cols had to have 1 at position y

The Min-Hash Property

- Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?
\square Let \mathbf{X} be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle
\square Then: $\operatorname{Pr}[\pi(y)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $\boldsymbol{y} \in \boldsymbol{X}$ is mapped to the min element

0	0
0	0
1	1
0	0
0	1
1	0

\square Let y be s.t. $\pi(y)=\min \left(\pi\left(C_{1} \cup C_{2}\right)\right)$
\square Then either:

$$
\begin{aligned}
& \pi(y)=\min \left(\pi\left(C_{1}\right)\right) \text { if } y \in C_{1}, \text { or } \\
& \pi(y)=\min \left(\pi\left(C_{2}\right)\right) \text { if } y \in C_{2}
\end{aligned}
$$

One of the two cols had to have 1 at position \boldsymbol{y}
\square So the prob. that both are true is the prob. $y \in C_{1} \cap C_{2}$
$\square \operatorname{Pr}\left[\min \left(\pi\left(C_{1}\right)\right)=\min \left(\pi\left(C_{2}\right)\right)\right]=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|=\operatorname{sim}\left(C_{1}, C_{2}\right)$

The Min-Hash Property (Take 2: simpler proof)

Choose a random permutation π

$\square \underline{\text { Claim: } \operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right), ~(1)}$
\square Why?
\square Given a set X, the probability that any one element is the minhash under π is $1 /|X|$
$\leftarrow(0)$

- It is equally likely that any $\boldsymbol{y} \in \boldsymbol{X}$ is mapped to the min element
\square Given a set X, the probability that one of any \mathbf{k} elements is the min-hash under π is $k /|X|$
$\leftarrow(1)$
\square For $C_{1} \cup C_{2}$, the probability that any element is the min-hash under π is $1 /\left|C_{1} \cup C_{2}\right|$ (from 0)
$\leftarrow(2)$
\square For any C_{1} and C_{2}, the probability of choosing the same min-hash under π is $\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right| \leftarrow$ from (1) and (2)

Similarity for Signatures

\square We know: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
\square Now generalize to multiple hash functions
\square The similarity of two signatures is the fraction of the hash functions in which they agree
\square Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Permutation π Input matrix (Shingles \times Documents)
Signature matrix M

| 2 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	$1-3$	$2-4$	$1-2$	$3-4$
$\mathbf{C o l} / \mathbf{C o l}$	0.75	0.75	0	0
$\mathbf{S i g} / \mathbf{S i g}$	0.67	1.00	0	0

Min-Hash Signatures

\square Pick $\mathrm{K}=100$ random permutations of the rows

- Think of $\operatorname{sig}(\mathbf{C})$ as a column vector
$\square \operatorname{sig}(\mathrm{C})[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(\mathrm{C})[\mathrm{i}]=\min \left(\pi_{\mathrm{i}}(\mathrm{C})\right)
$$

\square Note: The sketch (signature) of document C is small ~ 100 bytes!
\square We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

\square Permuting rows even once is prohibitive
\square Approximate Linear Permutation Hashing
\square Pick K independent hash functions (use a, b below)
\square Apply the hash function on each column (document) for each hash function and get minhash signature

How to pick a random hash function $h(x)$?

Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
a,b ... random integers
$\mathrm{p} \ldots$ prime number $(\mathrm{p}>\mathrm{N})$

Summary: 2 Steps

\square Shingling: Convert documents to sets
\square We used hashing to assign each shingle an ID
\square Min-Hashing: Convert large sets to short signatures, while preserving similarity
\square We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square We used hashing to get around generating random permutations

