CSE140: Components and Design Techniques for Digital Systems

Review for Final Exam

Mohsen Imani

CAPE

Please submit your evaluations !!!!

RTL design

Use the RTL design process to design a system that has two 4-bit inputs A and B, and a single output OUT.

When the system samples the input, it will get the value of A if a control signal r is $1, B$ otherwise

The system samples the input and compute the output every clock cycle when a control signal c is 1 . The output is:

- The stored input times 2 , if the input is lower than a 8 -bit input L.
- The stored input divided by 8, otherwise

You can assume that once c is switched to $1, r$ cannot change its value until c is switched back to 0 first

Assume that once we start sampling values, they are either always greater or always lower than L

FSM

- Design a Mealy detector that generates a 1 on its W output when the sequence of
- 1010, 1011, or an overlap of the two has been detected on it's A input. Draw the state
- diagram (FSM) using minimum number of states.
- For example:
- A 10101110011
- W 00010100000

$$
\begin{array}{ll|l}
W & A & y \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}
$$

Timing

You are given the RTL circuit below with FullAdder (FA), a mux and register built from D flip-flops. The propagation delays of individua components are:

- NOT gate $=0.5 \mathrm{~ns}$
- All other logic gates $=1 \mathrm{~ns} \checkmark$
- Multiplexer delay = ins
- Clock ->Q (D-FF propagation) delay = ans.
- The setup time for a flip-flop $=15 \mathrm{~ns}$. Assume zero clock skew.
- What is the fastest clock frequency thai this design can work at ?
$t_{\text {prc }}=0.5+1+3 \times 1+2+1+2.4 .5^{n}$
${ }^{+} c \geqslant 8.5+2+15$ $f=\frac{1}{T C}$

Timing

```
tpcq+tpd+tsetup<Tc
tpcq \(=2 \mathrm{~ns}\)
tsetup \(=15 \mathrm{~ns}\)
tpd \(=0.5+1+3(1)+2+1+2=9.5 \mathrm{~ns}\)
Tc \(>2+15+9.5\)
Tc \(>26.5 \mathrm{~ns}\)
\(\mathrm{fc}=1 / \mathrm{Tc}\)
fc \(<1 / 26.5 \mathrm{GHz}\)
tpcq+tpd+tsetup \(<\) Tc
tpcq \(=2 \mathrm{~ns}\)
tsetup \(=15 \mathrm{~ns}\)
tpd \(=0.5+1+3(1)+2+1+2=9.5 \mathrm{~ns}\)
Tc \(>2+15+9.5\)
Tc \(>26.5 \mathrm{~ns}\)
fc \(=1 / \mathrm{Tc}\)
fc \(<1 / 26.5 \mathrm{GHz}\)
```


ALU

S1SO	\mathbf{Y}
$\mathbf{0 0}$	$\mathrm{A}-\mathrm{B}$
$\mathbf{0 1}$	$\mathrm{A}+\mathrm{B}$
$\mathbf{1 0}$	operation1 $=$
$\mathbf{1 1}$	operation2 $=$

label1 $=$
label2=
label3=
label4=
label5=
operation1 $\rightarrow A \nleftarrow 4$
operation \rightarrow B / 4

Counter

- The counter shown below goes through a repeating sequence startina from 0000.

(a) How many clock cycles does it take before the sequence repeats? List all the transitions in the sequence

```
0000 -> }0010\mathrm{ -> }1011\mathrm{ -> }0111\mathrm{ -> }0001\mathrm{ -> }1010\mathrm{ -> }1111\mathrm{ -> }0101\mathrm{ -> }1000\mathrm{ -> }0110\mathrm{ -> }100
-> 1110 -> 1101 -> 1100 -> 0100 -> 0000
```


Counter

- Derive a Boolean expression that outputs a logic ' 1 ' when a palindrome is detected on the current value of "WXYZ". List all palindromes that you observe in the first 10 transitions of the sequence.
- A palindrome is a string which reads the same in both directions. For example,10101 is a palindrome whereas 1100 is not as it is 0011 read backwards.
- (W XNOR Z) AND (X XNOR Y)
- 1111, 0110, 1001

FSM

The following pattern detector has an input B. Once it detects a pattern, it sets OUT equal to ' 1 '. Use the partially filled out state diagram and state table to do the following:
(a) Fill in the missing entries in the state table and complete the FSM.

\mathbf{S}_{1}	\mathbf{S}_{0}	\mathbf{B}_{2}	$\mathbf{S}_{1}{ }^{+}$	$\mathbf{S}_{0}{ }^{+}$	OUT
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	1

FSM Solution

- Which pattern is detected by this FSM?

$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	\mathbf{B}	$\mathbf{S}_{\mathbf{1}}{ }^{\prime}$	$\mathbf{S}_{\mathbf{0}}{ }^{\prime}$	OUT
0	0	0	0	0	$\mathbf{0}$
0	0	1	1	0	$\mathbf{0}$
0	1	0	1	1	0
0	1	1	$\mathbf{1}$	$\mathbf{0}$	0
1	0	0	0	1	$\mathbf{0}$
1	0	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
1	1	0	$\mathbf{0}$	$\mathbf{0}$	1
1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

ALU design

Use the previous conf_shifter (configurable shifter) to design an ALU that implements the following operations. Operands are 4-bit.

Timing constraints

Timing constraints

Where $=10+100+10+25=145$
So $=\quad+\quad+\quad+\quad=20+70+145+10=245 \mathrm{~ns}$

Therefore $\quad=-=-* 10 \mathrm{~Hz} \cong 4 \mathrm{Mhz}$

Where $=10+5=15$
So:

$$
\begin{gathered}
30+10<10+15 \\
40<25 \rightarrow \text { Hold time violation !!!!!!! }
\end{gathered}
$$

FA	100 ns	5 ns
OR	25 ns	10 ns
XOR	80 ns	70 ns
NOT	10 ns	10 ns

$$
=10
$$

- Find the maximum frequency
- Check whether there is a hold violation

FSM

```
Inputs byte A[256],B[256]
    bit gp
Output int sad
main()
{
    uint sumshort uint j
    while (1) {
            while (!go;)
            sum = 0
            i = 0;
            while (i < 256) {
                sum = sum + abs(A[i] - B;[i])
            i = i + 1
            }
    } sad = sum,
}
```


1: HLSM diagram

Input: A (4-bit), B (4-bit), L (8-bit) Output: OUT (5-bit)
Local registers: OUTreg (5-bit), INreg (4-bit)

2.b: Connect datapath and controller

2.c: Controller FSM

FSM design 1

A FSM has a 1-bit input S and a 2-bit output $A[1: 0]$.
Initially the output is 00 , and it stays at 00 as long as S is 1 . If S is 0 , then the output switches to 01 for only one clock cycle, before becoming 10. At this point, if S is 1 , then the output will be 00 . If S is 0 instead, the output would remain 10.

State and excitation table

State table with assignment

	$\mathbf{S}=\mathbf{0}$	$\mathbf{S}=\mathbf{1}$
00	01	00
01	10	10
10	10	00

State assignment:
SO: 00
S1:01
S2: 10

Excitation table

Q1Q0s	D1	D0	A1	A0
000	0	1	0	0
001	0	0	0	0
010	1	0	0	1
011	1	0	0	1
100	1	0	1	0
101	0	0	1	0
110	X	x	x	X
111	x	X	x	x

Kmaps and equations

Excitation table				
Q1Q0s	D1	D0	A1	A0
000	0	1	0	0
001	0	0	0	0
010	1	0	0	1
011	1	0	0	1
100	1	0	1	0
101	0	0	1	0
110	X	X	X	X
111	X	X	X	x

sIQ1Q0	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
0	0	1	X	1
1	0	1	X	0
s\Q1Q0	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
0	1	0	X	0
1	0	0	x	0
$\mathbf{s} \backslash \mathbf{Q 1 Q 0}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
0	0	0	x	1
1	0	0	X	1

slQ1Q0	00	01	11	10	$\begin{aligned} & \mathrm{D} 1=\mathrm{Q} 0+\text { s'Q1 }^{\prime} \\ & \mathrm{D} 0=\text { s'Q1'Q0' } \end{aligned}$
0	0		x	0	$\mathrm{A} 1=\mathrm{Q} 1$
1	0		X	0	$\mathrm{A} 0=\mathrm{Q} 0$

Circuit

$$
\begin{aligned}
& \mathrm{D} 1=\mathrm{Q} 0+\mathrm{s}^{\prime} \mathrm{Q} 1 \\
& \mathrm{D} 0=\mathrm{s} \text { 'Q1'Q0' } \\
& \mathrm{A} 1=\mathrm{Q} 1 \\
& \mathrm{~A} 0=\mathrm{Q} 0
\end{aligned}
$$

FSM design 2

Design a Mealy FSM that recognizes the sequence " 011 ". The machine has a 1 -bit input S and a 1 -bit output B. When the sequence is recognized, the output switches to 1 for one clock cycle.

State and excitation table

State table with assignment

	$\mathbf{S}=\mathbf{0}$	$\mathbf{S = 1}$
00	01,0	00,0
01	01,0	10,0
10	01,0	00,1

State assignments:
SO: 00
S1:01
S2: 10

Excitation table

Q1Q0S	D1	D0	B
000	0	1	0
001	0	0	0
010	0	1	0
011	1	0	0
100	0	1	0
101	0	0	1
110	x	X	X
111	x	x	x

Kmaps and equations

Excitation table			
Q1Q0S	D1	D0	B
000	0	1	0
001	0	0	0
010	0	1	0
011	1	0	0
100	0	1	0
101	0	0	1
110	x	X	X
111	x	x	x

SIQ1Q0	00	01	11	10
0	0	0	X	0
1	0	1	x	0
SIQ1Q0	00	01	11	10
0	1	1	X	1
1	0	0	X	0
SIQ1Q0	00	01	11	10
0	0	0	X	0
1	0	0	x	
$\begin{aligned} & \text { D1 = S Q0 } \\ & \text { D0 = S' } \\ & \text { B = S Q1 } \end{aligned}$				

Circuit

FSM design 3
Excitation table
Starting from the
characteristic eq
FSM, derive the
D1 = xQ1'Q0
D0 = x'Q1 + Q0
$\mathrm{Y}=\mathrm{Q} 1+\mathrm{Q} 0^{\prime}$
Is this a Mealy or a Moore machine? (Moore, because the output does not depend on the input x)

Q1Q0x	D1	D0	\mathbf{Y}
000	0	1	1
001	0	1	1
010	0	0	0
011	1	1	0
100	0	1	1
101	0	1	1
110	0	0	1
111	0	0	1

For the given circuit which has two 1 bit inputs (Y, Z) and two outputs (out_1, out_2):
a. Write the state table.
b. Draw the state diagram.
c. Describe the functionality of this FSM.
d. Is this a Mealy machine or a Moore machine?

Y	Z	Q1(t)	Q2(t)	Q1(t+1)	Q2(t+1)	out_1(t)	out_2(t)
0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	1
0	0	1	0	1	0	1	0
0	0	1	1	0	1	1	1
0	1	0	0	1	0	0	0
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	0
1	0	0	1	0	1	0	1
1	0	1	0	0	1	1	0
1	0	1	1	1	1	1	1
1	1	0	0	0	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	0
1	1	1	1	0	1	1	1

Y	Z	Current State	Next State	out_1	out_2
0	0	S0	S0	0	0
0	0	S1	S1	0	1
0	0	S2	S1	1	0
0	0	S3	S2	1	1
0	1	S0	S1	0	0
0	1	S1	S2	0	1
0	1	S2	S2	0	1
0	1	S3	S3	1	1
1	0	S0	S1	0	0
1	0	S1	S2	0	1
1	0	S2	S2	0	1
1	0	S3	S3	1	1
1	1	S0	S0	0	0
1	1	S1	S1	0	1
1	1	S2	S1	1	0
1	1	S3	S2	1	1

CSE140 Summary

- Transistors and CMOS technology
- Boolean algebra
- Logic functions, truth tables, circuit representations with basic gates
- 2-level logic minimizations using Kmaps
- Multiplexers and decoders
- ALU components: adders, subtractors (2's complement representation), arithmetic shifters, multiplier, dividers.
- ALU design
- SR latch, level-sensitive SR latch, D-latch, D-FlipFlop
- Registers, counters and shift registers
- Finite State Machines: Mealy and Moore
- Timing Constraints
- RTL design

CSE140 Summary

We can build computers out of one of the simplest mathematical theories (the Boolean algebra) using the simplest numbering system (zeros and ones)

We can do that because we have MOS transistors, tiny electronic devices that are built to provide an extremely simple behavior: being either ON or OFF.

Good Luck for the Final Exam !

