

CSE373: Data Structures and Algorithms Lecture 4: Asymptotic Analysis

Aaron Bauer Winter 2014

Previously, on CSE 373

- We want to analyze algorithms for efficiency (in time and space)
- And do so generally and rigorously
 - not timing an implementation
- We will primarily consider worst-case running time
- Example: find an integer in a sorted array
 - Linear search: O(n)
 - Binary search: O(log n)
 - Had to solve a recurrence relation to see this

Another example: sum array

Two "obviously" linear algorithms: T(n) = O(1) + T(n-1)

Iterative:

```
int sum(int[] arr){
    int ans = 0;
    for(int i=0; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}</pre>
```

Recursive:

- Recurrence is $k + k + \dots + k$ for *n* times

```
int sum(int[] arr){
   return help(arr,0);
}
int help(int[]arr,int i) {
   if(i==arr.length)
      return 0;
   return arr[i] + help(arr,i+1);
}
```

What about a binary version?

```
int sum(int[] arr){
   return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
   if(lo==hi) return 0;
   if(lo==hi-1) return arr[lo];
   int mid = (hi+lo)/2;
   return help(arr,lo,mid) + help(arr,mid,hi);
}
```

Recurrence is T(n) = O(1) + 2T(n/2)

- 1 + 2 + 4 + 8 + ... for log *n* times
- $-2^{(\log n)} 1$ which is proportional to *n* (definition of logarithm)

Easier explanation: it adds each number once while doing little else

"Obvious": You can't do better than *O(n)* – have to read whole array

Parallelism teaser

- But suppose we could do two recursive calls at the same time
 - Like having a friend do half the work for you!

- If you have as many "friends of friends" as needed the recurrence is now T(n) = O(1) + 1T(n/2)
 - O(log n) : same recurrence as for find

Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

T(n) = O(1) + T(n-1)	linear
T(n) = O(1) + 2T(n/2)	linear
T(n) = O(1) + T(n/2)	logarithmic
T(n) = O(1) + 2T(n-1)	exponential
T(n) = O(n) + T(n-1)	quadratic (see previous lecture)
T(n) = O(n) + 2T(n/2)	O(n log n)

Note big-Oh can also use more than one variable

• Example: can sum all elements of an *n*-by-*m* matrix in *O*(*nm*)

Asymptotic notation

About to show formal definition, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

- 4*n* + 5
- 0.5*n* log *n* + 2*n* + 7
- $n^3 + 2^n + 3n$
- $n \log(10n^2)$

Big-Oh relates functions

We use O on a function f(n) (for example n²) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So $(3n^2+17)$ is in $O(n^2)$

- $3n^2$ +17 and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

- $-(3n^2+17)$ is $O(n^2)$
- $-(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

Big-O, formally

Definition:

g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n₀ large enough to "cover the lower-order terms"

- Example: Let
$$g(n) = 3n^2 + 17$$
 and $f(n) = n^2$

c=5 and $n_0=10$ is more than good enough

- This is "less than or equal to"
 - So $3n^2$ +17 is also $O(n^5)$ and $O(2^n)$ etc.

More examples, using formal definition

- Let g(n) = 1000n and $f(n) = n^2$
 - A valid proof is to find valid c and n_0
 - The "cross-over point" is n=1000
 - So we can choose n_0 =1000 and c=1
 - Many other possible choices, e.g., larger *n*₀ and/or *c*

```
Definition:
```

g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

More examples, using formal definition

- Let $g(n) = n^4$ and $f(n) = 2^n$
 - A valid proof is to find valid c and n_0
 - We can choose $n_0=20$ and c=1

```
Definition:
```

g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

What's with the c

- The constant multiplier *c* is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Example: g(n) = 7n+5 and f(n) = n
 - For any choice of n₀, need a c > 7 (or more) to show g(n) is in O(f(n))

```
Definition:

g(n) is in O( f(n) ) if there exist constants

c and n_0 such that g(n) \le c f(n) for all n \ge n_0
```

What you can drop

- Eliminate coefficients because we don't have units anyway
 - $3n^2$ versus $5n^2$ doesn't mean anything when we have not specified the cost of constant-time operations (can re-scale)
- Eliminate low-order terms because they have vanishingly small impact as *n* grows
- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - 3^{n} is not $O(2^{n})$

(This all follows from the formal definition)

Big-O: Common Names (Again)

<i>O</i> (1)	constant (same as <i>O</i> (<i>k</i>) for constant <i>k</i>)
$O(\log n)$	logarithmic (probing)
<i>O</i> (<i>n</i>)	linear (single-pass)
O(n log <i>n</i>)	"n log <i>n</i> " (mergesort)
<i>O</i> (<i>n</i> ²)	quadratic (nested loops)
<i>O</i> (<i>n</i> ³)	cubic (more nested loops)
<i>O</i> (<i>n</i> ^k)	polynomial (where is <i>k</i> is any constant)
<i>O</i> (<i>k</i> ⁿ)	exponential (where <i>k</i> is any constant > 1)

Big-O running times

• For a processor capable of one million instructions per second

	n	$n \log_2 n$	n ²	n ³	1.5 ⁿ	2 ^{<i>n</i>}	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

More Asymptotic Notation

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n₀ such thatg(n) ≤ c f(n) for all n ≥ n₀
- Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in Ω(f(n)) if there exist constants*c*and*n*₀ such thatg(n) ≥ c f(n) for all n ≥ n₀
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and $\Omega(f(n))$ (use *different c* values)

Correct terms, in theory

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- Since a linear algorithm is also $O(n^5)$, it's tempting to say "this algorithm is exactly O(n)"
- That doesn't mean anything, say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
 - For all c, there exists an n_0 such that... \leq
 - Example: array sum is $o(n^2)$ but not o(n)
- "little-omega": intersection of "big-Omega" and not "big-Theta"
 - For all c, there exists an n_0 such that... \geq
 - Example: array sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: binary-search algorithm
 - Common: $\theta(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common: Algorithm is Ω(log log n) in the worst-case (it is not really, really, really fast asymptotically)
 - Less common (but very good to know): the find-in-sortedarray *problem* is Ω(log n) in the worst-case
 - No algorithm can do better
 - A *problem* cannot be O(f(n)) since you can always find a slower algorithm, but can mean *there exists* an algorithm

Other things to analyze

- Space instead of time
 - Remember we can often use space to gain time
- Average case
 - Sometimes only if you assume something about the probability distribution of inputs
 - Sometimes uses randomization in the algorithm
 - Will see an example with sorting
 - Sometimes an *amortized guarantee*
 - Average time over any sequence of operations
 - Will discuss in a later lecture

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Usually asymptotic is valuable

- Asymptotic complexity focuses on behavior for large *n* and is independent of any computer / coding trick
- But you can "abuse" it to be misled about trade-offs
- Example: *n*^{1/10} vs. **log** *n*
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the "cross-over" point is around 5×10^{17}
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- For *small n*, an algorithm with worse asymptotic complexity might be faster
 - Here the constant factors can matter, if you care about performance for small n

Timing vs. Big-Oh Summary

- Big-oh is an essential part of computer science's mathematical foundation
 - Examine the algorithm itself, not the implementation
 - Reason about (even prove) performance as a function of *n*
- Timing also has its place
 - Compare implementations
 - Focus on data sets you care about (versus worst case)
 - Determine what the constant factors "really are"