CSE373: Data Structures and Algorithms Lecture 4: Asymptotic Analysis

Aaron Bauer
Winter 2014

Previously, on CSE 373

- We want to analyze algorithms for efficiency (in time and space)
- And do so generally and rigorously
- not timing an implementation
- We will primarily consider worst-case running time
- Example: find an integer in a sorted array
- Linear search: $O(n)$
- Binary search: $O(\log n)$
- Had to solve a recurrence relation to see this

Another example: sum array

Two "obviously" linear algorithms: $T(n)=O(1)+T(n-1)$

Iterative:

```
int sum(int[] arr){
    int ans = 0;
    for(int i=0; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}
```

Recursive:

- Recurrence is $k+k+\ldots+k$ for n times

```
int sum(int[] arr) {
    return help(arr,0);
}
int help(int[]arr,int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```


What about a binary version?

```
int sum(int[] arr) {
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```

Recurrence is $T(n)=O(1)+2 T(n / 2)$
$-1+2+4+8+\ldots$ for $\log n$ times
$-2^{(\log n)}-1$ which is proportional to n (definition of logarithm)
Easier explanation: it adds each number once while doing little else
"Obvious": You can't do better than O(n) - have to read whole array

Parallelism teaser

- But suppose we could do two recursive calls at the same time
- Like having a friend do half the work for you!

```
int sum(int[]arr){
```

 return help(arr,0,arr.length);
 \}
int help(int[]arr, int lo, int hi) \{
if(lo==hi) return 0;
if(lo==hi-1) return arr[lo];
int mid (hi+lo)/2;
return help(arr,lo,mid) + help(arr,mid,hi)
\}

- If you have as many "friends of friends" as needed the recurrence is now $T(n)=O(1)+1 T(n / 2)$
- $O(\log n)$: same recurrence as for find

Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

$$
\begin{array}{ll}
T(n)=O(1)+T(n-1) & \\
\text { linear } \\
T(n)=O(1)+2 T(n / 2) & \\
\text { linear } \\
T(n)=O(1)+T(n / 2) & \\
T(n)=O(1)+2 T(n-1) & \\
\text { logarithmic } \\
T(n)=O(n)+T(n-1) & \\
T(n)=O(n)+2 T(n / 2) & \\
\text { quadratic (see previous lecture) } \\
O(n \log n)
\end{array}
$$

Note big-Oh can also use more than one variable

- Example: can sum all elements of an n-by-m matrix in $O(n m)$

Asymptotic notation

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms
2. Eliminate coefficients

Examples:

$$
\begin{array}{ll}
- & 4 n+5 \\
- & 0.5 n \log n+2 n+7 \\
- & n^{3}+2^{n}+3 n \\
- & n \log \left(10 n^{2}\right)
\end{array}
$$

Big-Oh relates functions

We use O on a function $\mathrm{f}(n)$ (for example n^{2}) to mean the set of functions with asymptotic behavior less than or equal to $\mathrm{f}(n)$

So $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$
$-3 n^{2}+17$ and n^{2} have the same asymptotic behavior

Confusingly, we also say/write:
$-\left(3 n^{2}+17\right)$ is $O\left(n^{2}\right)$
$-\left(3 n^{2}+17\right)=O\left(n^{2}\right)$

But we would never say $O\left(n^{2}\right)=\left(3 n^{2}+17\right)$

Big-O, formally

Definition:
$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$

- To show $g(n)$ is in $O(f(n))$, pick a c large enough to "cover the constant factors" and n_{0} large enough to "cover the lower-order terms"
- Example: Let $\mathrm{g}(n)=3 n^{2}+17$ and $\mathrm{f}(n)=n^{2}$ $c=5$ and $n_{0}=10$ is more than good enough
- This is "less than or equal to"
- So $3 n^{2}+17$ is also $O\left(n^{5}\right)$ and $O\left(2^{n}\right)$ etc.

More examples, using formal definition

- Let $\mathrm{g}(n)=1000 n$ and $\mathrm{f}(n)=n^{2}$
- A valid proof is to find valid c and n_{0}
- The "cross-over point" is $n=1000$
- So we can choose $n_{0}=1000$ and $c=1$
- Many other possible choices, e.g., larger n_{0} and/or c

Definition:
$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$

More examples, using formal definition

- Let $\mathrm{g}(n)=n^{4}$ and $\mathrm{f}(n)=2^{n}$
- A valid proof is to find valid c and n_{0}
- We can choose $n_{0}=20$ and $c=1$

Definition:
$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$

What's with the c

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Example: $\mathrm{g}(n)=7 n+5$ and $\mathrm{f}(n)=n$
- For any choice of n_{0}, need a $c>7$ (or more) to show $g(n)$ is in $\mathrm{O}(\mathrm{f}(n))$

Definition:

$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ if there exist constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$

What you can drop

- Eliminate coefficients because we don't have units anyway
- $3 n^{2}$ versus $5 n^{2}$ doesn't mean anything when we have not specified the cost of constant-time operations (can re-scale)
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
- n^{3} is not $O\left(n^{2}\right)$
-3^{n} is not $O\left(2^{n}\right)$
(This all follows from the formal definition)

Big-O: Common Names (Again)

O(1)
$O(\log n) \quad$ logarithmic (probing)
$O(n)$
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$
$\mathrm{O}\left(n^{k}\right)$
$O\left(k^{n}\right)$
linear (single-pass)
"n log n" (mergesort)
quadratic (nested loops)
cubic (more nested loops)
constant (same as $O(k)$ for constant k)
polynomial (where is k is any constant)
exponential (where k is any constant >1)

Big-O running times

- For a processor capable of one million instructions per second

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

More Asymptotic Notation

- Upper bound: $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- $g(n)$ is in $O(f(n))$ if there exist constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$
- Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
- $\mathrm{g}(n)$ is in $\Omega(\mathrm{f}(n))$ if there exist constants c and n_{0} such that $g(n) \geq c f(n)$ for all $n \geq n_{0}$
- Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to $\mathrm{f}(n)$
- Intersection of $O(\mathrm{f}(n))$ and $\Omega(\mathrm{f}(n))$ (use different c values)

Correct terms, in theory

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$

- Since a linear algorithm is also $O\left(n^{5}\right)$, it's tempting to say "this algorithm is exactly $O(n)$ "
- That doesn't mean anything, say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
- For all c, there exists an n_{0} such that... \leq
- Example: array sum is $o\left(n^{2}\right)$ but not $o(n)$
- "little-omega": intersection of "big-Omega" and not "big-Theta"
- For all c, there exists an n_{0} such that... \geq
- Example: array sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: binary-search algorithm
- Common: $\theta(\log n)$ running-time in the worst-case
- Less common: $\theta(1)$ in the best-case (item is in the middle)
- Less common: Algorithm is $\Omega(\log \log n)$ in the worst-case (it is not really, really, really fast asymptotically)
- Less common (but very good to know): the find-in-sortedarray problem is $\Omega(\log n)$ in the worst-case
- No algorithm can do better
- A problem cannot be $O(f(n))$ since you can always find a slower algorithm, but can mean there exists an algorithm

Other things to analyze

- Space instead of time
- Remember we can often use space to gain time
- Average case
- Sometimes only if you assume something about the probability distribution of inputs
- Sometimes uses randomization in the algorithm
- Will see an example with sorting
- Sometimes an amortized guarantee
- Average time over any sequence of operations
- Will discuss in a later lecture

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Usually asymptotic is valuable

- Asymptotic complexity focuses on behavior for large n and is independent of any computer / coding trick
- But you can "abuse" it to be misled about trade-offs
- Example: $n^{1 / 10}$ vs. $\log n$
- Asymptotically $n^{1 / 10}$ grows more quickly
- But the "cross-over" point is around 5 * 10^{17}
- So if you have input size less than 2^{58}, prefer $n^{1 / 10}$
- For small n, an algorithm with worse asymptotic complexity might be faster
- Here the constant factors can matter, if you care about performance for small n

Timing vs. Big-Oh Summary

- Big-oh is an essential part of computer science's mathematical foundation
- Examine the algorithm itself, not the implementation
- Reason about (even prove) performance as a function of n
- Timing also has its place
- Compare implementations
- Focus on data sets you care about (versus worst case)
- Determine what the constant factors "really are"

