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Previously, on CSE 373 

•  We want to analyze algorithms for efficiency (in time and space) 
•  And do so generally and rigorously 

–  not timing an implementation 
•  We will primarily consider worst-case running time 
•  Example: find an integer in a sorted array 

–  Linear search: O(n) 
–  Binary search: O(log n) 
–  Had to solve a recurrence relation to see this 
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Another example: sum array 
Two “obviously” linear algorithms: T(n) = O(1) + T(n-1) 
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int sum(int[] arr){ 
  int ans = 0; 
  for(int i=0; i<arr.length; ++i) 
     ans += arr[i];  
  return ans; 
} 

int sum(int[] arr){ 
  return help(arr,0); 
} 
int help(int[]arr,int i) { 
  if(i==arr.length)  
    return 0; 
  return arr[i] + help(arr,i+1); 
} 

Recursive: 
–  Recurrence is  

 k + k  + … + k   
 for n times 

 

Iterative: 



What about a binary version? 
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Recurrence is T(n) = O(1) + 2T(n/2) 
–  1 + 2 + 4 + 8 + …   for log n times 
–  2(log n) – 1 which is proportional to n (definition of logarithm) 

Easier explanation: it adds each number once while doing little else 
 

“Obvious”: You can’t do better than O(n) – have to read whole 
array 

int sum(int[] arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[] arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    



Parallelism teaser 
•  But suppose we could do two recursive calls at the same time 

–  Like having a friend do half the work for you! 
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int sum(int[]arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[]arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    

•  If you have as many “friends of friends” as needed the recurrence 
is now   T(n) = O(1) + 1T(n/2) 
–  O(log n) : same recurrence as for find 



Really common recurrences 

Should know how to solve recurrences but also recognize some 
really common ones: 
 

 T(n) = O(1) + T(n-1)   linear 
 T(n) = O(1) + 2T(n/2)  linear 
 T(n) = O(1) + T(n/2)   logarithmic 
 T(n) = O(1) + 2T(n-1)  exponential 
 T(n) = O(n) + T(n-1)   quadratic (see previous lecture) 
 T(n) = O(n) + 2T(n/2)  O(n log n) 

Note big-Oh can also use more than one variable 
•  Example: can sum all elements of an n-by-m matrix in O(nm) 
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Asymptotic notation 

About to show formal definition, which amounts to saying: 
1.  Eliminate low-order terms 
2.  Eliminate coefficients 
 
Examples: 

–  4n + 5 
–  0.5n log n + 2n + 7 
–  n3 + 2n + 3n 
–  n log (10n2 ) 
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Big-Oh relates functions 

We use O on a function f(n) (for example n2) to mean the set of 
functions with asymptotic behavior less than or equal to f(n) 

 
So (3n2+17)  is in O(n2)  

–  3n2+17 and n2  have the same asymptotic behavior 
 

Confusingly, we also say/write: 
–  (3n2+17)  is O(n2)  
–  (3n2+17)  =  O(n2)  

But we would never say O(n2) =  (3n2+17) 
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Big-O, formally 

Definition:  
 g(n) is in O( f(n) ) if there exist constants  

      c and n0 such that  g(n) ≤  c f(n) for all n ≥ n0 

 

•  To show g(n) is in O( f(n) ), pick a c large enough to “cover the 
constant factors” and n0 large enough to “cover the lower-order 
terms” 
–  Example: Let g(n) = 3n2+17 and f(n) = n2 

  c=5 and n0 =10 is more than good enough 
 

•  This is “less than or equal to” 
–  So 3n2+17 is also O(n5) and O(2n)  etc. 
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More examples, using formal definition 

•  Let g(n) = 1000n and f(n) = n2 

–  A valid proof is to find valid c and n0  
–  The “cross-over point” is n=1000 
–  So we can choose n0=1000 and c=1 

•  Many other possible choices, e.g., larger n0 and/or c 
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Definition:  
 g(n) is in O( f(n) ) if there exist constants  

      c and n0 such that  g(n) ≤  c f(n) for all n ≥ n0 



More examples, using formal definition 

•  Let g(n) = n4 and f(n) = 2n 

–  A valid proof is to find valid c and n0  
–  We can choose n0=20 and c=1 
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Definition:  
 g(n) is in O( f(n) ) if there exist constants  

      c and n0 such that  g(n) ≤  c f(n) for all n ≥ n0 



What’s with the c 

•  The constant multiplier c is what allows functions that differ only 
in their largest coefficient to have the same asymptotic 
complexity 

•  Example: g(n) = 7n+5 and f(n) = n 
−  For any choice of n0, need a c > 7 (or more) to show g(n) is 

in O( f(n) )  
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Definition:  
 g(n) is in O( f(n) ) if there exist constants  

      c and n0 such that  g(n) ≤  c f(n) for all n ≥ n0 



What you can drop 

•  Eliminate coefficients because we don’t have units anyway 
–  3n2  versus 5n2  doesn’t mean anything when we have not 

specified the cost of constant-time operations (can re-scale) 

•  Eliminate low-order terms because they have vanishingly small 
impact as n grows 

•  Do NOT ignore constants that are not multipliers 
–  n3 is not O(n2) 
–  3n is not O(2n) 

 
(This all follows from the formal definition) 
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Big-O: Common Names (Again) 

O(1)   constant (same as O(k) for constant k) 
O(log n)  logarithmic (probing) 
O(n)   linear (single-pass) 
O(n log n)         “n log n” (mergesort) 
O(n2)   quadratic (nested loops) 
O(n3)   cubic (more nested loops) 
O(nk)   polynomial (where is k is any constant) 
O(kn)   exponential (where k is any constant > 1) 
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Big-O running times 
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•  For a processor capable of one million instructions per second 



More Asymptotic Notation 

•  Upper bound: O( f(n) ) is the set of all functions asymptotically 
less than or equal to f(n) 
–  g(n) is in O( f(n) ) if there exist  constants c and n0 such that  

  g(n) ≤  c f(n) for all n ≥ n0 

•  Lower bound: Ω( f(n) ) is the set of all functions asymptotically 
greater than or equal to f(n) 
–  g(n) is in Ω( f(n) ) if there exist  constants c and n0 such that  

  g(n) ≥  c f(n) for all n ≥ n0 

•  Tight bound: θ( f(n) ) is the set of all functions asymptotically 
equal to f(n) 
–  Intersection of O( f(n) ) and Ω( f(n) )  (use different c values) 
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Correct terms, in theory 

A common error is to say O( f(n) ) when you mean θ( f(n) ) 
–  Since a linear algorithm is also O(n5), it’s tempting to say “this 

algorithm is exactly O(n)” 
–  That doesn’t mean anything, say it is θ(n) 
–  That means that it is not, for example O(log n) 

Less common notation: 
–  “little-oh”: intersection of “big-Oh” and not “big-Theta” 

•  For all c, there exists an n0 such that… ≤ 
•  Example: array sum is o(n2) but not o(n) 

–  “little-omega”: intersection of “big-Omega” and not “big-Theta” 
•  For all c, there exists an n0 such that… ≥ 
•  Example: array sum is ω(log n) but not ω(n) 
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What we are analyzing 

•  The most common thing to do is give an O or θ bound to the 
worst-case running time of an algorithm 

•  Example: binary-search algorithm  
–  Common: θ(log n) running-time in the worst-case 
–  Less common: θ(1) in the best-case (item is in the middle) 
–  Less common: Algorithm is Ω(log log n) in the worst-case 

(it is not really, really, really fast asymptotically) 
–  Less common (but very good to know): the find-in-sorted-

array problem is Ω(log n) in the worst-case 
•  No algorithm can do better 
•  A problem cannot be O(f(n)) since you can always find a 

slower algorithm, but can mean there exists an algorithm 
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Other things to analyze 

•  Space instead of time 
–  Remember we can often use space to gain time 

•  Average case 
–  Sometimes only if you assume something about the 

probability distribution of inputs 
–  Sometimes uses randomization in the algorithm 

•  Will see an example with sorting 
–  Sometimes an amortized guarantee 

•  Average time over any sequence of operations 
•  Will discuss in a later lecture 
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Summary 

Analysis can be about: 

•  The problem or the algorithm (usually algorithm) 

•  Time or space (usually time) 

–  Or power or dollars or … 

•  Best-, worst-, or average-case (usually worst) 

•  Upper-, lower-, or tight-bound  (usually upper or tight) 
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Usually asymptotic is valuable 

•  Asymptotic complexity focuses on behavior for large n and is 
independent of any computer / coding trick 

•  But you can “abuse” it to be misled about trade-offs 

•  Example: n1/10 vs. log n 
–  Asymptotically n1/10 grows more quickly 
–  But the “cross-over” point is around 5 * 1017 

–  So if you have input size less than 258, prefer n1/10 

•  For small n, an algorithm with worse asymptotic complexity 
might be faster 
–  Here the constant factors can matter, if you care about 

performance for small n 
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Timing vs. Big-Oh Summary 

•  Big-oh is an essential part of computer science’s mathematical 
foundation 
–  Examine the algorithm itself, not the implementation 
–  Reason about (even prove) performance as a function of n 

•  Timing also has its place 
–  Compare implementations 
–  Focus on data sets you care about (versus worst case) 
–  Determine what the constant factors “really are” 
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