## Classification Lecture 2: Methods

Jing Gao SUNY Buffalo

## **Outline**

#### • Basics

- Problem, goal, evaluation
- Methods
  - Decision Tree
  - Naïve Bayes
  - Nearest Neighbor
  - Rule-based Classification
  - Logistic Regression
  - Support Vector Machines
  - Ensemble methods

#### Advanced topics

— .......

- Multi-view Learning
- Semi-supervised Learning
- Transfer Learning

— .....

### **Nearest Neighbor Classifiers**



## **Nearest-Neighbor Classifiers**



- Requires three things
  - The set of stored records
  - Distance Metric to compute distance between records
  - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
  - Compute distance to other training records
  - Identify k nearest neighbors
  - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

## **Definition of Nearest Neighbor**



(a) 1-nearest neighbor (b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

### 1 nearest-neighbor

Voronoi Diagram



## **Nearest Neighbor Classification**

- Compute distance between two points:
  - Euclidean distance

$$d(p,q) = \sqrt{\underset{i}{å}(p_i - q_i)^2}$$

- Determine the class from nearest neighbor list
  - take the majority vote of class labels among the knearest neighbors
  - Weigh the vote according to distance
    - weight factor,  $w = 1/d^2$

### **Nearest Neighbor Classification**

### • Choosing the value of k:

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes



## **Nearest Neighbor Classification**

## • Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
  - height of a person may vary from 1.5m to 1.8m
  - weight of a person may vary from 90lb to 300lb
  - income of a person may vary from \$10K to \$1M

## **Nearest neighbor Classification**

- k-NN classifiers are lazy learners
  - It does not build models explicitly
  - Different from eager learners such as decision tree induction
  - Classifying unknown records are relatively expensive

# **Bayesian Classification**

- Bayesian classifier vs. decision tree
  - Decision tree: predict the class label
  - Bayesian classifier: statistical classifier; predict class membership probabilities
- Based on Bayes theorem; estimate posterior probability
- Naïve Bayesian classifier:
  - Simple classifier that assumes attribute independence
  - Efficient when applied to large databases
  - Comparable in performance to decision trees

# **Posterior Probability**

- Let X be a data sample whose class label is unknown
- Let *H<sub>i</sub>* be the hypothesis that *X* belongs to a particular class *C<sub>i</sub>*
- *P*(*H<sub>i</sub>*|*X*) is *posteriori* probability of *H* conditioned on *X*
  - Probability that data example X belongs to class C<sub>i</sub> given the attribute values of X
  - e.g., given X=(age:31...40, income: medium, student: yes, credit: fair), what is the probability X buys computer?

## **Bayes Theorem**

- To classify means to determine the highest P(H<sub>i</sub> | X) among all classes C<sub>1</sub>,...C<sub>m</sub>
  - If  $P(H_1|X) > P(H_0|X)$ , then X buys computer
  - If  $P(H_0|X) > P(H_1|X)$ , then X does not buy computer
  - Calculate  $P(H_i | X)$  using the Bayes theorem



## **Class Prior Probability**

- P(*H<sub>i</sub>*) is *class prior* probability that *X* belongs to a particular class *C<sub>i</sub>* 
  - Can be estimated by  $n_i/n$  from training data samples
  - *n* is the total number of training data samples
  - $n_i$  is the number of training data samples of class  $C_i$

|     | Age      | Income | Studen<br>t | Credit    | Buys_compute<br>r |
|-----|----------|--------|-------------|-----------|-------------------|
| P1  | 314<br>0 | high   | no          | fair      | no                |
| P2  | <=30     | high   | no          | excellent | no                |
| P3  | 314<br>0 | high   | no          | fair      | yes               |
| P4  | >40      | medium | no          | fair      | yes               |
| P5  | >40      | low    | yes         | fair      | yes               |
| P6  | >40      | low    | yes         | excellent | no                |
| P7  | 314<br>0 | low    | yes         | excellent | yes               |
| P8  | <=30     | medium | no          | fair      | no                |
| P9  | <=30     | low    | yes         | fair      | yes               |
| P10 | >40      | medium | yes         | fair      | yes               |

H1: Buys\_computer=yes H0: Buys\_computer=no P(H1)=6/10 = 0.6 P(H0)=4/10 = 0.4

$$P(H_i|X) = \frac{P(X|H_i)P(H_i)}{P(X)}$$

# **Descriptor Prior Probability**

- P(X) is *prior* probability of X
  - Probability that observe the attribute values of X
  - Suppose  $X = (x_1, x_2, ..., x_d)$  and they are independent, then  $P(X) = P(x_1) P(x_2) ... P(x_d)$
  - $P(x_j) = n_j / n_j$ , where
  - $n_j$  is number of training examples having value  $x_j$  for attribute  $A_j$
  - *n* is the total number of training examples
  - Constant for all classes

|     | Age  | Income | Student | Credit    | Buys_computer |
|-----|------|--------|---------|-----------|---------------|
| P1  | 3140 | high   | no      | fair      | no            |
| P2  | <=30 | high   | no      | excellent | no            |
| P3  | 3140 | high   | no      | fair      | yes           |
| P4  | >40  | medium | no      | fair      | yes           |
| P5  | >40  | low    | yes     | fair      | yes           |
| P6  | >40  | Low    | yes     | excellent | No            |
| P7  | 3140 | low    | yes     | excellent | yes           |
| P8  | <=30 | medium | no      | fair      | no            |
| P9  | <=30 | low    | yes     | fair      | yes           |
| P10 | >40  | medium | yes     | fair      | yes           |

- X=(age:31...40, income: medium, student: yes, credit: fair)
- P(age=31...40)=3/10 P(income=medium)=3/10 P(student=yes)=5/10 P(credit=fair)=7/10  $P(H_i|X) = \frac{P(X|H_i)P(H_i)}{P(X)}$
- P(X)=P(age=31...40) ×P(income=medium) ×P(student=yes) ×P(credit=fair) =0.3 ×0.3 ×0.5 ×0.7 = 0.0315

## **Descriptor Posterior Probability**

- $P(X|H_i)$  is *posterior* probability of X given  $H_i$ 
  - Probability that observe X in class  $C_i$
  - Assume  $X=(x_1, x_2, ..., x_d)$  and they are independent, then  $P(X|H_i) = P(x_1|H_i) P(x_2|H_i) ... P(x_d|H_i)$
  - $P(x_j | H_j) = n_{i,j}/n_{i'}$  where
  - $n_{i,j}$  is number of training examples in class  $C_i$  having value  $x_j$  for attribute  $A_j$
  - $-n_i$  is number of training examples in  $C_i$

|     | Age  | Income | Student | Credit    | Buys_computer |
|-----|------|--------|---------|-----------|---------------|
| P1  | 3140 | high   | no      | fair      | no            |
| P2  | <=30 | high   | no      | excellent | no            |
| P3  | 3140 | high   | no      | fair      | yes           |
| P4  | >40  | medium | no      | fair      | yes           |
| P5  | >40  | low    | yes     | fair      | yes           |
| P6  | >40  | low    | yes     | excellent | no            |
| P7  | 3140 | low    | yes     | excellent | yes           |
| P8  | <=30 | medium | no      | fair      | no            |
| P9  | <=30 | low    | yes     | fair      | yes           |
| P10 | >40  | medium | yes     | fair      | yes           |

- X= (age:31...40, income: medium, student: yes, credit: fair)
- H<sub>1</sub> = X buys a computer
- $n_1 = 6$ ,  $n_{11} = 2$ ,  $n_{21} = 2$ ,  $n_{31} = 4$ ,  $n_{41} = 5$ ,
- $P(X|H_1) = \frac{2}{6}, \frac{2}{6}, \frac{4}{6}, \frac{5}{6} = \frac{5}{81} = 0.062$

|     | Age  | Income | Student | Credit    | Buys_computer |
|-----|------|--------|---------|-----------|---------------|
| P1  | 3140 | high   | no      | fair      | no            |
| P2  | <=30 | high   | no      | excellent | no            |
| P3  | 3140 | high   | no      | fair      | yes           |
| P4  | >40  | medium | no      | fair      | yes           |
| P5  | >40  | low    | yes     | fair      | yes           |
| P6  | >40  | low    | yes     | excellent | no            |
| P7  | 3140 | low    | yes     | excellent | yes           |
| P8  | <=30 | medium | no      | fair      | no            |
| P9  | <=30 | low    | yes     | fair      | yes           |
| P10 | >40  | medium | yes     | fair      | yes           |

- X= (age:31...40, income: medium, student: yes, credit: fair)
- $H_0 = X$  does not buy a computer
- $n_0 = 4$ ,  $n_{10} = 1$ ,  $n_{20} = 1$ ,  $n_{31} = 1$ ,  $n_{41} = 2$ ,
- $P(X|H_0) = \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{2}{4} = \frac{1}{128} = 0.0078 \ P(H_i|X) = \frac{P(X|H_i)P(H_i)}{P(X)}$ 20



To classify means to determine the highest P(H<sub>i</sub> | X) among all classes C<sub>1</sub>,...C<sub>m</sub>
P(X) is constant to all classes
Only need to compare P(H<sub>i</sub>)P(X | H<sub>i</sub>)

### **Weather Dataset Example**

*X* =< rain, hot, high, false>

| Outlook  | Temperature | Humidity | Windy | Class |  |
|----------|-------------|----------|-------|-------|--|
| sunny    | hot         | high     | false | N     |  |
| sunny    | hot         | high     | true  | N     |  |
| overcast | hot         | high     | false | Ρ     |  |
| rain     | mild        | high     | false | Ρ     |  |
| rain     | cool        | normal   | false | Ρ     |  |
| rain     | cool        | normal   | true  | N     |  |
| overcast | cool        | normal   | true  | Ρ     |  |
| sunny    | mild        | high     | false | N     |  |
| sunny    | cool        | normal   | false | Ρ     |  |
| rain     | mild        | normal   | false | Ρ     |  |
| sunny    | mild        | normal   | true  | Р     |  |
| overcast | mild        | high     | true  | Р     |  |
| overcast | hot         | normal   | false | Ρ     |  |
| rain     | mild        | high     | true  | Ν     |  |
|          |             |          |       |       |  |

#### Weather Dataset Example: Classifying X

- An unseen sample *X* = <rain, hot, high, false>
- P(p) P(X|p)

   = P(p) P(rain|p) P(hot|p) P(high|p) P(false|p)
   = x/x · x/x · x/x · x/x · x/x
- P(n) P(X|n)
   = P(n) P(rain|n) P(hot|n) P(high|n) P(false|n)
   = x/x · x/x · x/x · x/x · x/x

## Weather Dataset Example

• Given a training set, we can compute probabilities:

 $P(H_i)$  P(p) = 9/14 P(n) = 5/14

 $P(x_j | H_i)$ 

| Outlook            | Ρ   | Ν        | <b>Humidity</b>            | Ρ   | Ν        |
|--------------------|-----|----------|----------------------------|-----|----------|
| sunny              | 2/9 | 3/5      | high                       | 3/9 | 4/5      |
| overcast           | 4/9 | 0        | normal                     | 6/9 | 1/5      |
| rain               | 3/9 | 2/5      |                            |     |          |
|                    |     |          |                            |     |          |
| Temperature        | Ρ   | Ν        | Windy                      | Ρ   | Ν        |
| Temperature<br>hot | -   | N<br>2/5 | <mark>Windy</mark><br>true | · · | N<br>3/5 |
| • •                | 2/9 |          |                            | 3/9 |          |

#### Weather Dataset Example: Classifying X

- An unseen sample *X* = <rain, hot, high, false>
- P(p) P(X|p)
   = P(p) P(rain|p) P(hot|p) P(high|p) P(false|p)
   = 9/14 · 3/9 · 2/9 · 3/9 · 6/9 · = 0.010582
- P(n) P(X|n)
  - = P(n) P(rain | n) P(hot | n) P(high | n) P(false | n)=  $5/14 \cdot 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 = 0.018286$
- Sample X is classified in class n (don't play)

## **Avoiding the Zero-Probability Problem**

Descriptor posterior probability goes to 0 if any of probability is
 0:

$$P(X | H_i) = \bigcup_{j=1}^{d} P(x_j | H_i)$$

- Ex. Suppose a dataset with 1000 tuples for a class C, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)

Adding 1 to each case
 Prob(income = low | H) = 1/1003
 Prob(income = medium | H) = 991/1003
 Prob(income = high | H) = 11/1003

#### **Independence Hypothesis**

- makes computation possible
- yields optimal classifiers when satisfied
- but is seldom satisfied in practice, as attributes (variables) are often correlated
- Attempts to overcome this limitation:
  - Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes

## **Logistic Regression Classifier**

## Input distribution

- X is n-dimensional feature vector  $\langle X_1 \dots X_n \rangle$
- Y is 0 or 1
- X | Y ~ Gaussian distribution
- Y ~ Bernoulli distribution

## Model P(Y | X)

- What does P(Y|X) look like?
- What does P(Y=0|X)/P(Y=1|X) look like?

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}}$$

$$= \frac{1}{1 + \exp(\ln \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)})}$$

$$P(x \mid y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x - \mu_{ik})^2}{2\sigma_{ik}^2}}$$

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

$$P(Y = 1 | X = \langle X_1, ..., X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

#### implies

$$P(Y = 0 | X = \langle X_1, ..., X_n \rangle) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

#### implies

$$\frac{P(Y = 0|X)}{P(Y = 1|X)} = exp(w_0 + \sum_i w_i X_i)$$
  
implies  
$$\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_i w_i X_i$$
  
Log ratio:

Positive—Class 0 Negative—Class 1

## **Logistic Function**



## **Maximizing Conditional Likelihood**

- Training Set:  $\{\langle X^1, Y^1 \rangle, \dots \langle X^L, Y^L \rangle\}$
- Find W that maximizes conditional likelihood:

$$rg\max_W \prod_l P(Y^l|W,X^l)$$

$$P(Y = 1 | X = \langle X_1, ..., X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 0 | X = \langle X_1, ..., X_n \rangle) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

- A concave function in W
- Gradient descent approach to solve it

### **Rule-Based Classifier**

• Classify records by using a collection of "if...then..." rules

## • Rule: (Condition) ® y

- where
  - Condition is a conjunctions of attributes
  - y is the class label
- LHS: rule condition
- RHS: rule consequent
- Examples of classification rules:
  - (Blood Type=Warm) Ù (Lay Eggs=Yes) ® Birds
  - (Taxable Income < 50K) Ù (Refund=Yes) ® Evade=No

### **Rule-based Classifier (Example)**

| Name          | Blood Type | Give Birth | Can Fly | Live in Water | Class      |
|---------------|------------|------------|---------|---------------|------------|
| human         | warm       | yes        | no      | no            | mammals    |
| python        | cold       | no         | no      | no            | reptiles   |
| salmon        | cold       | no         | no      | yes           | fishes     |
| whale         | warm       | yes        | no      | yes           | mammals    |
| frog          | cold       | no         | no      | sometimes     | amphibians |
| komodo        | cold       | no         | no      | no            | reptiles   |
| bat           | warm       | yes        | yes     | no            | mammals    |
| pigeon        | warm       | no         | yes     | no            | birds      |
| cat           | warm       | yes        | no      | no            | mammals    |
| leopard shark | cold       | yes        | no      | yes           | fishes     |
| turtle        | cold       | no         | no      | sometimes     | reptiles   |
| penguin       | warm       | no         | no      | sometimes     | birds      |
| porcupine     | warm       | yes        | no      | no            | mammals    |
| eel           | cold       | no         | no      | yes           | fishes     |
| salamander    | cold       | no         | no      | sometimes     | amphibians |
| gila monster  | cold       | no         | no      | no            | reptiles   |
| platypus      | warm       | no         | no      | no            | mammals    |
| owl           | warm       | no         | yes     | no            | birds      |
| dolphin       | warm       | yes        | no      | yes           | mammals    |
| eagle         | warm       | no         | yes     | no            | birds      |

R1: (Give Birth = no)  $\dot{U}$  (Can Fly = yes) R Birds

R2: (Give Birth = no)  $\dot{U}$  (Live in Water = yes)  $\otimes$  Fishes

R3: (Give Birth = yes) Ù (Blood Type = warm) ® Mammals

R4: (Give Birth = no)  $\dot{U}$  (Can Fly = no) B Reptiles

R5: (Live in Water = sometimes) 
 Amphibians

#### **Application of Rule-Based Classifier**

• A rule *r* covers an instance **x** if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) Ù (Can Fly = yes) ® Birds

R2: (Give Birth = no)  $\dot{U}$  (Live in Water = yes) B Fishes

R3: (Give Birth = yes)  $\dot{U}$  (Blood Type = warm) R Mammals

R4: (Give Birth = no)  $\dot{U}$  (Can Fly = no)  $\circledast$  Reptiles

| Name         | Blood Type | Give Birth | Can Fly | Live in Water | Class |
|--------------|------------|------------|---------|---------------|-------|
| hawk         | warm       | no         | yes     | no            | ?     |
| grizzly bear | warm       | yes        | no      | no            | ?     |

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

## **Rule Coverage and Accuracy**

## • Coverage of a rule:

 Fraction of records that satisfy the condition of a rule

## • Accuracy of a rule:

 Fraction of records that satisfy both the LHS and RHS of a rule

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Class |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |

Coverage = 40%, Accuracy = 50%

# **Characteristics of Rule-Based Classifier**

# • Mutually exclusive rules

- Classifier contains mutually exclusive rules if the rules are independent of each other
- Every record is covered by at most one rule

### • Exhaustive rules

- Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
- Each record is covered by at least one rule

## **From Decision Trees To Rules**



#### **Classification Rules**

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Each path in the tree forms a rule

Rules are mutually exclusive and exhaustive

Rule set contains as much information as the tree

## **Rules Can Be Simplified**



| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |  |
|-----|--------|-------------------|-------------------|-------|--|
| 1   | Yes    | Single            | 125K              | No    |  |
| 2   | No     | Married           | 100K              | No    |  |
| 3   | No     | Single            | 70K               | No    |  |
| 4   | Yes    | Married           | 120K              | No    |  |
| 5   | No     | Divorced          | 95K               | Yes   |  |
| 6   | No     | Married           | 60K               | No    |  |
| 7   | Yes    | Divorced          | 220K              | No    |  |
| 8   | No     | Single            | 85K               | Yes   |  |
| 9   | No     | Married           | 75K               | No    |  |
| 10  | No     | Single            | 90K               | Yes   |  |

Initial Rule: (Refund=No) Ù (Status=Married) ® No

# **Effect of Rule Simplification**

# • Rules are no longer mutually exclusive

- A record may trigger more than one rule
- Solution?
  - Ordered rule set
  - Unordered rule set use voting schemes
- Rules are no longer exhaustive
  - A record may not trigger any rules
  - Solution?
    - Use a default class

#### Learn Rules from Data: Sequential Covering

- 1. Start from an empty rule
- 2. Grow a rule using the Learn-One-Rule function
- 3. Remove training records covered by the rule
- 4. Repeat Step (2) and (3) until stopping criterion is met

#### **Example of Sequential Covering**



(i) Original Data



(ii) Step 1

#### **Example of Sequential Covering...**



(iii) Step 2



(iv) Step 3

#### How to Learn-One-Rule?

- Start with the most general rule possible: condition = empty
- Adding new attributes by adopting a greedy depth-first strategy
  - Picks the one that most improves the rule quality
- Rule-Quality measures: consider both coverage and accuracy
  - Foil-gain: assesses info\_gain by extending condition

$$FOIL\_Gain = pos'' (\log_2 \frac{pos'}{pos' + neg'} - \log_2 \frac{pos}{pos + neg})$$

• favors rules that have high accuracy and cover many positive tuples

#### **Rule Generation**

#### • To generate a rule

- while(true)
  - find the best predicate *p*
  - if foil-gain(p) > threshold then add p to current rule
  - else break



# **Associative Classification**

- Associative classification: Major steps
  - Mine data to find strong associations between frequent patterns (conjunctions of attribute-value pairs) and class labels
  - Association rules are generated in the form of

$$P_1 ^p_2 ... ^p_l a ^{"}A_{class} = C'' (conf, sup)$$

- Organize the rules to form a rule-based classifier

# **Associative Classification**

#### • Why effective?

- It explores highly confident associations among multiple attributes and may overcome some constraints introduced by decision-tree induction, which considers only one attribute at a time
- Associative classification has been found to be often more accurate than some traditional classification methods, such as C4.5

# **Associative Classification**

- Basic idea
  - Mine possible association rules in the form of
    - Cond-set (a set of attribute-value pairs) à class label
  - Pattern-based approach
    - Mine frequent patterns as candidate condition sets
    - Choose a subset of frequent patterns based on discriminativeness and redundancy

#### **Frequent Pattern vs. Single Feature**

The discriminative power of some frequent patterns is higher than that of single features.



Information Gain vs. Pattern Length

#### **Two Problems**





#### **Direct Mining & Selection via Model-based Search Tree**

• Basic Flow



Divide-and-Conquer Based Frequent Pattern Mining Mined Discriminative Patterns

# **Advantages of Rule-Based Classifiers**

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees

#### **Support Vector Machines—An Example**



• Find a linear hyperplane (decision boundary) that will separate the data



• One Possible Solution

## Example



• Another possible solution

## Example



• Other possible solutions

# **Choosing Decision Boundary**



- Which one is better? B1 or B2?
- How do you define better?

#### **Maximize Margin between Classes**



• Find hyperplane maximizes the margin => B1 is better than B2

#### **Formal Definition**



## **Support Vector Machines**

• We want to maximize: Margin =  $\frac{2}{\|w\|^2}$ 

– Which is equivalent to minimizing:  $L(w) = \frac{||w||^2}{2}$ 

- But subjected to the following constraints:

$$w \cdot x_{i} + b^{3} 1$$
 if  $y_{i} = 1$   
 $r r_{w} \cdot x_{i} + b \pounds - 1$  if  $y_{i} = -1$ 

- This is a constrained optimization problem
  - Numerical approaches to solve it (e.g., quadratic programming)

# **Noisy Data**

• What if the problem is not linearly separable?



# **Slack Variables**

- What if the problem is not linearly separable?
   Introduce slack variables
  - Need to minimize:

$$L(w) = \frac{\| \begin{bmatrix} \mathbf{r} \\ w \end{bmatrix}^2}{2} + C \mathbf{\hat{e}}_{i=1}^{\infty} \mathbf{X}_i^k \overset{\mathbf{\ddot{o}}}{\div} \mathbf{X}_i^k \overset{\mathbf{\ddot{o}}}{\div}$$

• Subject to:

#### **Non-linear SVMs:** Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is linearly separable:



# **Ensemble Learning**

#### Problem

- Given a data set  $D=\{x_1, x_2, ..., x_n\}$  and their corresponding labels  $L=\{I_1, I_2, ..., I_n\}$
- An ensemble approach computes:
  - A set of classifiers {f<sub>1</sub>, f<sub>2</sub>,..., f<sub>k</sub>}, each of which maps data to a class label: f<sub>j</sub>(x)=I
  - A combination of classifiers  $f^*$  which minimizes generalization error:  $f^*(x) = w_1 f_1(x) + w_2 f_2(x) + ... + w_k f_k(x)$

# **Generating Base Classifiers**

- Sampling training examples
  - Train k classifiers on k subsets drawn from the training set
- Using different learning models
  - Use all the training examples, but apply different learning algorithms
- Sampling features
  - Train k classifiers on k subsets of features drawn from the feature space
- Learning "randomly"
  - Introduce randomness into learning procedures

# Bagging (1)

#### Bootstrap

- Sampling with replacement
- Contains around 63.2% original records in each sample
- Bootstrap Aggregation
  - Train a classifier on each bootstrap sample
  - Use majority voting to determine the class label of ensemble classifier



#### **Original Data:**

| х | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|
| у | 1   | 1   | 1   | -7  | Ŧ   | 7   | 7   | 1   | 1   | 1 |

Bootstrap samples and classifiers:

| Х | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 | 0.6 | 0.9 | 0.9 |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| у | 1   | 1   | 1   | 1   | -1  | -1  | -1  | -1  | 1   | 1   |
| X | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.5 | 0.9 | 1   | 1   | 1   |
| y | 1   |     |     |     |     |     | 1   | 1   | 1   | 1   |
|   | 0.1 |     |     |     |     |     |     |     |     |     |
| X | 0.1 | 0.2 |     |     |     |     |     |     |     |     |
| у | I   | I   | 1   | -1  | -1  | -1  | -1  | -1  | I   | I   |
| X | 0.1 | 0.2 | 0.5 | 0.5 | 0.5 | 0.7 | 0.7 | 0.8 | 0.9 | 1   |
| у | 1   | 1   | -1  | -1  | -1  | -1  | -1  | 1   | 1   | 1   |

Combine predictions by majority voting

# **Boosting (1)**

#### • Principles

- Boost a set of weak learners to a strong learner
- Make records currently misclassified more important

#### • Example

- Record 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

| Original Data      | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8  | 9 | 10 |
|--------------------|---|---|---|----|---|---|---|----|---|----|
| Boosting (Round 1) | 7 | 3 | 2 | 8  | 7 | 9 | 4 | 10 | 6 | 3  |
| Boosting (Round 2) | 5 | 4 | 9 | 4  | 2 | 5 | 1 | 7  | 4 | 2  |
| Boosting (Round 3) | 4 | 4 | 8 | 10 | 4 | 5 | 4 | 6  | 3 | 4  |

# **Boosting (2)**

#### AdaBoost

- Initially, set uniform weights on all the records
- At each round
  - Create a bootstrap sample based on the weights
  - Train a classifier on the sample and apply it on the original training set
  - Records that are wrongly classified will have their weights increased
  - Records that are classified correctly will have their weights decreased
  - If the error rate is higher than 50%, start over
- Final prediction is weighted average of all the classifiers with weight representing the training accuracy

# **Boosting (3)**

- Determine the weight
  - For classifier *i*, its error is
  - The classifier's importance is represented as:

 The weight of each record is updated as:

$$e_{i} = \frac{\mathbf{\mathring{a}}_{j=1}^{N} w_{j} \mathcal{O}(C_{i}(x_{j})^{1} y_{j})}{\mathbf{\mathring{a}}_{j=1}^{N} w_{j}}$$
$$a_{i} = \frac{1}{2} \ln \mathbf{\underbrace{\bigotimes}}_{\mathbf{e}}^{\mathbf{f}} - \underline{e_{i}}_{i} \mathbf{\underbrace{\bigotimes}}^{\mathbf{o}}$$
$$w_{j}^{(i+1)} = \frac{w_{j}^{(i)} \exp\left(-a_{i} y_{j} C_{i}(x_{j})\right)}{Z^{(i)}}$$

– Final combination:

$$C^*(x) = \arg\max_{y} \overset{\circ}{\mathbf{a}}_{i=1}^{K} a_i \mathcal{O}(C_i(x) = y)$$



## **Boosting (4)**

#### • Explanation

- Among the classifiers of the form:

$$f(x) = \mathbf{a}_{i=1}^{K} a_i C_i(x)$$

- We seek to minimize the exponential loss function:

$$\mathbf{\mathring{a}}_{j=1}^{N} \exp\left(-y_j f(x_j)\right)$$

Not robust in noisy settings

# Random Forests (1)

#### Algorithm

- Choose *T*—number of trees to grow
- Choose *m<M* (M is the number of total features) —number of features used to calculate the best split at each node (typically 20%)
- For each tree
  - Choose a training set by choosing *N* times (*N* is the number of training examples) with replacement from the training set
  - For each node, randomly choose *m* features and calculate the best split
  - Fully grown and not pruned
- Use majority voting among all the trees

## Random Forests (2)

#### Discussions

- Bagging+random features
- Improve accuracy
  - Incorporate more diversity and reduce variances
- Improve efficiency
  - Searching among subsets of features is much faster than searching among the complete set

## Random Decision Tree (1)

#### • Single-model learning algorithms

- Fix structure of the model, minimize some form of errors, or maximize data likelihood (eg., Logistic regression, Naive Bayes, etc.)
- Use some "free-form" functions to match the data given some "preference criteria" such as information gain, gini index and MDL. (eg., Decision Tree, Rule-based Classifiers, etc.)

#### • Such methods will make mistakes if

- Data is insufficient
- Structure of the model or the preference criteria is inappropriate for the problem

#### Learning as Encoding

- Make no assumption about the true model, neither parametric form nor free form
- Do not prefer one base model over the other, just average them

## Random Decision Tree (2)

#### Algorithm

- At each node, an un-used feature is chosen randomly
  - A discrete feature is un-used if it has never been chosen previously on a given decision path starting from the root to the current node.
  - A continuous feature can be chosen multiple times on the same decision path, but each time a different threshold value is chosen
- We stop when one of the following happens:
  - A node becomes too small (<= 3 examples).
  - Or the total height of the tree exceeds some limits, such as the total number of features.
- Prediction
  - Simple averaging over multiple trees

### **Random Decision Tree (3)**



B3: continous

### Random Decision Tree (4)

### Advantages

- Training can be very efficient. Particularly true for very large datasets.
  - No cross-validation based estimation of parameters for some parametric methods.
- Natural multi-class probability.
- Imposes very little about the structures of the model.

### **Optimal Decision Boundary**

Figure 3.5: Gaussian mixture training samples and optimal boundary.



training samples



optimal boundary



(c) Random Forests

(d) Complete-random tree ensemble

#### **Ensemble Learning--Stories of Success**



#### • Million-dollar prize

- Improve the baseline movie recommendation approach of Netflix by 10% in accuracy
- The top submissions all combine several teams and algorithms as an ensemble





- Data mining competitions
  - Classification problems
  - Winning teams employ an ensemble of classifiers

## **Netflix Prize**

- Supervised learning task
  - Training data is a set of users and ratings (1,2,3,4,5 stars) those users have given to movies.
  - Construct a classifier that given a user and an unrated movie, correctly classifies that movie as either 1, 2, 3, 4, or 5 stars
  - \$1 million prize for a 10% improvement over Netflix's current movie recommender

# Competition

- At first, single-model methods are developed, and performances are improved
- However, improvements slowed down
- Later, individuals and teams merged their results, and significant improvements are observed

#### Leaderboard

| Rank                                                                         | Team Name                           | Best Test Score | % Improvement | Best Submit Time    |  |  |  |  |  |
|------------------------------------------------------------------------------|-------------------------------------|-----------------|---------------|---------------------|--|--|--|--|--|
| <u>Grand Prize</u> - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos |                                     |                 |               |                     |  |  |  |  |  |
| 1                                                                            | BellKor's Pragmatic Chaos           | 0.8567          | 10.06         | 2009-07-26 18:18:28 |  |  |  |  |  |
| 2                                                                            | The Ensemble                        | 0.8567          | 10.06         | 2009-07-26 18:38:22 |  |  |  |  |  |
| 3                                                                            | Grand Prize Team                    | 0.8582          | 9.90          | 2009-07-10 21:24:40 |  |  |  |  |  |
| 4                                                                            | Opera Solutions and Vandelay United | 0.8588          | 9.84          | 2009-07-10 01:12:31 |  |  |  |  |  |
| 5                                                                            | Vandelay Industries !               | 0.8591          | 9.81          | 2009-07-10 00:32:20 |  |  |  |  |  |
| 6                                                                            | PragmaticTheory                     | 0.8594          | 9.77          | 2009-06-24 12:06:56 |  |  |  |  |  |
| 7                                                                            | BellKor in BigChaos                 | 0.8601          | 9.70          | 2009-05-13 08:14:09 |  |  |  |  |  |
| 8                                                                            | Dace                                | 0.8612          | 9.59          | 2009-07-24 17:18:43 |  |  |  |  |  |
| 9                                                                            | Feeds2                              | 0.8622          | 9.48          | 2009-07-12 13:11:51 |  |  |  |  |  |
| 10                                                                           | BigChaos                            | 0.8623          | 9.47          | 2009-04-07 12:33:59 |  |  |  |  |  |

#### "Our final solution (RMSE=0.8712) consists of blending 107 individual results."

| 12  | i                                                                       | Delikol    | i. | 0.0024 |  | 9.40 | 2009-07-20 17.19.11 |  |  |  |
|-----|-------------------------------------------------------------------------|------------|----|--------|--|------|---------------------|--|--|--|
| Pro | Progress Prize 2008 - RMSE = 0.8627 - Winning Team: BellKor in BigChaos |            |    |        |  |      |                     |  |  |  |
| 13  |                                                                         | xiangliang | 1  | 0.8642 |  | 9.27 | 2009-07-15 14:53:22 |  |  |  |
| 14  |                                                                         | Gravity    | 1  | 0.8643 |  | 9.26 | 2009-04-22 18:31:32 |  |  |  |
| 15  | 1                                                                       | Ces        |    | 0.8651 |  | 9.18 | 2009-06-21 19:24:53 |  |  |  |

"Predictive accuracy is substantially improved when blending multiple predictors. Our experience is that most efforts should be concentrated in deriving substantially different approaches, rather than refining a single technique. "

Cinematch score - RMSE = 0.9525

## **Take-away Message**

- Various classification approaches
  - how they work
  - their strengths and weakness
- Algorithms
  - Decision tree
  - K nearest neighbors
  - Naive Bayes
  - Logistic regression
  - Rule-based classifier
  - SVM
  - Ensemble method