Classification Lecture 2: Methods

Jing Gao SUNY Buffalo

Outline

Basics

Problem, goal, evaluation

Methods

- Nearest Neighbor
- Decision Tree
- Naïve Bayes
- Rule-based Classification
- Logistic Regression
- Support Vector Machines
- Ensemble methods
- **—**

Advanced topics

- Multi-view Learning
- Semi-supervised Learning
- Transfer Learning
- **—**

Bayesian Classification

- Bayesian classifier vs. decision tree
 - Decision tree: predict the class label
 - Bayesian classifier: statistical classifier; predict class membership probabilities
- Based on Bayes theorem; estimate posterior probability
- Naïve Bayesian classifier:
 - Simple classifier that assumes attribute independence
 - Efficient when applied to large databases
 - Comparable in performance to decision trees

Posterior Probability

- Let X be a data sample whose class label is unknown
- Let H_i be the hypothesis that X belongs to a particular class C_i
- $P(H_i|X)$ is *posteriori* probability of H conditioned on X
 - Probability that data example X belongs to class C_i given the attribute values of X
 - e.g., given X=(age:31...40, income: medium, student: yes, credit: fair), what is the probability X buys computer?

Bayes Theorem

- To classify means to determine the highest $P(H_i|X)$ among all classes $C_1,...C_m$
 - If $P(H_1|X)>P(H_0|X)$, then X buys computer
 - If $P(H_0|X)>P(H_1|X)$, then X does not buy computer
 - Calculate $P(H_i|X)$ using the Bayes theorem

Class Prior Probability

Descriptor Posterior Probability

$$P(H_i \mid X) = \frac{P(H_i)P(X \mid H_i)}{P(X)}$$

Class Posterior Probability

Descriptor Prior Probability

Class Prior Probability

- P(H_i) is class prior probability that X belongs to a particular class C_i
 - Can be estimated by n_i/n from training data samples
 - n is the total number of training data samples
 - $-n_i$ is the number of training data samples of class C_i

	Age	Income	Student	Credit	Buys_computer
P1	314	high	no	fair	no
P2	<=30	high	no	excellent	no
Р3	314	high	no	fair	yes
P4	>40	medium	no	fair	yes
P5	>40	low	yes	fair	yes
P6	>40	low	yes	excellent	no
P7	314	low	yes	excellent	yes
P8	<=30	medium	no	fair	no
P9	<=30	low	yes	fair	yes
P10	>40	medium	yes	fair	yes

H1: Buys_computer=yes

H0: Buys_computer=no

P(H1)=6/10=0.6

P(H0)=4/10=0.4

$$P(H_i|X) = \frac{P(X|H_i)P(H_i)}{P(X)}$$

Descriptor Prior Probability

- P(X) is prior probability of X
 - Probability that observe the attribute values of X
 - Suppose $X=(x_1, x_2,..., x_d)$ and they are independent, then $P(X) = P(x_1) P(x_2) ... P(x_d)$
 - $-P(x_i)=n_i/n$, where
 - $-n_j$ is number of training examples having value x_j for attribute A_i
 - n is the total number of training examples
 - Constant for all classes

	Age	Income	Student	Credit	Buys_computer
P1	3140	high	no	fair	no
P2	<=30	high	no	excellent	no
Р3	3140	high	no	fair	yes
P4	>40	medium	no	fair	yes
P5	>40	low	yes	fair	yes
P6	>40	Low	yes	excellent	No
P7	3140	low	yes	excellent	yes
P8	<=30	medium	no	fair	no
P9	<=30	low	yes	fair	yes
P10	>40	medium	yes	fair	yes

- X=(age:31...40, income: medium, student: yes, credit: fair)
- P(age=31...40)=3/10 P(income=medium)=3/10 $P(H_i|X) = \frac{P(X|H_i)P(H_i)}{P(X)}$ P(student=yes)=5/10 P(credit=fair)=7/10
- $P(X)=P(age=31...40) \cdot P(income=medium) \cdot P(student=yes) \cdot P(credit=fair)$ =0.3 · 0.3 · 0.5 · 0.7 = 0.0315

Descriptor Posterior Probability

- $P(X|H_i)$ is posterior probability of X given H_i
 - Probability that observe X in class C_i
 - Assume $X=(x_1, x_2,..., x_d)$ and they are independent, then $P(X|H_i) = P(x_1|H_i) P(x_2|H_i) ... P(x_d|H_i)$
 - $-P(x_i|H_i)=n_{i,i}/n_i$, where
 - $-n_{i,j}$ is number of training examples in class C_i having value x_j for attribute A_j
 - $-n_i$ is number of training examples in C_i

	Age	Income	Student	Credit	Buys_computer
P1	3140	high	no	fair	no
P2	<=30	high	no	excellent	no
Р3	3140	high	no	fair	yes
P4	>40	medium	no	fair	yes
P5	>40	low	yes	fair	yes
P6	>40	low	yes	excellent	no
P7	3140	low	yes	excellent	yes
P8	<=30	medium	no	fair	no
P9	<=30	low	yes	fair	yes
P10	>40	medium	yes	fair	yes

- X= (age:31...40, income: medium, student: yes, credit: fair)
- H₁ = X buys a computer
- $n_1 = 6$, $n_{11} = 2$, $n_{21} = 2$, $n_{31} = 4$, $n_{41} = 5$,

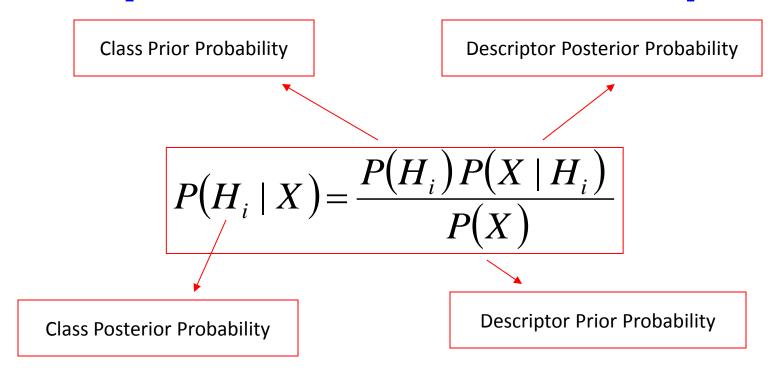
•
$$P(X|H_1) = \frac{2}{6} \times \frac{2}{6} \times \frac{4}{6} \times \frac{5}{6} = \frac{5}{81} = 0.062$$

	Age	Income	Student	Credit	Buys_computer
P1	3140	high	no	fair	no
P2	<=30	high	no	excellent	no
P3	3140	high	no	fair	yes
P4	>40	medium	no	fair	yes
P5	>40	low	yes	fair	yes
P6	>40	low	yes	excellent	no
P7	3140	low	yes	excellent	yes
P8	<=30	medium	no	fair	no
P9	<=30	low	yes	fair	yes
P10	>40	medium	yes	fair	yes

- X= (age:31...40, income: medium, student: yes, credit: fair)
- $H_0 = X$ does not buy a computer

•
$$n_0 = 4$$
, $n_{10} = 1$, $n_{20} = 1$, $n_{31} = 1$, $n_{41} = 2$,
• $P(X|H_0) = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{2}{4} = \frac{1}{128} = 0.0078$ $P(H_i|X) = \frac{P(X|H_i)P(H_i)}{P(X)}$

Bayesian Classifier – Basic Equation



To classify means to determine the highest $P(H_i|X)$ among all classes $C_1,...C_m$

P(X) is constant to all classes

Only need to compare $P(H_i)P(X|H_i)$

Weather Dataset Example

X =< rain, hot, high, false>

Outlook	Temperature	Humidity	Windy	Class	
sunny	hot	high	false	N	
sunny	hot	high	true	N	
overcast	hot	high	false	P	
rain	mild	high	false	P	
rain	cool	normal	false	P	
rain	cool	normal	true	N	
overcast	cool	normal	true	P	
sunny	mild	high	false	N	
sunny	cool	normal	false	P	
rain	mild	normal	false	P	
sunny	mild	normal	true	P	
overcast	mild	high	true	P	
overcast	hot	normal	false	P	
rain	mild	high	true	N	

Weather Dataset Example

• Given a training set, we can compute probabilities:

$$P(H_i)$$
 $P(p) = 9/14$ $P(n) = 5/14$

 $P(x_j|H_i)$

Outlook	P	N	Humidity	P	N
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Temperature	P	N	Windy	P	N
Temperature hot	P 2/9	N 2/5	Windy true	P 3/9	- \
	-	_ `		_	- '

Weather Dataset Example: Classifying X

- An unseen sample X = <rain, hot, high, false>
- P(p) P(X|p)
 - = P(p) P(rain|p) P(hot|p) P(high|p) P(false|p)
 - $= 9/14 \cdot 3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot = 0.010582$
- P(n) P(X|n)
 - = P(n) P(rain|n) P(hot|n) P(high|n) P(false|n)
 - $= 5/14 \cdot 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 = 0.018286$
- Sample X is classified in class n (don't play)

Avoiding the Zero-Probability Problem

Descriptor posterior probability goes to 0 if any of probability is
 0:

$$P(X \mid H_i) = \prod_{j=1}^{d} P(x_j \mid H_i)$$

- Ex. Suppose a dataset with 1000 tuples for a class C, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case

Prob(income = low | H) = 1/1003

Prob(income = medium | H) = 991/1003

Prob(income = high \mid H) = 11/1003

Independence Hypothesis

- makes computation possible
- yields optimal classifiers when satisfied
- but is seldom satisfied in practice, as attributes (variables) are often correlated
- Attempts to overcome this limitation:
 - Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes

Logistic Regression Classifier

Input distribution

- X is n-dimensional feature vector $\langle X_1 ... X_n \rangle$
- Y is 0 or 1
- X | Y ~ Gaussian distribution
- Y ~ Bernoulli distribution

Model P(Y|X)

- What does P(Y|X) look like?
- What does P(Y=0|X)/P(Y=1|X) look like?

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}}$$

$$= \frac{1}{1 + \exp(\ln \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)})}$$

$$= \frac{1}{1 + \exp((\ln \frac{1 - \pi}{\pi}) + \sum_{i} \ln \frac{P(X_{i}|Y = 0)}{P(X_{i}|Y = 1)})}$$

$$P(X \mid y_{k}) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x - u_{ik})^{2}}{2\sigma_{ik}^{2}}}$$

$$\sum_{i} (\frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}} X_{i} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}})$$

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_{0} + \sum_{i=1}^{n} w_{i}X_{i})}$$

$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$P(Y = 0|X = < X_1, ...X_n >) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y = 0|X)}{P(Y = 1|X)} = exp(w_0 + \sum_i w_i X_i)$$

linear classification rule!

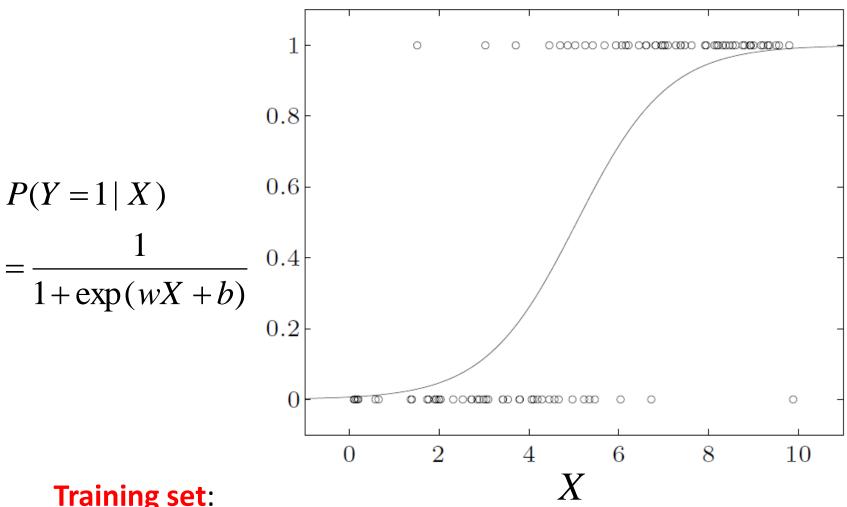
implies
$$\ln \frac{P(Y=0|X)}{P(Y=1|X)} = w_0 + \sum_i w_i X_i$$

Log ratio:

Positive—Class 0

Negative—Class 1

Logistic Function



Training set:

$$Y=1-P(Y=1|X)=1$$

$$Y=1-P(Y=1|X)=1$$
 $Y=0-P(Y=1|X)=0$

Maximizing Conditional Likelihood

- Training Set: $\{\langle X^1, Y^1 \rangle, \dots \langle X^L, Y^L \rangle\}$
- Find W that maximizes conditional likelihood:

$$\arg\max_{W}\prod_{l}P(Y^{l}|W,X^{l})$$

$$P(Y = 1|X = < X_1, ...X_n >) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 0|X = \langle X_1, ...X_n \rangle) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

- A concave function in W
- Gradient descent approach to solve it

Rule-Based Classifier

- Classify records by using a collection of "if...then..." rules
- Rule: (Condition) $\rightarrow y$
 - where
 - Condition is a conjunctions of attributes
 - y is the class label
 - LHS: rule condition
 - RHS: rule consequent
 - Examples of classification rules:
 - (Blood Type=Warm) ∧ (Lay Eggs=Yes) → Birds
 - (Taxable Income < 50K) ∧ (Refund=Yes) → Evade=No

Rule-based Classifier (Example)

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	yes	no	no	mammals
python	cold	no	no	no	reptiles
salmon	cold	no	no	yes	fishes
whale	warm	yes	no	yes	mammals
frog	cold	no	no	sometimes	amphibians
komodo	cold	no	no	no	reptiles
bat	warm	yes	yes	no	mammals
pigeon	warm	no	yes	no	birds
cat	warm	yes	no	no	mammals
leopard shark	cold	yes	no	yes	fishes
turtle	cold	no	no	sometimes	reptiles
penguin	warm	no	no	sometimes	birds
porcupine	warm	yes	no	no	mammals
eel	cold	no	no	yes	fishes
salamander	cold	no	no	sometimes	amphibians
gila monster	cold	no	no	no	reptiles
platypus	warm	no	no	no	mammals
owl	warm	no	yes	no	birds
dolphin	warm	yes	no	yes	mammals
eagle	warm	no	yes	no	birds

R1: (Give Birth = no) \wedge (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \wedge (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Application of Rule-Based Classifier

• A rule *r* covers an instance **x** if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

Coverage of a rule:

 Fraction of records that satisfy the condition of a rule

Accuracy of a rule:

Fraction of records
 that satisfy both the
 LHS and RHS of a rule

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(Status=Single) \rightarrow No Coverage = 40%, Accuracy = 50%

Characteristics of Rule-Based Classifier

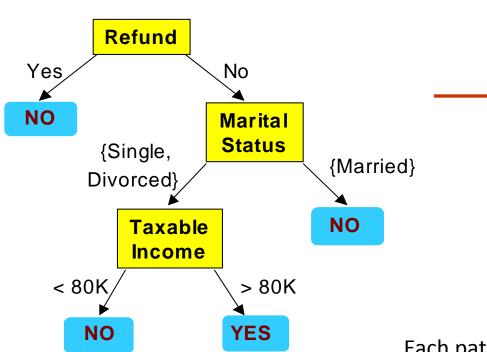
Mutually exclusive rules

- Classifier contains mutually exclusive rules if the rules are independent of each other
- Every record is covered by at most one rule

Exhaustive rules

- Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
- Each record is covered by at least one rule

From Decision Trees To Rules



Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

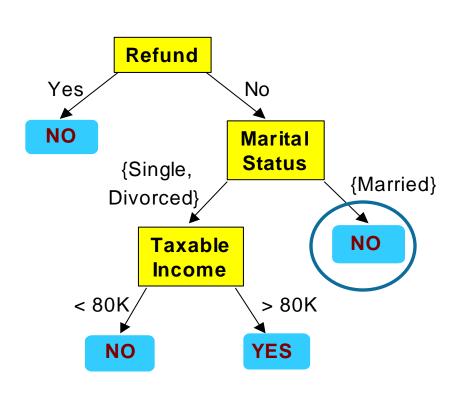
(Refund=No, Marital Status={Married}) ==> No

Each path in the tree forms a rule

Rules are mutually exclusive and exhaustive

Rule set contains as much information as the tree

Rules Can Be Simplified



Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Initial Rule: (Refund=No) \land (Status=Married) \rightarrow No

Simplified Rule: (Status=Married) \rightarrow No

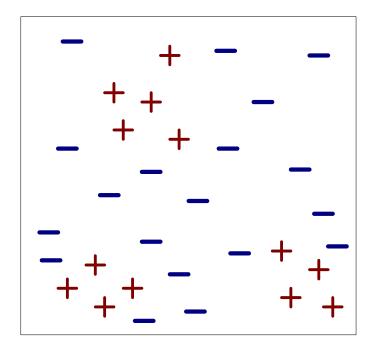
Effect of Rule Simplification

- Rules are no longer mutually exclusive
 - A record may trigger more than one rule
 - Solution?
 - Ordered rule set
 - Unordered rule set use voting schemes
- Rules are no longer exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class

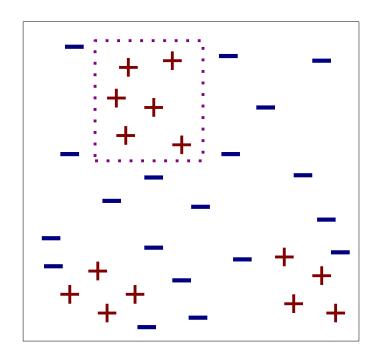
Learn Rules from Data: Sequential Covering

- 1. Start from an empty rule
- 2. Grow a rule using the Learn-One-Rule function
- 3. Remove training records covered by the rule
- Repeat Step (2) and (3) until stopping criterion is met

Example of Sequential Covering

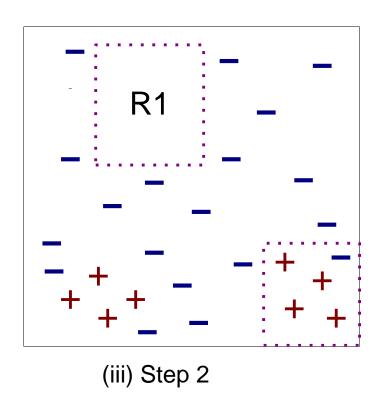


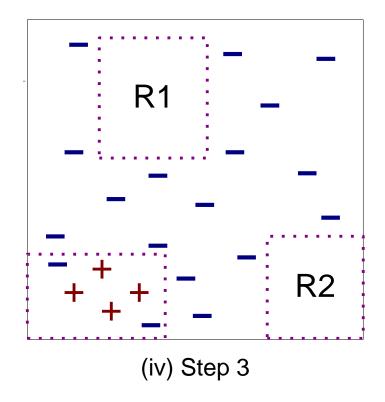
(i) Original Data



(ii) Step 1

Example of Sequential Covering...





How to Learn-One-Rule?

- Start with the most general rule possible: condition = empty
- Adding new attributes by adopting a greedy depth-first strategy
 - Picks the one that most improves the rule quality
- Rule-Quality measures: consider both coverage and accuracy
 - Foil-gain: assesses info_gain by extending condition

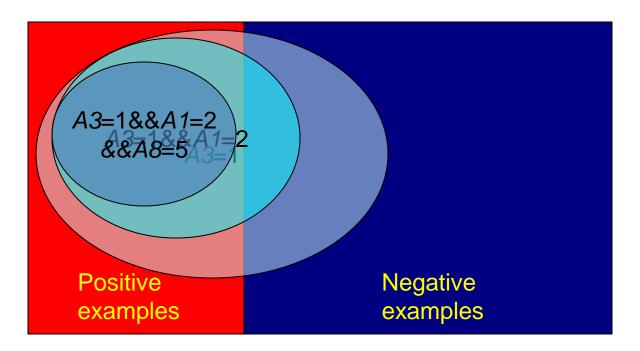
$$FOIL_Gain = pos' \times (\log_2 \frac{pos'}{pos' + neg'} - \log_2 \frac{pos}{pos + neg})$$

 favors rules that have high accuracy and cover many positive tuples

Rule Generation

To generate a rule

```
while(true)
  find the best predicate p
  if foil-gain(p) > threshold then add p to current rule
  else break
```



Associative Classification

- Associative classification: Major steps
 - Mine data to find strong associations between frequent patterns (conjunctions of attribute-value pairs) and class labels
 - Association rules are generated in the form of

$$P_1 \wedge p_2 \dots \wedge p_l \rightarrow \text{"}A_{class} = C" \text{ (conf, sup)}$$

Organize the rules to form a rule-based classifier

Associative Classification

Why effective?

- It explores highly confident associations among multiple attributes and may overcome some constraints introduced by decision-tree induction, which considers only one attribute at a time
- Associative classification has been found to be often more accurate than some traditional classification methods, such as C4.5

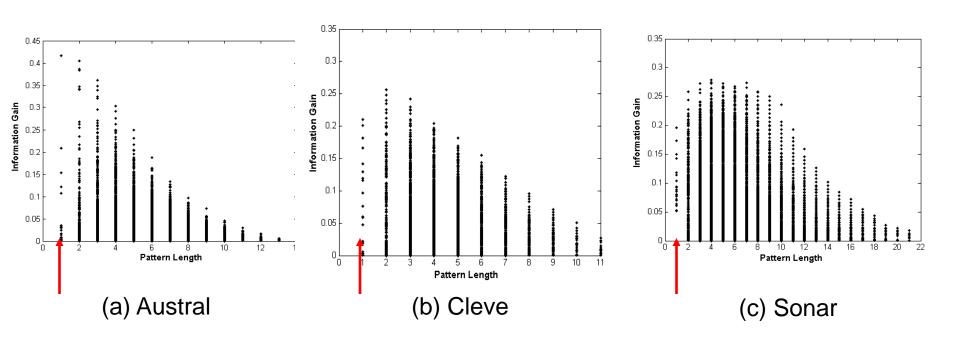
Associative Classification

Basic idea

- Mine possible association rules in the form of
 - Cond-set (a set of attribute-value pairs) → class
 label
- Pattern-based approach
 - Mine frequent patterns as candidate condition sets
 - Choose a subset of frequent patterns based on discriminativeness and redundancy

Frequent Pattern vs. Single Feature

The discriminative power of some frequent patterns is higher than that of single features.

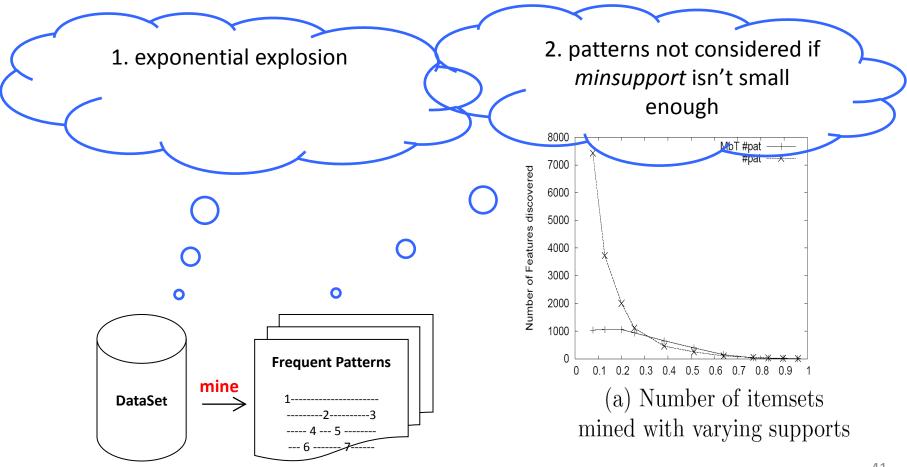


Information Gain vs. Pattern Length

Two Problems

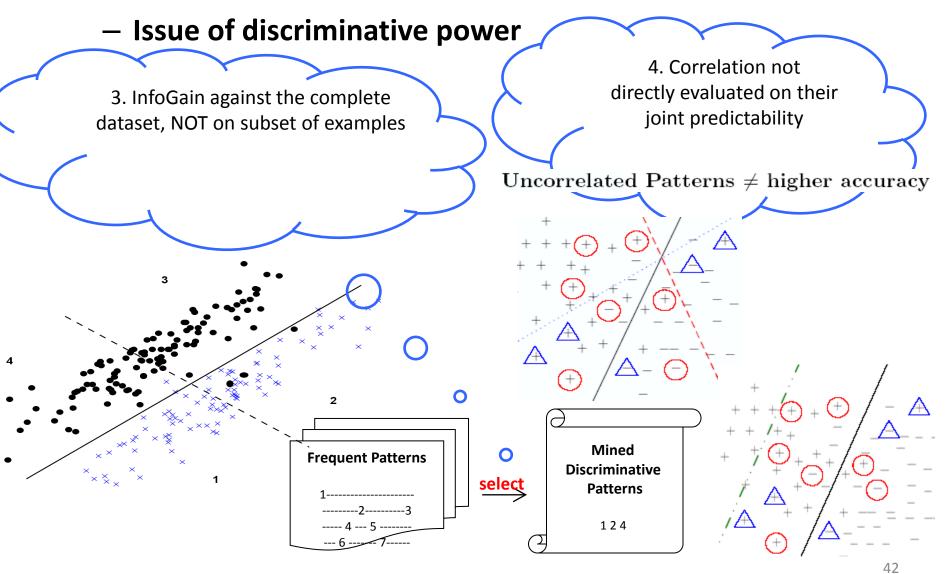
Mine step

- combinatorial explosion



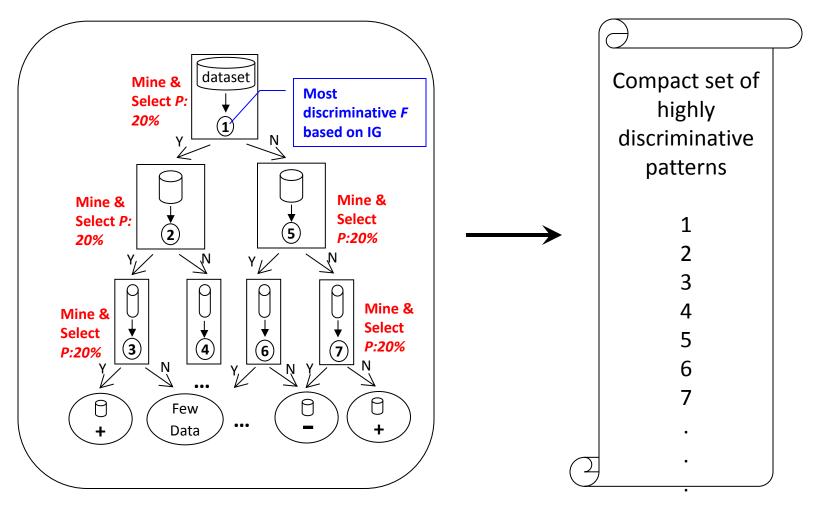
Two Problems

Select step



Direct Mining & Selection via Model-based Search Tree

Basic Flow



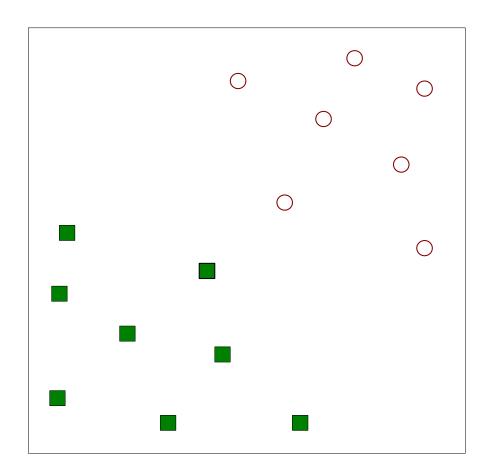
Divide-and-Conquer Based Frequent Pattern Mining

Mined Discriminative Patterns

Advantages of Rule-Based Classifiers

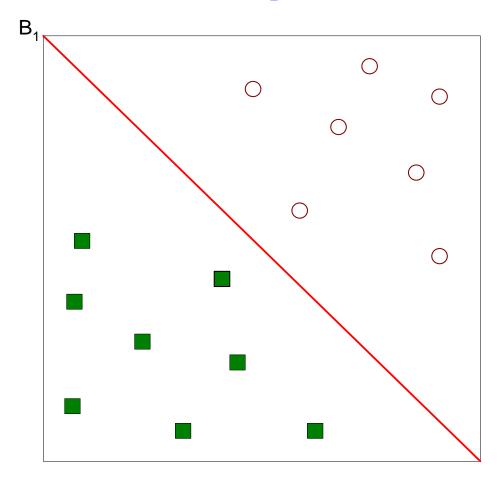
- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees

Support Vector Machines—An Example



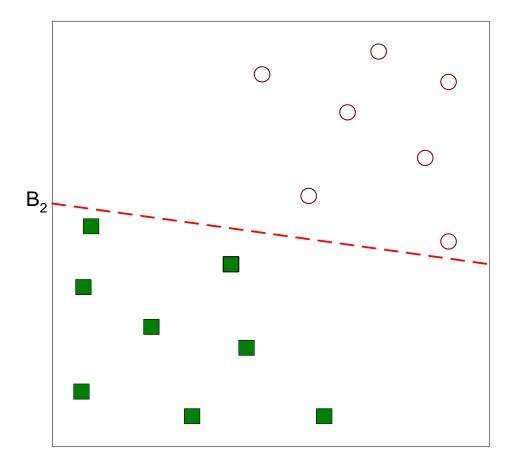
• Find a linear hyperplane (decision boundary) that will separate the data

Example



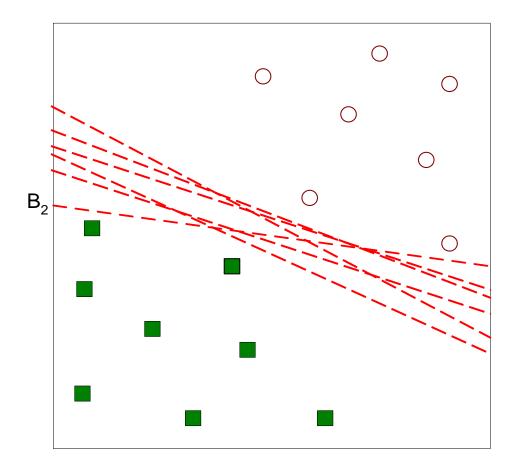
One Possible Solution

Example



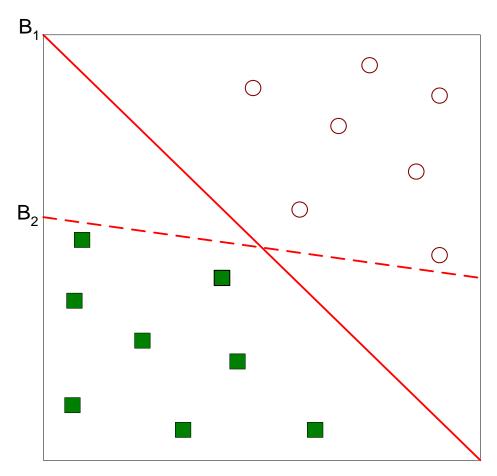
Another possible solution

Example



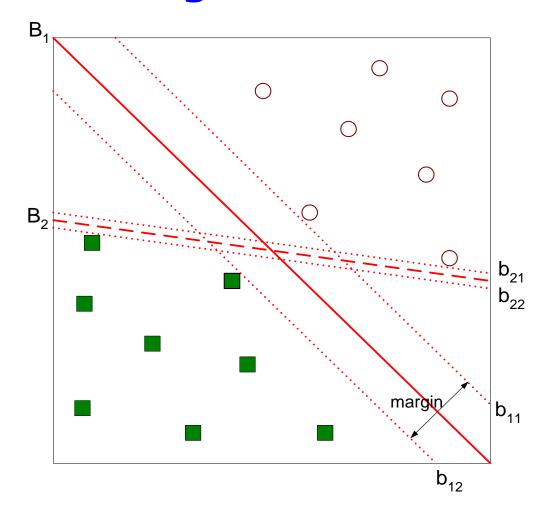
Other possible solutions

Choosing Decision Boundary



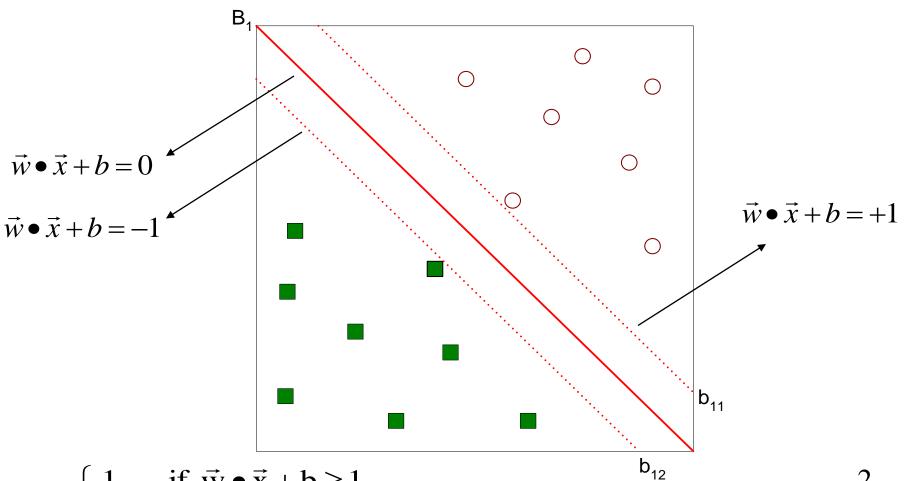
- Which one is better? B1 or B2?
- How do you define better?

Maximize Margin between Classes



Find hyperplane maximizes the margin => B1 is better than B2

Formal Definition



$$y = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}} + \mathbf{b} \ge 1 \\ -1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}} + \mathbf{b} \le -1 \end{cases}$$

$$M \operatorname{argin} = \frac{2}{\|\vec{w}\|^2}$$

Support Vector Machines

- We want to maximize: $M \operatorname{argin} = \frac{2}{\|\vec{w}\|^2}$
 - Which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$
 - But subjected to the following constraints:

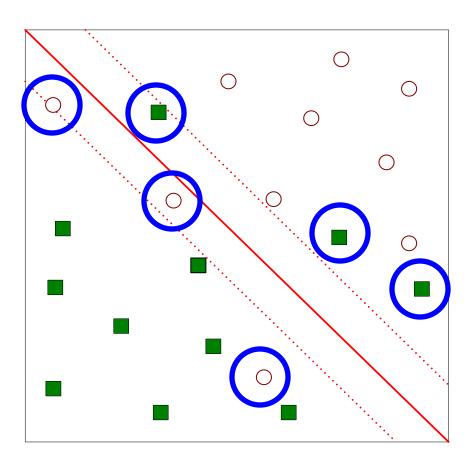
$$\vec{w} \cdot \vec{x}_i + b \ge 1 \text{ if } y_i = 1$$

 $\vec{w} \cdot \vec{x}_i + b \le -1 \text{ if } y_i = -1$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

Noisy Data

What if the problem is not linearly separable?



Slack Variables

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

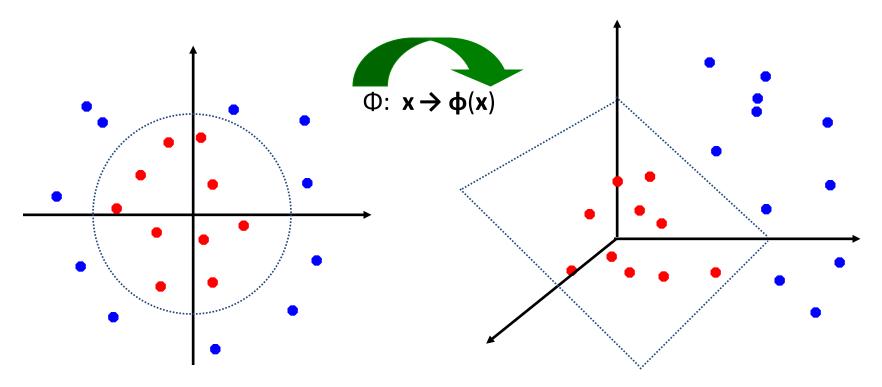
• Subject to:

$$\vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \text{ if } y_i = 1$$

$$\vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \text{ if } y_i = -1$$

Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is linearly separable:



Ensemble Learning

Problem

- Given a data set $D=\{x_1,x_2,...,x_n\}$ and their corresponding labels $L=\{l_1,l_2,...,l_n\}$
- An ensemble approach computes:
 - A set of classifiers $\{f_1, f_2, ..., f_k\}$, each of which maps data to a class label: $f_i(x)=I$
 - A combination of classifiers f^* which minimizes generalization error: $f^*(x) = w_1 f_1(x) + w_2 f_2(x) + ... + w_k f_k(x)$

Generating Base Classifiers

Sampling training examples

Train k classifiers on k subsets drawn from the training set

Using different learning models

Use all the training examples, but apply different learning algorithms

Sampling features

 Train k classifiers on k subsets of features drawn from the feature space

Learning "randomly"

Introduce randomness into learning procedures

Bagging (1)

Bootstrap

- Sampling with replacement
- Contains around 63.2% original records in each sample

Bootstrap Aggregation

- Train a classifier on each bootstrap sample
- Use majority voting to determine the class label of ensemble classifier

Bagging (2)

Original Data:

Х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	7	7	7	7	1	1	1

Bootstrap samples and classifiers:

X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
у	1	1	1	1	-1	-1	-1	-1	1	1
Х	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1
у	1	1					1	1	1	1
Х							0.7			
У	1	1	1	-1	-1	-1	-1	-1	1	1
Х	0.1	0.2	0.5	0.5	0.5	0.7	0.7	8.0	0.9	1
٧	1	1	-1	-1	-1	-1	-1	1	1	1

Combine predictions by majority voting

Boosting (1)

Principles

- Boost a set of weak learners to a strong learner
- Make records currently misclassified more important

Example

- Record 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

Boosting (2)

AdaBoost

- Initially, set uniform weights on all the records
- At each round
 - Create a bootstrap sample based on the weights
 - Train a classifier on the sample and apply it on the original training set
 - Records that are wrongly classified will have their weights increased
 - Records that are classified correctly will have their weights decreased
 - If the error rate is higher than 50%, start over
- Final prediction is weighted average of all the classifiers
 with weight representing the training accuracy

Boosting (3)

Determine the weight

- For classifier i, its error is
- The classifier's importance is represented as:

The weight of each record is updated as:

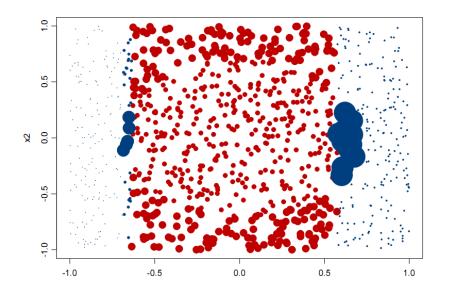
$$\varepsilon_i = \frac{\sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)}{\sum_{j=1}^{N} w_j}$$

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

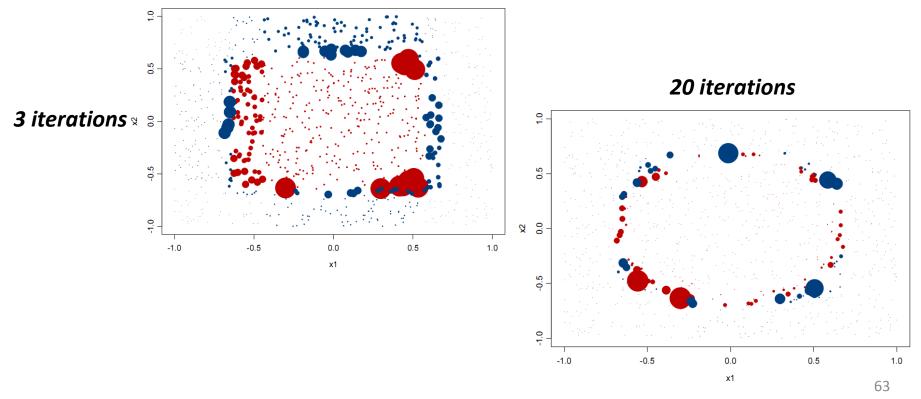
$$w_j^{(i+1)} = \frac{w_j^{(i)} \exp(-\alpha_i y_j C_i(x_j))}{Z^{(i)}}$$

– Final combination:

$$C^*(x) = \arg\max_{y} \sum_{i=1}^{K} \alpha_i \delta(C_i(x) = y)$$



Classifications (colors) and Weights (size) after 1 iteration Of AdaBoost



Boosting (4)

Explanation

– Among the classifiers of the form:

$$f(x) = \sum_{i=1}^{K} \alpha_i C_i(x)$$

— We seek to minimize the exponential loss function:

$$\sum_{j=1}^{N} \exp\left(-y_{j} f(x_{j})\right)$$

Not robust in noisy settings

Random Forests (1)

Algorithm

- Choose T—number of trees to grow
- Choose m<M (M is the number of total features) number of features used to calculate the best split at each node (typically 20%)
- For each tree
 - Choose a training set by choosing N times (N is the number of training examples) with replacement from the training set
 - For each node, randomly choose m features and calculate the best split
 - Fully grown and not pruned
- Use majority voting among all the trees

Random Forests (2)

Discussions

- Bagging+random features
- Improve accuracy
 - Incorporate more diversity and reduce variances
- Improve efficiency
 - Searching among subsets of features is much faster than searching among the complete set

Random Decision Tree (1)

Single-model learning algorithms

- Fix structure of the model, minimize some form of errors, or maximize data likelihood (eg., Logistic regression, Naive Bayes, etc.)
- Use some "free-form" functions to match the data given some "preference criteria" such as information gain, gini index and MDL. (eg., Decision Tree, Rule-based Classifiers, etc.)

Such methods will make mistakes if

- Data is insufficient
- Structure of the model or the preference criteria is inappropriate for the problem

Learning as Encoding

- Make no assumption about the true model, neither parametric form nor free form
- Do not prefer one base model over the other, just average them

Random Decision Tree (2)

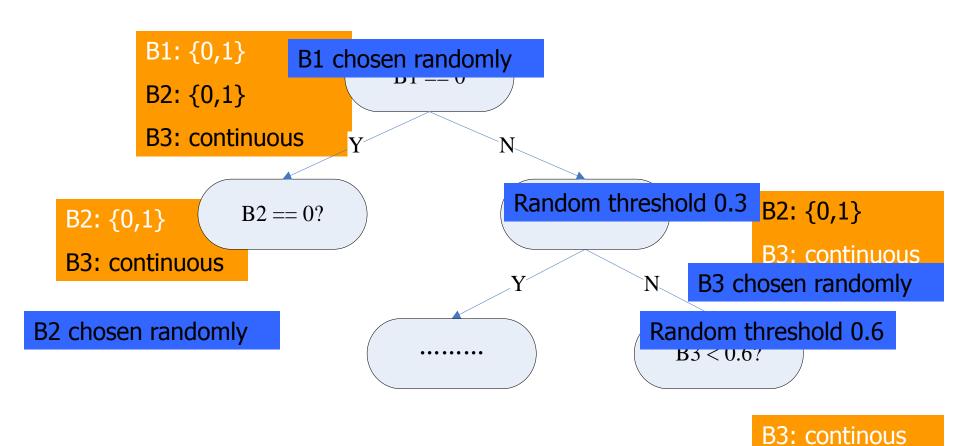
Algorithm

- At each node, an un-used feature is chosen randomly
 - A discrete feature is un-used if it has never been chosen previously on a given decision path starting from the root to the current node.
 - A continuous feature can be chosen multiple times on the same decision path, but each time a different threshold value is chosen
- We stop when one of the following happens:
 - A node becomes too small (<= 3 examples).
 - Or the total height of the tree exceeds some limits, such as the total number of features.

Prediction

Simple averaging over multiple trees

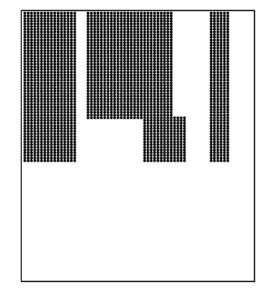
Random Decision Tree (3)



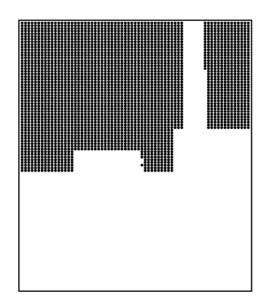
Random Decision Tree (4)

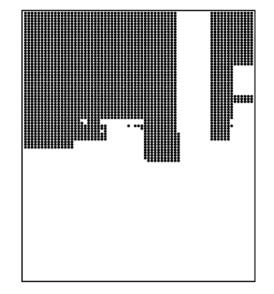
Advantages

- Training can be very efficient. Particularly true for very large datasets.
 - No cross-validation based estimation of parameters for some parametric methods.
- Natural multi-class probability.
- Imposes very little about the structures of the model.

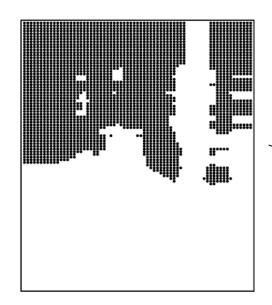


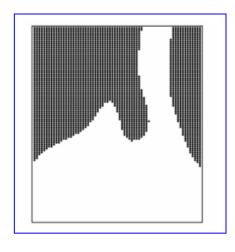
(a) unpruned C4.5





(b) Bagging





RDT looks like the optimal boundary

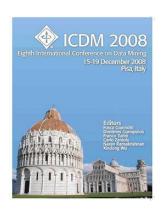
(c) Random Forests

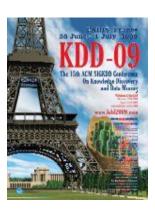
(d) Complete-random tree ensemble

Ensemble Learning--Stories of Success

Million-dollar prize

- Improve the baseline movie recommendation approach of Netflix by 10% in accuracy
- The top submissions all combine several teams and algorithms as an ensemble





Data mining competitions

- Classification problems
- Winning teams employ an ensemble of classifiers

Netflix Prize

Supervised learning task

- Training data is a set of users and ratings (1,2,3,4,5 stars)
 those users have given to movies.
- Construct a classifier that given a user and an unrated movie, correctly classifies that movie as either 1, 2, 3, 4, or 5 stars
- \$1 million prize for a 10% improvement over Netflix's current movie recommender

Competition

- At first, single-model methods are developed, and performance is improved
- However, improvement slowed down
- Later, individuals and teams merged their results, and significant improvement is observed

Leaderboard

Rar	ık	Team Name		Best Test Score	% Improvement	Best Submit Time
Gr	and	<u>Prize</u> - RMSE = 0.8567 - Winnin	g T	eam: BellKor's Pra	gmatic Chaos	
1	-	BellKor's Pragmatic Chaos	- 1	0.8567	10.06	2009-07-26 18:18:28
2	-	The Ensemble	1	0.8567	10.06	2009-07-26 18:38:22
3		Grand Prize Team		0.8582	9.90	2009-07-10 21:24:40
4	1	Opera Solutions and Vandelay Unite	ed	0.8588	9.84	2009-07-10 01:12:31
5	1	Vandelay Industries!	1	0.8591	9.81	2009-07-10 00:32:20
6	1	<u>PragmaticTheory</u>	1	0.8594	9.77	2009-06-24 12:06:56
7	1	BellKor in BigChaos	1	0.8601	9.70	2009-05-13 08:14:09
8	-	<u>Dace</u>	- 1	0.8612	9.59	2009-07-24 17:18:43
9	-	Feeds2	- 1	0.8622	9.48	2009-07-12 13:11:51
10	-	RinChans	- 1	0.8623	9.47	2009-04-07 12:33:59

"Our final solution (RMSE=0.8712) consists of blending 107 individual results. "

	<u> Bomtor</u>	0.0021		, 2000 01 20 11.10.11
Proc	gress Prize 2008 - RM	ISE = 0.8627 - Winning Team: Be	llKor in BigChaos	
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	<u>Gravity</u>	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53

"Predictive accuracy is substantially improved when blending multiple predictors. Our experience is that most efforts should be concentrated in deriving substantially different approaches, rather than refining a single technique. "

Progress Prize 2007 - KPISC — 0.0723 - Willilling Tealii: Kurdeli

Cinematch score - RMSE = 0.9525

Take-away Message

- Various classification approaches
 - how they work
 - their strengths and weakness
- Algorithms
 - Decision tree
 - K nearest neighbors
 - Naive Bayes
 - Logistic regression
 - Rule-based classifier
 - SVM
 - Ensemble method