FAS-PASS Maths

 CSEC MATHEMATICS MAY 2019 PAPER 2

 CSEC MATHEMATICS MAY 2019 PAPER 2

 SECTION I

 SECTION I}

Answer ALL questions.

All working must be clearly shown.

1. (a) Using a calculator, or otherwise, evaluate EACH of the following:
(i) $\frac{2 \frac{1}{4}-1 \frac{3}{5}}{3}$

SOLUTION:

Required to evaluate: $\frac{2 \frac{1}{4}-1 \frac{3}{5}}{3}$

Solution:

Working the numerator first: $2 \frac{1}{4}-1 \frac{3}{5}=\frac{9}{4}-\frac{8}{5}$

$$
\begin{aligned}
& =\frac{5(9)-4(8)}{20} \\
& =\frac{45-32}{20} \\
& =\frac{13}{20}
\end{aligned}
$$

So, $\frac{2 \frac{1}{4}-1 \frac{3}{5}}{3}=\frac{\frac{13}{20}}{3}$

$$
=\frac{13}{20 \times 3}
$$

$$
=\frac{13}{60}(\text { in exact form })
$$

(ii) $2.14 \sin 75^{\circ}$, giving your answer to 2 decimal places.

SOLUTION:

Required to evaluate: $2.14 \sin 75^{\circ}$ correct to 2 decimal places Solution:

$$
\begin{aligned}
2.14 \sin 75^{\circ} & =2.14 \times 0.9659 \\
& =2.06 \underline{=} \\
& =2.07 \text { (correct to } 2 \text { decimal places })
\end{aligned}
$$

(b) Irma's take-home pay is $\$ 4320$ per fortnight (every two weeks). Each fortnight Irma's pay is allocated according to the following table.

Item	Amount Allocated
Rent	$\$ x$
Food	$\$ 629$
Other living expenses	$\$ 2 x$
Savings	$\$ 1750$
Total	$\$ 4 \mathbf{3 2 0}$

(i) What is Irma's annual take-home pay? (Assume she works 52 weeks in any given year.)

SOLUTION:

Data: Table showing the allocation of Irma's $\$ 4320$ per fortnight pay on various items.
Required to find: Irma's annual take-home pay Solution:
Irma's pay is $\$ 4320$ per fortnight.
There are 52 weeks in a year and which is $\frac{52}{2}=26$ fortnights.
So, Irma's annual take-home pay $=\$ 4320 \times 26$

$$
=\$ 112320
$$

(ii) Determine the amount of money that Irma allocated for rent each month.

SOLUTION:

Required to determine: The amount of money Irma spends on rent each month

Solution:

$$
\begin{aligned}
x+629+2 x+1750 & =4320 \quad \text { (data) } \\
x+2 x+2379 & =4320 \\
3 x & =4320-2379 \\
3 x & =1941 \\
x & =\frac{1941}{3} \\
x & =647
\end{aligned}
$$

\therefore Allocation for rent per fortnight $=\$ x=\$ 647$
There are 2 fortnights per month.
So Irma's rent per month $=\$ 647 \times 2=\$ 1294$

$$
=\$ 1294
$$

(iii) All of Irma's savings is used to pay her son's university tuition cost, which is $\$ 150000$.

If Irma's pay remains the same and she saves the same amount each month, what is the minimum number of years that she must work in order to save enough money to cover her son's tuition cost?

SOLUTION:

Data: Irma's son's tuition costs $\$ 150000$ and her pay and the amount of money she saves each month remains the same.

Required to find:

Solution:

Irma saves $\$ 1750$ per fortnight.
So, each year, Irma saves $\$ 1750 \times 26=\$ 45500$
To save $\$ 15000$ the number of years will be $\frac{150000}{45500}=3.296$

If the number of years is to be taken as a positive integer then the number of years will be the next integer after 3.296 which is 4 .
\therefore Irma must work for 4 years in order to save enough money to cover her son's tuition.
(After 3 years, Irma would not have saved up the amount)
2. (a) Simplify completely:
(i) $3 p^{2} \times 4 p^{5}$

SOLUTION:

Required to simplify: $3 p^{2} \times 4 p^{5}$
Solution:

$$
\begin{aligned}
3 p^{2} \times 4 p^{5} & =3 \times 4 \times p^{2+5} \\
& =12 p^{7}
\end{aligned}
$$

(ii) $\frac{3 x}{4 y^{3}} \div \frac{21 x^{2}}{20 y^{2}}$

SOLUTION:

Required to simplify: $\frac{3 x}{4 y^{3}} \div \frac{21 x^{2}}{20 y^{2}}$

Solution:

$$
\frac{3 x}{4 y^{3}} \div \frac{21 x^{2}}{20 y^{2}}=\frac{3 x}{4 y^{3}} \times \frac{20 y^{2}}{21 x^{2}}
$$

$$
\begin{aligned}
& =\frac{\not p \times 2 \sigma^{5}}{\not A \times 21_{7}} y^{2-3} x^{1-2} \\
& =\frac{5 x^{-1} y^{-1}}{7} \text { or } \frac{5}{7 x y}
\end{aligned}
$$

(b) Solve the equation $\frac{3}{7 x-1}+\frac{1}{x}=0$.

SOLUTION:

Required to solve: $\frac{3}{7 x-1}+\frac{1}{x}=0$

Solution:

$$
\begin{aligned}
\frac{3}{7 x-1}+\frac{1}{x} & =0 \\
\frac{3(x)+1(7 x-1)}{x(7 x-1)} & =0 \\
\frac{3 x+7 x-1}{x(7 x-1)} & =0 \\
\text { So } \quad \frac{10 x-1}{x(7 x-1)} & =0 \\
10 x-1 & =0(x)(7 x-1) \\
10 x-1 & =0 \\
x & =\frac{1}{10}
\end{aligned}
$$

(c) When a number, x, is multiplied by 2 , the result is squared to give a new number. y.
(i) Express y in terms of x.

SOLUTION:

Data: A number, x, when multiplied by 2 , the result is squared to give a new number. y.
Required to express: y in terms of x Solution:

$$
\begin{aligned}
(2 x)^{2} & =y \\
y & =4 x^{2}
\end{aligned}
$$

(ii) Determine the two values of x that satisfy the equation $y=x$ AND the equation derived in (c) (i).

SOLUTION:

Required to determine: the two values of x that satisfy the equations $y=x$ and $y=4 x^{2}$.

Solution:

$y=x \quad$ (data)
Substituting $y=x$ in the equation of (i) we get:

$$
x=4 x^{2}
$$

So $4 x^{2}-x=0$

$$
x(4 x-1)=0
$$

And $\quad x=0$ or $4 x-1=0$ and $x=\frac{1}{4}$
Hence, $x=0$ or $\frac{1}{4}$.
3. (a) Using a ruler, a pencil and a pair of compasses only, construct the triangle NLM, in which $L M=12 \mathrm{~cm}, \angle M L N=30^{\circ}$ and $\angle L M N=90^{\circ}$.
(Credit will be given for clearly drawn construction lines.)

SOLUTION:

Required to construct: Triangle $N L M$ with $L M=12 \mathrm{~cm}, \angle M L N=30^{\circ}$ and $\angle L M N=90^{\circ}$.
Construction:
We cut off a segment 12 cm from a straight line drawn longer than 12 cm

L	$\mathbf{1 2} \mathbf{~ c m}$	M

At the point L, we construct an angle of 60° and bisect this angle to obtain $\angle M L N=30^{\circ}$
N has not yet been obtained but will lie on the line of bisection
At the point M, we construct an angle of 90°
The line from M and the line drawn from L will meet at N.

(b) Triangle $A B C$ with vertices $A(1,1), B(1,4)$ and $C(3,1)$ is shown on the diagram below.

$\triangle A B C$ is mapped onto $\triangle L M N$ by a reflection in the x - axis followed by a reflection in the $y-$ axis.
(i) On the diagram, draw and label $\triangle L M N$.

SOLUTION:

Data: Diagram showing triangle $A B C$ with vertices $A(1,1), B(1,4)$ and $C(3,1) . \triangle A B C$ is mapped onto $\triangle L M N$ by a reflection in the x-axis followed by a reflection in the y - axis.
Required to draw: $\triangle L M N$
Diagram:

FAS-PASS
Maths

(ii) Describe fully a single transformation that maps $\triangle A B C$ onto $\triangle L M N$.

SOLUTION:
Required to describe: The single transformation that maps $\triangle A B C$ onto $\triangle L M N$.

Solution:

$\triangle L M N$ is congruent to $\triangle A B C$ and re-oriented with respect to $\triangle A B C$. By joining the object points to their corresponding image points we note that these lines all pass though O and which is the center of rotation. The angles $C O N$ or $B O M$ or $A O L$ are all 180°
The transformation is a 180° clockwise or anti-clockwise rotation about O.
(iii) State the 2×2 matrix for the transformation that maps $\triangle A B C$ onto $\triangle L M N$.

SOLUTION:

Required to state: The 2×2 matrix for the transformation that maps $\triangle A B C$ onto $\triangle L M N$.

Solution:

The matrix maps $A(1,1)$ onto $L(-1,-1) ; B(1,4)$ onto $\mathrm{M}(-1,-4)$ and $C(3,1)$ onto $N(-3,-1)$. Consider:
This transformation preserves order but changes direction. By inspection, we notice that:
$B(1,4) \rightarrow M(-1,-4) \quad$ and $\quad C(3,1) \rightarrow N(-3,-1)$
$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\binom{1}{4}=\binom{-1}{-4} \quad$ and $\quad\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\binom{3}{1}=\binom{-3}{-1}$
The 2×2 matrix which represents this transformation is $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$.
4. (a) The quantity P varies inversely as the square of V.
(i) Using the letters P, V and k, form an equation connecting the quantities P and V.

SOLUTION:

Data: P varies inversely as the square of V.
Required to write: An equation connecting P and V Solution:
So $\quad P \propto \frac{1}{V^{2}}$
Hence $P=k \times \frac{1}{V^{2}}$, where k is the constant of proportionality

$$
P=\frac{k}{V^{2}}
$$

(ii) Given that $V=3$ when $P=4$, determine the positive value of V when $P=1$.

SOLUTION:

Data: When $P=4, V=3$
Required to determine: The value of V when $P=1$.
Solution:

$$
\begin{aligned}
& V=3 \text { when } P=4 \\
& 4=\frac{k}{(3)^{2}}
\end{aligned}
$$

$$
\text { So } \begin{aligned}
k & =4 \times(3)^{2} \\
& =36
\end{aligned}
$$

$$
P=\frac{36}{V^{2}}
$$

When $P=1$:

$$
1=\frac{36}{V^{2}}
$$

$$
V^{2} \times 1=36
$$

$$
V^{2}=36
$$

$$
V=\sqrt{36}
$$

$$
= \pm 6
$$

$$
V>0 \quad \text { (data) }
$$

So, $V=6$ only
(b) (i) Given that x is a real number, solve the inequality $-7<3 x+5 \leq 7$.

SOLUTION:
Data: $-7<3 x+5 \leq 7$ and x is a real number.
Required to solve: For x
Solution:

$$
\begin{aligned}
&-7<3 x+5 \\
&-7-5<3 x \\
&-12<3 x \\
&(\div 3) \\
&-4<x
\end{aligned}
$$

$$
\begin{aligned}
3 x+5 & \leq 7 \\
3 x & \leq 7-5 \\
3 x & \leq 2 \\
(\div 3) & \\
x & \leq \frac{2}{3}
\end{aligned}
$$

Hence, $-4<x \leq \frac{2}{3}$.
(ii) Represent your answer in (b) (i) on the number line shown below.

SOLUTION:
Required to represent: The solution to $-7<3 x+5 \leq 7$ on a number line Solution:

(c) The equation of a straight line is given as $\frac{x}{3}+\frac{y}{7}=1$. This line crosses the y-axis at Q.
(i) Determine the coordinates of Q.

SOLUTION:

Data: The line with equation $\frac{x}{3}+\frac{y}{7}=1$ crosses the y-axis at Q.
Required to determine: The coordinates of Q
Solution:
A line crosses the y-axis at $x=0$
Let $x=0$

$$
\begin{aligned}
\frac{x}{3}+\frac{y}{7} & =1 \\
\frac{0}{3}+\frac{y}{7} & =1 \\
\frac{y}{7} & =1 \\
y & =1 \times 7 \\
y & =7 \\
Q & =(0,7)
\end{aligned}
$$

(ii) What is the gradient of this line?

SOLUTION:

Required to find: The gradient of the line $\frac{x}{3}+\frac{y}{7}=1$.

Solution:

$\frac{x}{3}+\frac{y}{7}=1$
$\frac{y}{7}=-\frac{x}{3}+1$
$(\times 7)$
$y=-\frac{7}{3} x+7$ is of the form $y=m x+c$, where $m=-\frac{7}{3}$ is the gradient.
5. The cumulative frequency distribution of the volume of petrol needed to fill the tanks of 150 different vehicles is shown below.

Volume (litres)	Cumulative Frequency
$11-20$	24
$21-30$	59
$31-40$	101
$41-50$	129
$51-60$	150

(a) For the class 21-30, determine the
(i) the lower class boundary

SOLUTION:
Data: Cumulative frequency table showing the distribution of the volume of petrol needed to fill the tanks of 150 different vehicles.
Required to find: The lower class boundary for the class 21-30

Solution:

For the class $21-30$:
21 - Lower class limit
30 - Upper class limit
If the volume is V, then $20.5 \leq V<30.5$, where 20.5 is the lower class boundary and 30.5 is the upper class boundary.
\therefore The lower class boundary of the class interval $21-30$ is 20.5 .
(ii) class width

SOLUTION:

Required to find: The class width for the class 21-30.
Solution:

$$
\begin{aligned}
\text { Class width } & =\text { Upper class boundary }- \text { Lower class boundary } \\
& =30.5-20.5 \\
& =10
\end{aligned}
$$

(b) How many vehicles were recorded in the class $31-40$?

SOLUTION:

Required to find: The number of vehicles in the class $31-40$.
Solution:

Volume (litres)	Frequency	Cumulative Frequency
\vdots	\vdots	\vdots
$21-30$		59
$31-40$	x	$59+x=101$
\vdots	\vdots	\vdots

So, the number of vehicles recorded in the class $31-40$ will be $101-59=42$.
(c) A vehicle is chosen at random from the 150 vehicles. What is the probability that the volume of petrol needed to fill the tank is more than 50.5 litres? Leave your answer as a fraction.

SOLUTION:

Required to find: The probability the volume of petrol needed to fill the tank is more than 50.5 litres

Solution:

Volume (litres)	Class Boundaries	Cumulative Frequency
\vdots	\vdots	\vdots
$41-50$	$40.5 \leq V<50.5$	129
$51-60$	$50.5 \leq V<60.5$	150

So, the number of vehicles that required more than 50.5 litres is $150-129=21$.
P (vehicle chosen at random requires more than 50.5 litres of petrol to be filled)
$=\frac{\text { No. of vehicles requiring more than } 50.5 \text { litres }}{\text { Total no. of vehicles }}$
$=\frac{21}{150}$
$=\frac{7}{50}$
(d) Byron estimates the median amount of petrol to be 43.5 litres. Explain why Byron's estimate is INCORRECT.

SOLUTION:

Data: Byron estimates the median amount of petrol to be 43.5 litres.
Required to explain: Why Byron's estimate is INCORRECT.
Solution:

$$
\begin{aligned}
\frac{1}{2}(\text { Cumulative frequency }) & =\frac{1}{2}(150) \\
& =75
\end{aligned}
$$

So the $75^{\text {th }}$ value corresponds to the median. The $75^{\text {th }}$ value lies in the class $31-$ 40 or more precisely $30.5 \leq V<40.5$. The median would be $\frac{31+40}{2}$ or $\frac{30.5+40.5}{2}$ which is the mid-class interval of the class $=35.51$. So Byron's estimate of 43.5 is incorrect.
(e) On the partially labelled grid below, construct a histogram to represent the distribution of the volume of petrol needed to fill the tanks of the 150 vehicles.

> FAS-PASS
> Maths

SOLUTION:

Required to construct: A histogram to represent the distribution of the volume of petrol needed to fill the tanks of the 150 vehicles
Solution:

Volume in litres			
L.C.L. U.C.L.	Class Boundaries		Frequency
L.C.B. U.C.B.		Cumulative Frequency	
$11-20$	$10.5 \leq V<20.5$	24	24
$21-30$	$20.5 \leq V<30.5$	$59-24=35$	59
$31-40$	$30.5 \leq V<40.5$	$101-59=42$	101
$41-50$	$40.5 \leq V<50.5$	$129-101=28$	129
$51-60$	$50.5 \leq V<60.5$	$150-129=21$	150

6. (a) The scale on a map is $1: 25000$.
(i) Determine the actual distance, in km , represented by 0.5 cm on the map.

SOLUTION:

Data: The scale of a map is $1: 25000$.
Required to determine: The actual distance, in km, represented by 0.5 cm on the map

Solution:

Scale is $1: 25000$

$$
\begin{aligned}
\therefore \quad 1 \mathrm{~cm} & \equiv 25000 \mathrm{~cm} \\
0.5 \mathrm{~cm} & \equiv 0.5 \times 25000 \mathrm{~cm} \\
& =12500 \mathrm{~cm} \\
1 \mathrm{~km} & \equiv 100000 \mathrm{~cm} \\
100000 \mathrm{~cm} & \equiv 1 \mathrm{~km} \\
1 \mathrm{~cm} & \equiv \frac{1}{100000} \mathrm{~km} \\
\text { And } 12500 \mathrm{~cm} & \equiv \frac{1}{100000} \times 12500 \mathrm{~km} \\
& =0.125 \mathrm{~km} \text { or } \frac{1}{8} \mathrm{~km}
\end{aligned}
$$

(ii) Calculate the actual area, in km^{2}, represented by $2.25 \mathrm{~cm}^{2}$ on the map.

SOLUTION:

Required to calculate: the actual area, in km^{2}, represented by $2.25 \mathrm{~cm}^{2}$ on the map
Calculation:

$$
\begin{aligned}
& 1 \mathrm{~cm} \equiv \frac{25000}{100000} \mathrm{~km} \\
& =\frac{1}{4} \mathrm{~km} \\
& \text { So } \quad 1 \mathrm{~cm}^{2} \equiv\left(\frac{1}{4} \times \frac{1}{4}\right) \mathrm{km}^{2} \\
& \text { And } 2.25 \mathrm{~cm}^{2} \equiv\left(\frac{1}{4} \times \frac{1}{4}\right) \times 2.25 \mathrm{~km}^{2} \\
& =\frac{1}{16} \times \frac{9}{4} \mathrm{~km}^{2} \\
& =\frac{9}{64} \mathrm{~km}^{2} \\
& =0.140625 \mathrm{~km}^{2}
\end{aligned}
$$

(b) The diagram below (not drawn to scale) shows the cross-section of two cylindrical jars, Jar X and Jar Y. The diameters of Jar X and Jar Y are $3 d \mathrm{~cm}$ and $d \mathrm{~cm}$ respectively.

Initially, Jar Y is empty and Jar X contains water to a height (depth) of 4 cm .

(i) Determine, in terms of π and d, the volume of water in $\operatorname{Jar} X$.

SOLUTION:

Data: Diagram showing two jars X and Y with diameters $3 d \mathrm{~cm}$ and $d \mathrm{~cm}$ respectively. Jar Y is empty and Jar X contains water to a height (depth) of 4 cm .
Required to determine: The volume of Jar X, in terms of π and d Solution:
Volume of water in $X=\pi r^{2} h$, where $r=$ radius and $h=$ height

$$
\begin{aligned}
& =\pi\left(\frac{3 d}{2}\right)^{2} \times 4 \\
& =9 \pi d^{2} \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) If all the water from $\operatorname{Jar} X$ is now poured into $\operatorname{Jar} Y$, calculate the height it will reach.

SOLUTION:

Required to find: The height of water in Jar Y if the contents of Jar X is poured into it

Solution:

Water from X is poured into Y.
Let the height reached be $h \mathrm{~cm}$.
Volume of water in $Y=\pi\left(\frac{d}{2}\right)^{2} h$

$$
=\frac{\pi d^{2} h}{4}
$$

Hence, $9 \pi d^{2}=\frac{\pi d^{2} h}{4}$

$$
\begin{aligned}
& 9=\frac{h}{4} \quad\left[\div \pi d^{2}\right] \\
& h=36 \mathrm{~cm}
\end{aligned}
$$

So the height of the water in Jar Y is 36 cm .
7. (a) The nth term, T_{n}, of a sequence is given by $T_{n}=3 n^{2}-2$.
(i) Show that the first term of the sequence is 1 .

SOLUTION:

Data: $T_{n}=3 n^{2}-2$, where T_{n} is the nth term in a sequence.
Required to show: The first term of the sequence is 1 Solution:
$T_{n}=3 n^{2}-2$
When $n=1$
$T_{1}=1^{\text {st }}$ term
$=3(1)^{2}-2$
$=3(1)-2$
$=3-2$
$=1$
Q.E.D.
(ii) What is the third term of the sequence?

SOLUTION:

Required to find: The third term in the sequence Solution:
When $n=3$

$$
\begin{aligned}
T_{3} & =3(3)^{2}-2 \\
& =3(9)-2 \\
& =27-2 \\
& =25
\end{aligned}
$$

(iii) Given that $T_{n}=145$, what is the value of n ?

SOLUTION:
Data: $T_{n}=145$
Required to find: n Solution:

$$
T_{n}=145
$$

So $3 n^{2}-2=145$

$$
\begin{aligned}
3 n^{2} & =145+2 \\
3 n^{2} & =147 \\
n^{2} & =\frac{147}{3} \\
n^{2} & =49 \\
n & =\sqrt{49} \\
& = \pm 7
\end{aligned}
$$

n is a positive integer so $n=7$
(b) The first 8 terms of another sequence with $n^{\text {th }}$ term, $U(n)$ are $1,1,2,3,5,8,13$, 21, where $U(1)=1, U(2)=1$ and $U(n)=U(n-1)+U(n-2)$ for $n \geq 3$.

For example, the fifth and seventh terms are
$U(5)=U(4)+U(3)=3+2=5$
$U(7)=U(6)+U(5)=8+5=13$
(i) Write down the next two terms in the sequence, that is, $U(9)$ and $U(10)$.

SOLUTION:

Data: The first 8 terms of another sequence with $n^{\text {th }}$ term, $U(n)$ are 1,1 , $2,3,5,8,13,21$, where $U(1)=1, U(2)=1$ and
$U(n)=U(n-1)+U(n-2)$ for $n \geq 3$.
Required to find: $U(9)$ and $U(10)$
Solution:
The first 8 terms of the sequence $1,1,2,3,5,8,13,21$

$$
\begin{aligned}
& U(1)=1 \\
& U(2)=1 \\
& U(3)=2 \\
& U(n)=U(n-1)+U(n-2)
\end{aligned}
$$

$U(9)=U(9-1)+U(9-2)$		
	$=U(8)+U(7)$	
$=21+13$		
	$=34$	
	$=U(9)+U(8)$	
	$=34+21$	

(ii) Which term in the sequence is the sum of $U(18)$ and $U(19)$.

SOLUTION:

Required to find: The term in the sequence that is the sum of $U(18)$ and $U(19)$.

Solution:

$$
\begin{aligned}
& U(n)=U(n-1)+U(n-2) \\
& \begin{array}{l}
U(n)=U(19)+u(18) \\
n-1=19 \\
n=19+1=20 \quad \text { OR } \quad \text { and } n-2
\end{array} \quad=18 \\
& n=18+2=20
\end{aligned}
$$

Hence, $U(18)+U(19)=U(20)$
Therefore, the $20^{\text {th }}$ term of the sequence is the sum of $U(18)$ and $U(19)$.
(iii) \quad Show that $U(20)-U(19)=U(19)-U(17)$.

SOLUTION:

Required to show: $U(20)-U(19)=U(19)-U(17)$
Proof:
$U(n)=U(n-1)+U(n-2)$

LHS
$U(20)-U(19)$
$=[U(19)+U(18)]-U(19)$

$$
=U(18)
$$

$$
\begin{gathered}
\text { RHS } \\
=[(19)-U(17) \\
=[U(18)+U(17)]-U(17) \\
=U(18)
\end{gathered}
$$

$L H S=R H S=U(18)$

$$
U(20)-U(19)=U(19)-U(17)
$$

Q.E.D

OR

$$
U(20)-U(19)=\{U(19)+U(18)\}-\{U(18)+U(17)\}=U(19)-U(17)
$$

Q.E.D

OR

$$
\begin{gathered}
U(1)=1 \\
U(2)=1 \\
U(3)=2 \\
U(4)=3 \\
U(5)=5 \\
U(6)=8 \\
U(7)=13 \\
U(8)=21 \\
U(9)=34 \\
U(10)=55 \\
U(11)=55+34=89 \\
U(12)=89+55=144 \\
U(13)=144+89=233 \\
U(14)=233+144=377 \\
U(15)=377+233=610 \\
U(16)=610+377=987 \\
U(17)=987+610=1597 \\
U(18)=1597+987=2584 \\
U(19)=2584+1597=4181 \\
U(20)=4181+2584=6765 \\
U(20)-U(19)=6765-4181 \\
=2584 \\
U(19)-U(17)=4181-1597 \\
=2584
\end{gathered}
$$

So $U(19)-U(17)=U(20)-U(19)$ Q.E.D.

FAS-PASS
 Maths

SECTION II

Answer ALL questions.
All working must be clearly shown.

ALGEBRA, RELATIONS, FUNCTIONS AND GRAPHS

8. (a) The functions f and g are defined by $f(x)=\frac{9}{2 x+1}$ and $g(x)=x-3$.
(i) State a value of x that CANNOT be in the domain of f.

SOLUTION:

Data: $f(x)=\frac{9}{2 x+1}$ and $g(x)=x-3$
Required to state: A value of x that cannot be in the domain of f Solution:
As $2 x+1 \rightarrow 0$
$2 x \rightarrow-1$
$x \rightarrow-\frac{1}{2}$

$$
f(x) \rightarrow \frac{9}{0}=\infty(\text { undefined })
$$

So $x=-\frac{1}{2}$ cannot be in the domain of $f(x)$. We say that $f(x)$ is undefined or not defined or discontinuous or not continuous for $x=-\frac{1}{2}$.
(ii) Find, in its simplest form, expressions for:
a) $\quad \operatorname{fg}(x)$

SOLUTION:
Required to find: $f g(x)$
Solution:

$$
\begin{aligned}
& f(x)=\frac{9}{2 x+1} \quad \text { and } \quad g(x)=x-3 \\
& \begin{aligned}
f g(x)=f & {[g(x)]=f(x-3) } \\
& =\frac{9}{2[g(x)]+1}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{9}{2(x-3)+1} \\
& =\frac{9}{2 x-6+1} \\
& =\frac{9}{2 x-5}, x \neq 2 \frac{1}{2}
\end{aligned}
$$

b) $\quad f^{-1}(x)$

SOLUTION:

Required to find: $f^{-1}(x)$

Solution:

$$
\text { Let } \begin{aligned}
y & =f(x) \\
y & =\frac{9}{2 x+1} \\
y(2 x+1) & =9 \\
2 x y+y & =9 \\
2 x y & =9-y \\
x & =\frac{9-y}{2 y}
\end{aligned}
$$

Replace y by x to get:

$$
f^{-1}(x)=\frac{9-x}{2 x}, x \neq 0
$$

(b) The diagram below shows two rectangles, $A B C D$ and $G F E D$. $A B C D$ has an area of $44 \mathrm{~cm}^{2}$. GFED has sides 4 cm and $2 \mathrm{~cm} . A G=E C=3 x \mathrm{~cm}$.

(i) By writing an expression for the area of rectangle $A B C D$, show that $x^{2}+2 x-4=0$.

SOLUTION:

Data: Diagram showing two rectangles $A B C D$ and $G F E D$, such that $A B C D$ has an area of $44 \mathrm{~cm}^{2}, G F E D$ has sides 4 cm and 2 cm and $A G=E C=3 x \mathrm{~cm}$.
Required To Show: $x^{2}+2 x-4=0$
Proof:

Length of $D C=(2+3 x)$
Length of $A D=(4+3 x)$
Area of $A B C D=(2+3 x)(4+3 x)$

$$
=8+12 x+6 x+9 x^{2}
$$

$$
=8+18 x+9 x^{2}
$$

Hence, $\quad 9 x^{2}+18 x+8=44$

$$
9 x^{2}+18 x-36=0
$$

$$
(\div 9)
$$

$$
\begin{aligned}
& x^{2}+2 x-4=0 \quad \text { Q.E.D }
\end{aligned}
$$

(ii) Calculate, to 3 decimal places, the value of x.

SOLUTION:

Required to calculate: x, correct to 3 decimal places.

Calculation:

FAS-PASS
 Maths

Recall if $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

When $x^{2}+2 x-4=0$

$$
\begin{array}{rlrl}
x & =\frac{-(2) \pm \sqrt{(2)^{2}-4(1)(-4)}}{2(1)} \\
& =\frac{-2 \pm \sqrt{4+16}}{2} & \\
& =\frac{-2 \pm \sqrt{20}}{2} & & \\
& =\frac{-2 \pm 4.4721}{2} & & \\
x & =\frac{2.4721}{2} & \text { or } & x=\frac{-6.4721}{2} \\
& =1.23605 & \text { or } & \\
& =1.236 & \text { or } & \\
& & =-3.23605 \\
& & \text { places) }
\end{array}
$$

(iii) Calculate the perimeter of the UNSHADED region.

SOLUTION:

Required to calculate: The perimeter of the unshaded region
Calculation:
Perimeter of the unshaded region
$=(3 x)+(3 x+2)+(3 x+4)+(3 x)+(4)+(2)$
$=12 x+12$
$=12(1.23605)+12 \quad($ since x is positive $)$
$=26.8326 \mathrm{~cm}$
$=26.833 \mathrm{~cm}$ (correct to 3 decimal places)

GEOMETRY AND TRIGONOMETRY

9. (a) The diagram below shows a circle where $A C$ is a diameter. B and D are two other points on the circle and $D C E$ is a straight line. Angle $C A B=28^{\circ}$ and $\angle D B C=46^{\circ}$.

Calculate the value of each of the following angles. Show detailed working where necessary and given a reason to support your answers.
(i) $\angle D B A$

SOLUTION:

Data: Diagram showing a circle where $A C$ is a diameter. B and D are two other points on the circle and $D C E$ is a straight line. Angle $C A B=28^{\circ}$ and $\angle D B C=46^{\circ}$.
Required to calculate: $\angle D B A$
Calculation:

$$
\begin{aligned}
A \hat{B} C & =90^{\circ} \quad \text { (Angle in a semi-circle is a right angle.) } \\
A \hat{B} D & =90^{\circ}-46^{\circ} \\
& =44^{\circ}
\end{aligned}
$$

(ii) $\angle D A C$

SOLUTION:

Required to calculate: $\angle D A C$
Calculation:

$D \hat{A} C=46^{\circ} \quad$ (The angles subtended by a chord $(D C)$ at the circumference of a circle ($D \hat{B} C$ and $D \hat{A} C$) and standing on the same arc are equal.)
(iii) $\angle B C E$

SOLUTION:
Required To Calculate: $\angle B C E$

Calculation:

$B \widehat{D} C=28^{0} \quad$ (Angles subtended by a chord (BC) at the circumference of a circle ($B \hat{A} C$ and $B \hat{D} C$) and standing on the same arc are equal.)

Quadrilateral ABCD is cyclic and opposite angles of a cyclic quadrilateral are supplementary

$$
\begin{aligned}
B \hat{C} D & =180^{\circ}-\left(46^{\circ}+28^{\circ}\right) \\
& =180^{\circ}-74^{\circ}=106^{\circ} \\
B \hat{C} E & =180^{\circ}-106^{\circ} \\
& \left.=74^{\circ} \quad \text { (Angles in a straight line add to } 180^{\circ} .\right)
\end{aligned}
$$

Alternative Method:

$B \hat{C} E=28^{\circ}+46^{\circ}$
$=74^{\circ}$ (Exterior angle of a triangle is equal to the sum of the interior opposite angles.)
(b) The diagram below shows a quadrilateral $P Q R S$ where $P Q$ and $S R$ are parallel. $S Q=8 \mathrm{~cm}, \angle S P Q=90^{\circ}, \angle S Q R=82^{\circ}$ and $\angle Q S R=30^{\circ}$.

Determine
(i) the length $P S$

SOLUTION:
Data: Diagram showing a quadrilateral $P Q R S$ where $P Q$ and $S R$ are parallel. $S Q=8 \mathrm{~cm}, \angle S P Q=90^{\circ}, \angle S Q R=82^{\circ}$ and $\angle Q S R=30^{\circ}$.
Required to determine: the length of $P S$ Solution:

Consider $\triangle P Q S$:

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{P S}{8} \\
\therefore P S & =8 \times \sin 30^{\circ} \\
& =4 \mathrm{~cm}
\end{aligned}
$$

(ii) the length $P Q$

SOLUTION:
Required to determine: $P Q$
Solution:

$$
\begin{aligned}
\frac{P Q}{8} & =\cos 30^{\circ} \\
P Q & =8 \cos 30^{\circ} \\
& =8 \times \frac{\sqrt{3}}{2} \\
& =4 \sqrt{3} \mathrm{~cm} \text { (in exact form) } \\
& \approx 6.93 \mathrm{~cm} \text { (correct to } 2 \text { decimal places) }
\end{aligned}
$$

(iii) the area of $P Q R S$

SOLUTION:
Required to determine: The area of $P Q R S$ Solution:
FAS-PASS
Maths

$$
\begin{aligned}
S \hat{R} Q & =180^{\circ}-\left(30^{\circ}+82^{\circ}\right) \\
& =68^{\circ}
\end{aligned}
$$

$P \hat{S} R=90^{\circ} \quad$ (Co-interior angles)

$$
\begin{aligned}
\frac{S R}{\sin 82^{\circ}} & =\frac{8}{\sin 68^{\circ}} \quad \text { (Sine rule) } \\
S R & =\frac{8 \times \sin 82^{\circ}}{\sin 68^{\circ}} \\
& =8.544 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
P Q R S & =\frac{1}{2}(6.928+8.544) \times 4 \\
& =30.944 \mathrm{~cm}^{2} \\
& \approx 30.94 \mathrm{~cm}^{2}(\text { correct to } 2 \text { decimal places })
\end{aligned}
$$

VECTORS AND MATRICES

10. (a) (i) a) Find the matrix product $\left(\begin{array}{rr}-1 & 3 \\ 4 & h\end{array}\right)\binom{k}{5}$.

SOLUTION:

Required to find: $\left(\begin{array}{rr}-1 & 3 \\ 4 & h\end{array}\right)\binom{k}{5}$
Solution:

$$
\begin{array}{r}
\left(\begin{array}{rr}
-1 & 3 \\
4 & h
\end{array}\right)\binom{k}{5}=\binom{e_{11}}{e_{21}} \\
2 \times 2 \quad 2 \times 1 \quad 2 \times 1
\end{array}
$$

$$
e_{11}=(-1 \times k)+(3 \times 5)=-k+15
$$

$$
e_{21}=(4 \times k)+(h \times 5)=4 k+5 h
$$

$$
\text { So, }\left(\begin{array}{rr}
-1 & 3 \\
4 & h
\end{array}\right)\binom{k}{5}=\binom{-k+15}{4 k+5 h}
$$

b) Hence, find the values of h and k that satisfy the matrix equation $\left(\begin{array}{rr}-1 & 3 \\ 4 & h\end{array}\right)\binom{k}{5}=\binom{0}{0}$.

SOLUTION:

Data: $\left(\begin{array}{rr}-1 & 3 \\ 4 & h\end{array}\right)\binom{k}{5}=\binom{0}{0}$
Required to find: h and k Solution:

$$
\begin{aligned}
& \qquad\left(\begin{array}{rr}
-1 & 3 \\
4 & h
\end{array}\right)\binom{k}{5}=\binom{0}{0} \\
& \text { Hence, }\binom{-k+15}{4 k+5 h}=\binom{0}{0}
\end{aligned}
$$

Equating corresponding entries:

$$
\begin{array}{rlrl}
4 k+5 h & =0 \\
-k+15 & =0 & 4(15)+5 h & =0 \\
k & =15 & 5 h & =-60 \\
h & =-12
\end{array}
$$

So $k=15$ and $h=-12$.
(ii) Using a matrix method, solve the simultaneous equations

$$
\begin{array}{r}
2 x+3 y=5 \\
-5 x+y=13
\end{array}
$$

SOLUTION:

Required to solve: $2 x+3 y=5$ and $-5 x+y=13$ using matrix method Solution:

$$
\begin{array}{r}
2 x+3 y=5 \\
-5 x+y=13
\end{array}
$$

Expressing the given equations in a matrix form:
$\left(\begin{array}{rr}2 & 3 \\ -5 & 1\end{array}\right)\binom{x}{y}=\binom{5}{13}$...matrix equation

Let $A=\left(\begin{array}{rr}2 & 3 \\ -5 & 1\end{array}\right)$
Finding A^{-1} :
First fid the determinant, $|A|$

$$
\begin{aligned}
|A| & =(2 \times 1)-(3 \times-5) \\
& =2+15 \\
& =17 \\
\therefore A^{-1} & =\frac{1}{17}\left(\begin{array}{cc}
1 & -(3) \\
-(-5) & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{17} & -\frac{3}{17} \\
\frac{5}{17} & \frac{2}{17}
\end{array}\right)
\end{aligned}
$$

Multiply the matrix equation by A^{-1} :

$$
\begin{aligned}
A \times A^{-1} \times\binom{ x}{y} & =A^{-1} \times\binom{ 5}{13} \\
I \times\binom{ x}{y} & =\left(\begin{array}{cc}
\frac{1}{17} & -\frac{3}{17} \\
\frac{5}{17} & \frac{2}{17}
\end{array}\right)\binom{5}{13} \\
\binom{x}{y} & =\binom{e_{11}}{e_{21}} \\
e_{11} & =\left(\frac{1}{17} \times 5\right)+\left(\frac{3}{17} \times 13\right)=-2 \\
e_{21} & =\left(\frac{5}{17} \times 5\right)+\left(\frac{2}{17} \times 13\right)=3 \\
\text { So } \quad\binom{x}{y} & =\binom{-2}{3}
\end{aligned}
$$

Equating corresponding entries:

$$
x=-2, y=3
$$

(b) Relative to the origin $O(0,0)$, the position vectors of the points A and B are $\overrightarrow{O A}=\binom{9}{0}$ and $\overrightarrow{O B}=\binom{3}{6}$ respectively. The points D and E are on $A B$ and $O A$ respectively and are such that $A D=\frac{1}{3} A B$ and $O E=\frac{1}{3} O A$. The following diagram illustrates this information.

Express the following vectors in the form $\binom{a}{b}$:

(i) $\overrightarrow{A B}$

SOLUTION:

Data: Diagram showing the points D and E are on $A B$ and $O A$
respectively and are such that $A D=\frac{1}{3} A B$ and $O E=\frac{1}{3} O A$. The position
vectors of the points A and B are $\overrightarrow{O A}=\binom{9}{0}$ and $\overrightarrow{O B}=\binom{3}{6}$.
Required to find: $\overrightarrow{A B}$ in the form $\binom{a}{b}$

Solution:

$$
\begin{aligned}
& A=(9,0) \\
& \therefore \overrightarrow{O A}=\binom{9}{0}
\end{aligned}
$$

$$
B=(3,6)
$$

$$
\therefore \overrightarrow{O B}=\binom{3}{6}
$$

$$
\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}
$$

$$
=-\binom{9}{0}+\binom{3}{6}
$$

$$
=\binom{-6}{6} \text { is of the form }\binom{a}{b} \text {, where } a=-6 \text { and } b=6
$$

(ii) $\overrightarrow{O D}$

SOLUTION:

Required to find: $\overrightarrow{O D}$
Solution:

$$
\begin{aligned}
\overrightarrow{A D} & =\frac{1}{3} \overrightarrow{A B} \\
& =\frac{1}{3}\binom{-6}{6} \\
& =\binom{-2}{2} \\
\overrightarrow{O D} & =\overrightarrow{O A}+\overrightarrow{A D} \\
& =\binom{9}{0}+\binom{-2}{2} \\
& =\binom{7}{2} \text { is of the form }\binom{a}{b}, \text { where } a=7 \text { and } b=2 .
\end{aligned}
$$

(iii) $\overrightarrow{B E}$

SOLUTION:

Required to find: $\overrightarrow{B E}$
Solution:

$$
\begin{aligned}
\overrightarrow{O E} & =\frac{1}{3} \overrightarrow{O A} \\
& =\frac{1}{3}\binom{9}{0} \\
& =\binom{3}{0} \\
\overrightarrow{B E} & =\overrightarrow{B O}+\overrightarrow{O E} \\
& =-\binom{3}{6}+\binom{3}{0} \\
& =\binom{0}{-6} \text { is of the form }\binom{a}{b}, \text { where } a=0 \text { and } b=-6 .
\end{aligned}
$$

