
CSEE 3827: Fundamentals of Computer Systems,
Spring 2011

5. Finite State Machine Design

Prof. Martha Kim (martha@cs.columbia.edu)
Web: http://www.cs.columbia.edu/~martha/courses/3827/sp11/

mailto:martha@cs.columbia.edu
mailto:martha@cs.columbia.edu
http://www.cs.columbia.edu/~martha/courses/3827/sp11/
http://www.cs.columbia.edu/~martha/courses/3827/sp11/

Outline (H&H 3.5)

2

• Finite State Machines

• Definition

• Moore

• Mealy

• Design procedure

• Examples

Finite State Machine (FSM)

FSM = State register + combinational logic

Stores the current state
and

Loads the next state @ clock edge

Computes the next state
and

Computes the outputs

Finite State Machines (FSMs)

• Next state is determined by the current state and the inputs

• Two types of finite state machines differ in the output logic:

Moore FSM: outputs depend only on the current state

Mealy FSM: outputs depend on the current state and the inputs

Finite State Machine Example

• Traffic light controller

• Traffic sensors: TA, TB (TRUE when there is traffic)

• Lights: LA, LB

FSM Black Box

• Inputs: CLK, Reset, TA, TB

• Outputs: LA, LB

FSM State Transition Diagram

• Moore FSM: outputs labeled in each state

• States: Circles

• Transitions: Arcs

FSM State Transition Diagram

• Moore FSM: outputs labeled in each state

• States: Circles

• Transitions: Arcs

FSM State Transition Diagram

• Moore FSM: outputs labeled in each state

• States: Circles

• Transitions: Arcs

AGreen AYellow

BGreenBYellow

FSM State Transition Table

• State transitions (from diagram) can be rewritten in a state transition table

(S = current state, S’ = next state)

Current State Inputs Next State

S TA TB S’

AGreen 0 X AYellow

AGreen 1 X AGreen

AYellow X X BGreen

BGreen X 0 BYellow

BGreen X 1 BGreen

BYellow X X AGreen

(diagram reprinted for reference)

AGreen AYellow

BGreenBYellow

FSM Encoded State Transition Table

• After selecting a state encoding the symbolic
states in the transition table can be
annotated with actual state / next state bits

• One can then compute the next state logic

Current State Encoded Current State Inputs Next State Encoded Next State

S S1 S0 TA TB S’ S1’ S0’

AGreen 0 0 0 X AYellow 0 1

AGreen 0 0 1 X AGreen 0 0

AYellow 0 1 X X BGreen 1 0

BGreen 1 0 X 0 BYellow 1 1

BGreen 1 0 X 1 BGreen 1 0

BYellow 1 1 X X AGreen 0 0

Encoding

State S1 S0

AGreen 0 0

AYellow 0 1

BGreen 1 0

BYellow 1 1

S1’= S1 XOR S0
S0’ = `S1`S0`TA + S1`S0`TB

FSM Output Table

• FSM output logic is computed in much the same manner as the next state
logic

• Because this is a Moore machine, outputs are a function of the current state
only (were it a Mealy output would be a function of current state + inputs)

• Compute output bits as function of state bits

Output Encoding

Green 0 0

Yellow 0 1

Red 1 0

output encoding
State LA LB

State S1 S0 LA1 LA0 LB1 LB0

AGreen 0 0 0 0 1 0

AYellow 0 1 0 1 1 0

BGreen 1 0 1 0 0 0

BYellow 1 1 1 0 0 1

red light

output truth table

LA1 = S1; LA0 = S1`S0
LB1 = `S1; LB0 = S1S0

FSM Schematic: State Register

FSM Schematic: Next State Logic

FSM Schematic: Output Logic

What does the Reset signal do to this machine?
S = 00 = AGreen = A gets green light, B gets red light

FSM State Encoding

• Binary encoding: i.e., for four states, 00, 01, 10, 11

• One-hot encoding

• One state bit per state

• Only one state bit is HIGH at once

• I.e., for four states, 0001, 0010, 0100, 1000

• Requires more flip-flops

• Often next state and output logic is simpler

• Sometimes a semantically meaningful encoding makes the most sense (e.g.,
a faucet controller with a volume state and a temperature state)

Moore v. Mealy FSM

Alyssa P. Hacker has a snail that crawls down a paper tape with 1’s and 0’s
on it. The snail smiles whenever the last four digits it has crawled over are
1101. Design Moore and Mealy FSMs of the snail’s brain.

Factoring State Machines

• Break complex FSMs into smaller interacting FSMs

• Example: Modify the traffic light controller to have a Parade Mode.

• The FSM receives two more inputs: P, R

• When P = 1, it enters Parade Mode and the Bravado Blvd. light stays
green.

• When R = 1, it leaves Parade Mode

Parade FSM

• Unfactored FSM • Factored FSM

Unfactored FSM State Transition Diagram

Factored FSM State Transition Diagram

FSM Design Procedure

• Identify the inputs and outputs

• Sketch a state transition diagram

• Write a state transition table

• Select state encodings

• For a Moore machine:

• Write Boolean equations for the next state and output logic

• Sketch the circuit schematic

• For a Mealy machine:

Rewrite the state transition table with
the selected state encodings

Write the output table

Rewrite the combined state transition
and output table with the selected
state encodings

FSM timing characteristics

22

CL 1 FFsinput outputCL 2

CL FFsinput

output

ASYNC
SYNC

ASYNC

ASYNC

ASYNC
SYNC

ASYNC

SYNC

MEALY

MOORE

Advanced FSM design and implementation

Unused states: extra state encodings (e.g., using 3 FFs to represent 6 states
leaves 2 unused states) can be treated as “don’t care” values and used to
simplify the combinational logic

State minimization: two states are equivalent if they transition to the same or
equivalent states on the same inputs (while producing the same outputs in the
case of a Mealy machine)

23

