CSEE 3827: Fundamentals of Computer Systems, Spring 2011

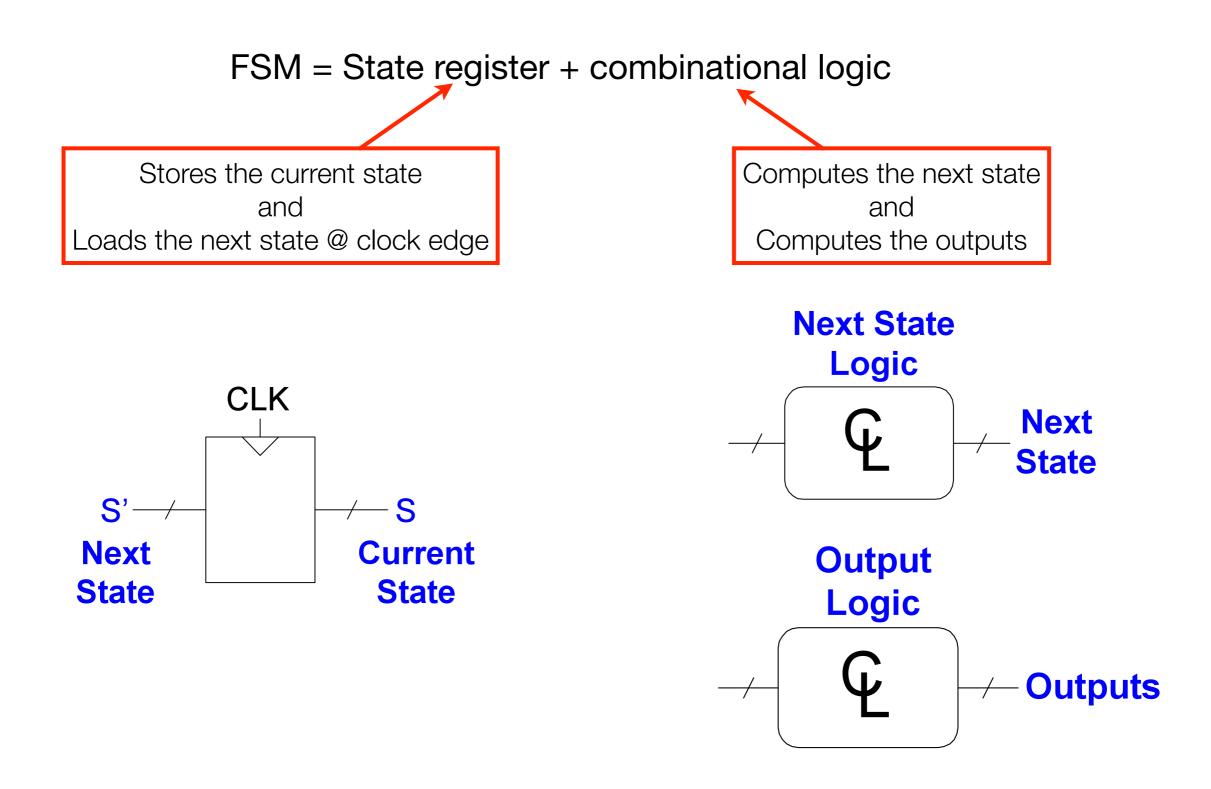
5. Finite State Machine Design

Prof. Martha Kim (<u>martha@cs.columbia.edu</u>) Web: <u>http://www.cs.columbia.edu/~martha/courses/3827/sp11/</u>

Outline (H&H 3.5)

- Finite State Machines
 - Definition
 - Moore
 - Mealy
 - Design procedure
 - Examples

Finite State Machine (FSM)

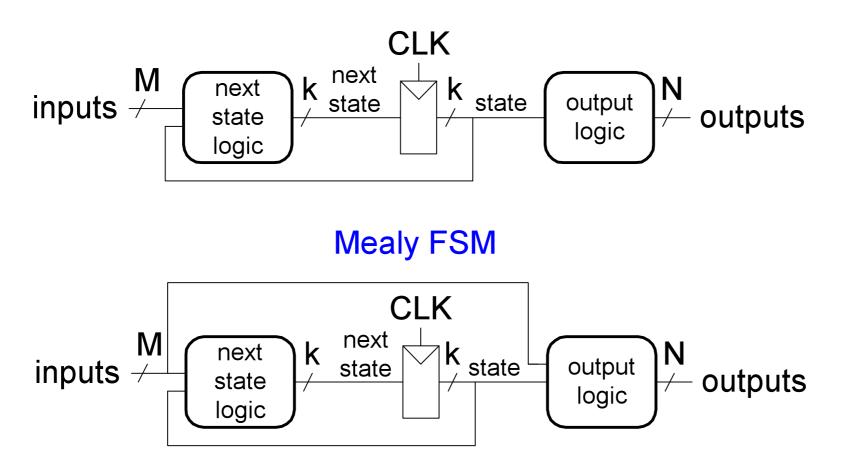


Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:

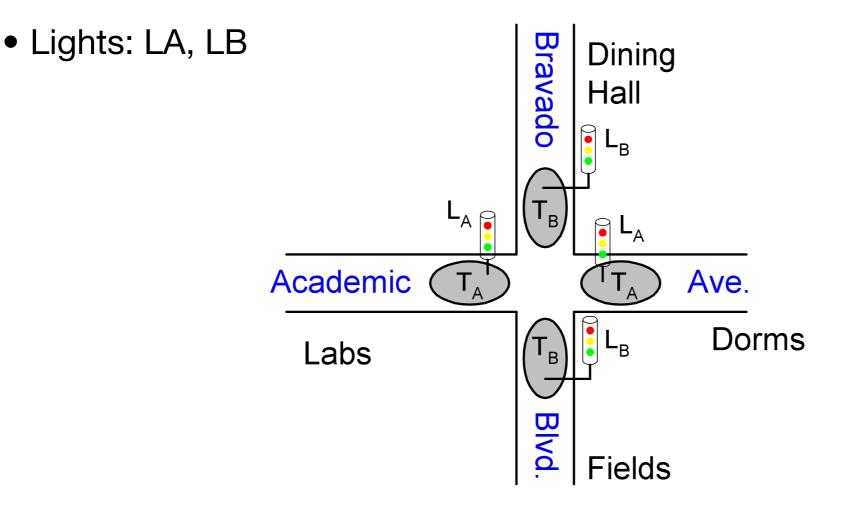
Moore FSM: outputs depend only on the current state

Mealy FSM: outputs depend on the current state and the inputs



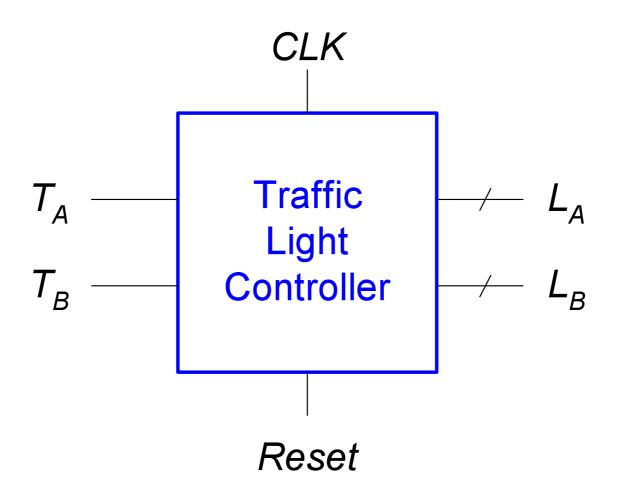
Finite State Machine Example

- Traffic light controller
 - Traffic sensors: TA, TB (TRUE when there is traffic)



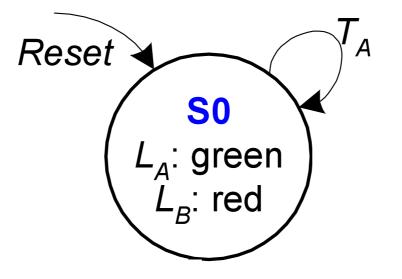
FSM Black Box

- Inputs: CLK, Reset, TA, TB
- Outputs: LA, LB



FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs



FSM State Transition Diagram

• Moore FSM: outputs labeled in each state

• States: Circles

• Transitions: Arcs

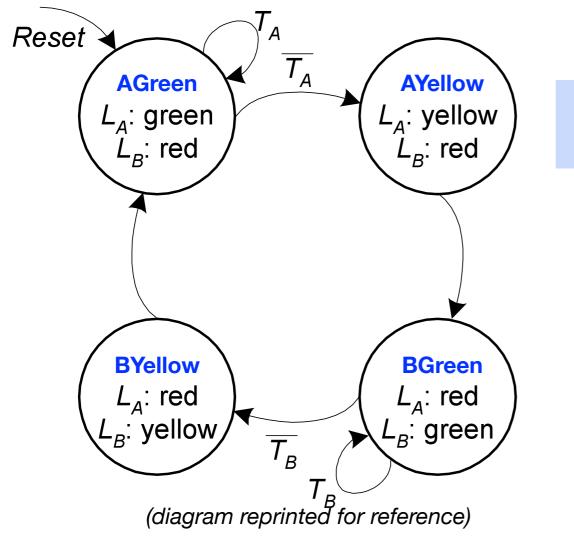
Reset $\overline{T_A}$ **S0 S1** L_A: green L_A : yellow L_B : red L_B : red **S**3 **S2** L_A : red L_B : yellow, L_A : red L_B: green $\overline{T_B}$ I_B

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- Reset • States: Circles $\overline{T_A}$ **AYellow AGreen** L_A : yellow L_A : green • Transitions: Arcs L_B : red L_B : red **BYellow BGreen** L_A : red L_A : red L_B : yellow L_B: green $\overline{T_B}$ I_B

FSM State Transition Table

- State transitions (from diagram) can be rewritten in a state transition table
 - (S = current state, S' = next state)



Current State	In	puts	Next State
S	ТА	тв	S'
AGreen	0	Х	AYellow
AGreen	1	Х	AGreen
AYellow	Х	Х	BGreen
BGreen	Х	0	BYellow
BGreen	Х	1	BGreen
BYellow	Х	Х	AGreen

FSM Encoded State Transition Table

• After <u>selecting a state encoding</u> the symbolic states in the transition table can be <u>annotated with actual</u> state / next state bits

Encoding **S0** State **S1** AGreen ()0 AYellow 0 1 BGreen 1 0 **BYellow** 1 1

Current State	Encoded Current State		Inputs		Next State	Encoded Next State	
S	S1	S0	ТА	ТВ	S'	S1'	S 0'
AGreen	0	0	0	Х	AYellow	0	1
AGreen	0	0	1	Х	AGreen	0	0
AYellow	0	1	Х	Х	BGreen	1	0
BGreen	1	0	Х	0	BYellow	1	1
BGreen	1	0	Х	1	BGreen	1	0
BYellow	1	1	Х	Х	AGreen	0	0

• One can then compute the next state logic

S1'= S1 XOR S0 S0' = `S1`S0`TA + S1`S0`TB

FSM Output Table

output encoding

- FSM output logic is computed in much the same manner as the next state logic
- Because this is a Moore machine, outputs are a function of the current state only (were it a Mealy output would be a function of current state + inputs)

							-		-	
Output	Enc	oding			State		LA		LB	
Green	0	0		State	S1	S 0	LA1	LA0	LB1	LE
Yellow	0	1		AGreen	0	0	0	0	1	(
Red	1	0		AYellow	0	1	0	1	1	(
	-		BGreen	1	0	1	0	0	(
				BYellow	1	1	1	0	0	-
compute	outp	out bits	s as functio	on of sta	te bits	6				

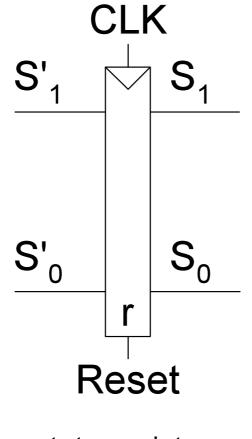
output truth table

red light

• C

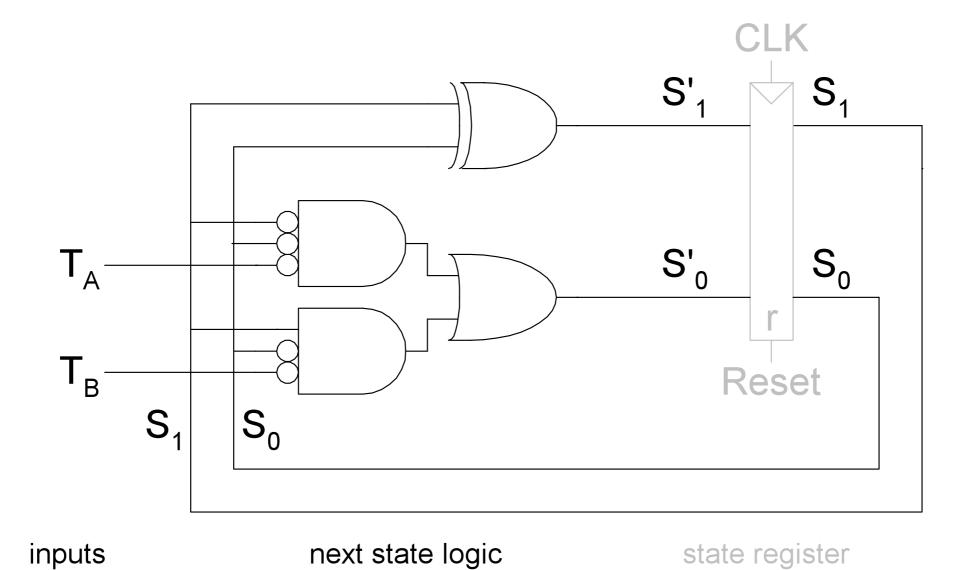
LA1 = S1; LA0 = S1`S0 LB1 = S1; LB0 = S1S0

FSM Schematic: State Register

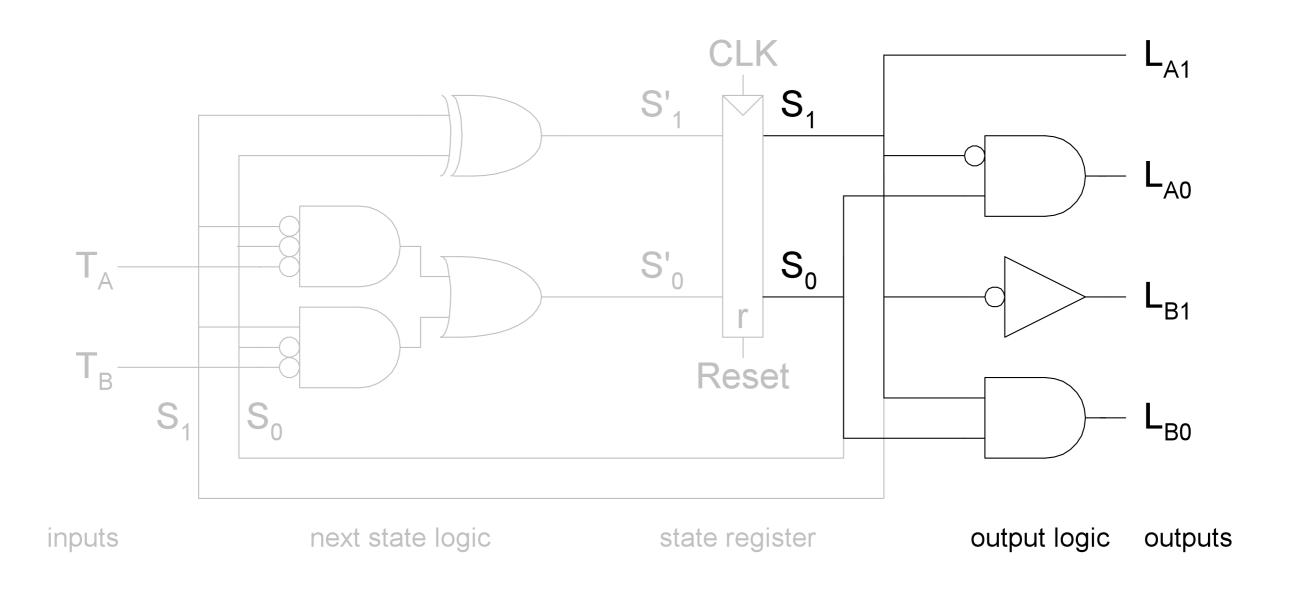


state register

FSM Schematic: Next State Logic



FSM Schematic: Output Logic



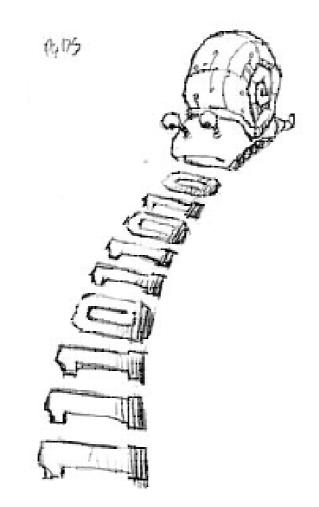
What does the Reset signal do to this machine? S = 00 = AGreen = A gets green light, B gets red light

FSM State Encoding

- Binary encoding: i.e., for four states, 00, 01, 10, 11
- One-hot encoding
 - One state bit per state
 - Only one state bit is HIGH at once
 - I.e., for four states, 0001, 0010, 0100, 1000
 - Requires more flip-flops
 - Often next state and output logic is simpler
- Sometimes a semantically meaningful encoding makes the most sense (e.g., a faucet controller with a volume state and a temperature state)

Moore v. Mealy FSM

Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it. The snail smiles whenever the last four digits it has crawled over are 1101. Design Moore and Mealy FSMs of the snail's brain.

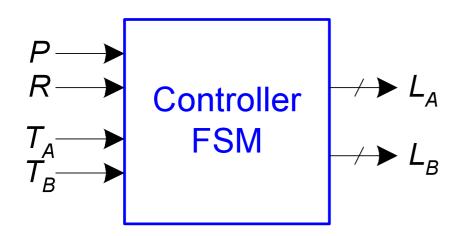


Factoring State Machines

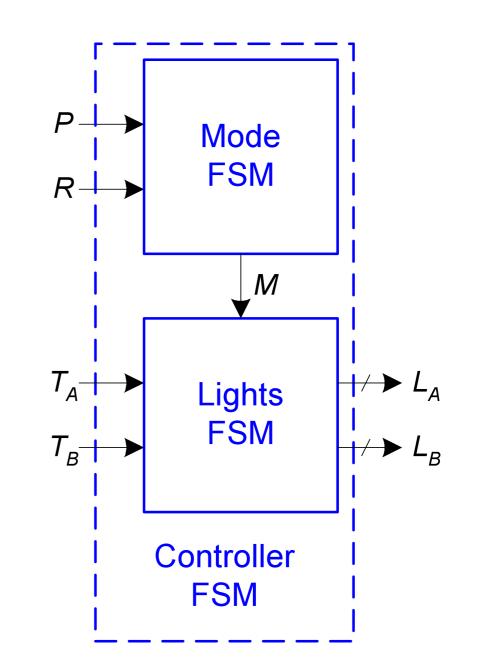
- Break complex FSMs into smaller interacting FSMs
- Example: Modify the traffic light controller to have a Parade Mode.
 - The FSM receives two more inputs: P, R
 - When P = 1, it enters Parade Mode and the Bravado Blvd. light stays green.
 - When R = 1, it leaves Parade Mode

Parade FSM

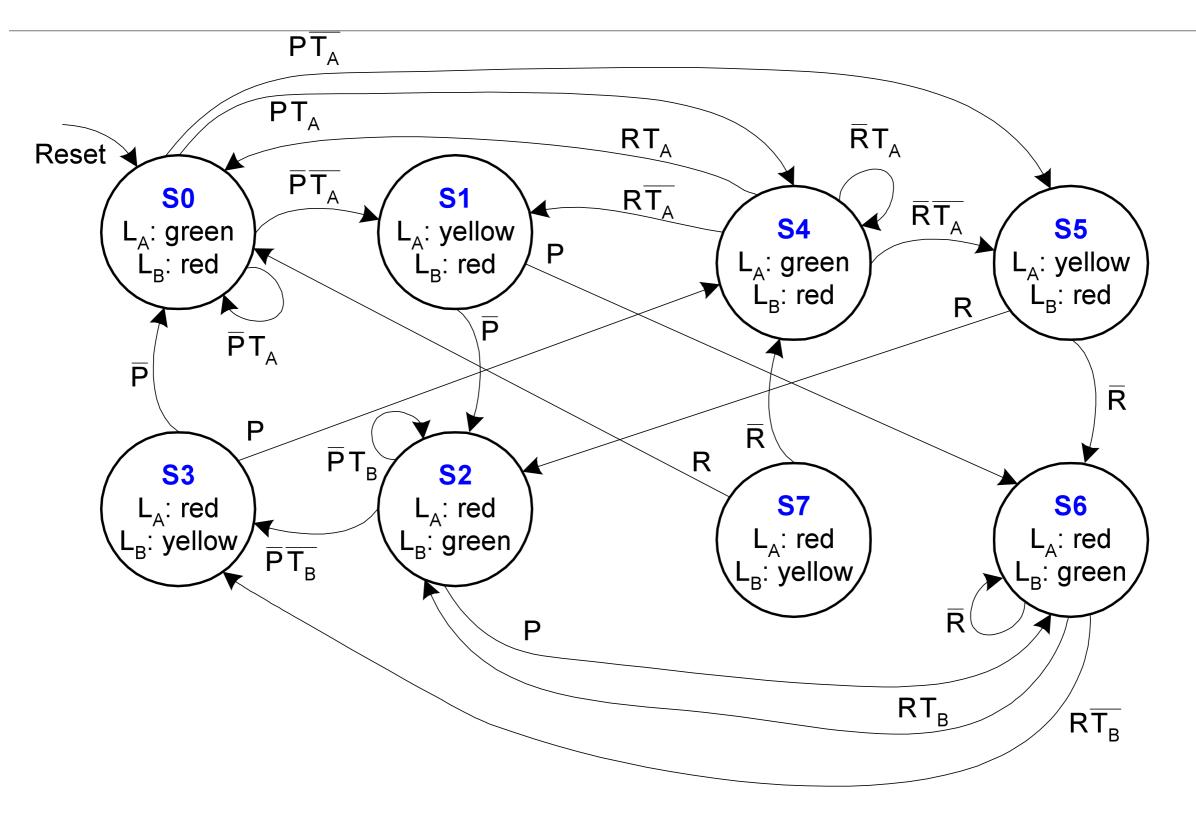
Unfactored FSM



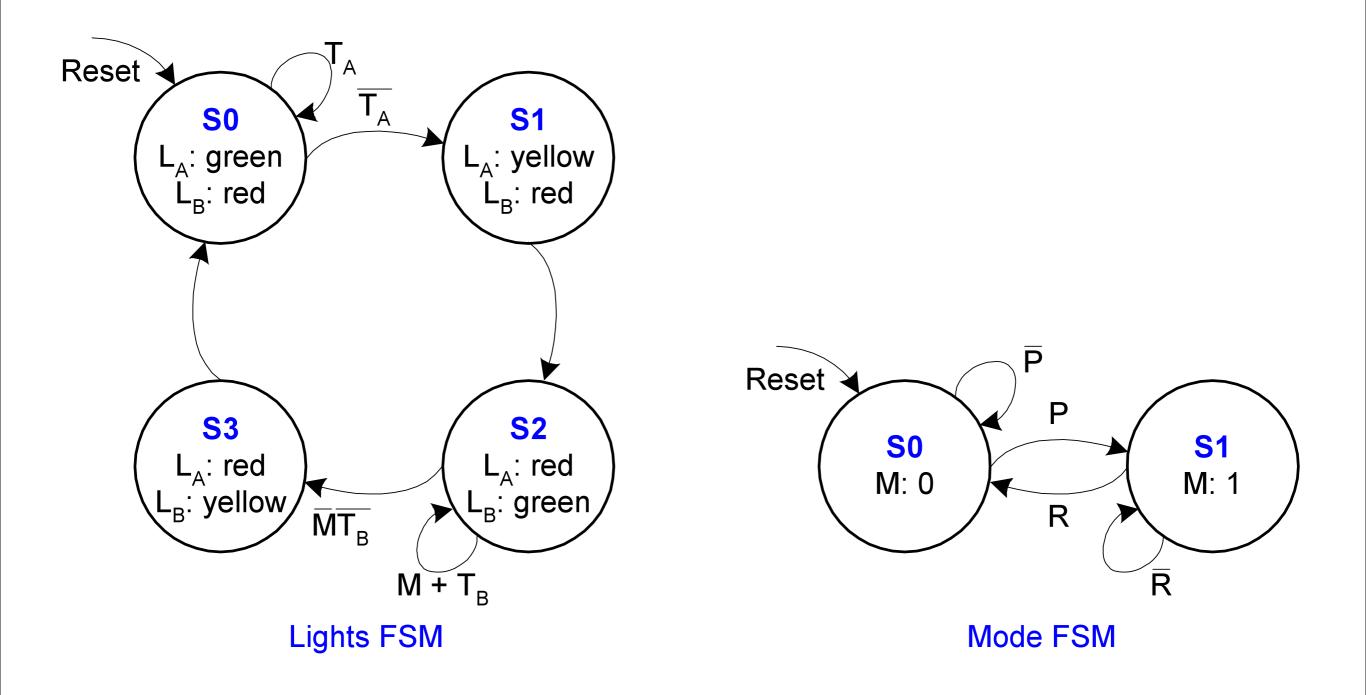
Factored FSM



Unfactored FSM State Transition Diagram



Factored FSM State Transition Diagram



FSM Design Procedure

- Identify the inputs and outputs
- Sketch a state transition diagram
- Write a state transition table
- Select state encodings
- For a Moore machine:

Rewrite the state transition table with the selected state encodings

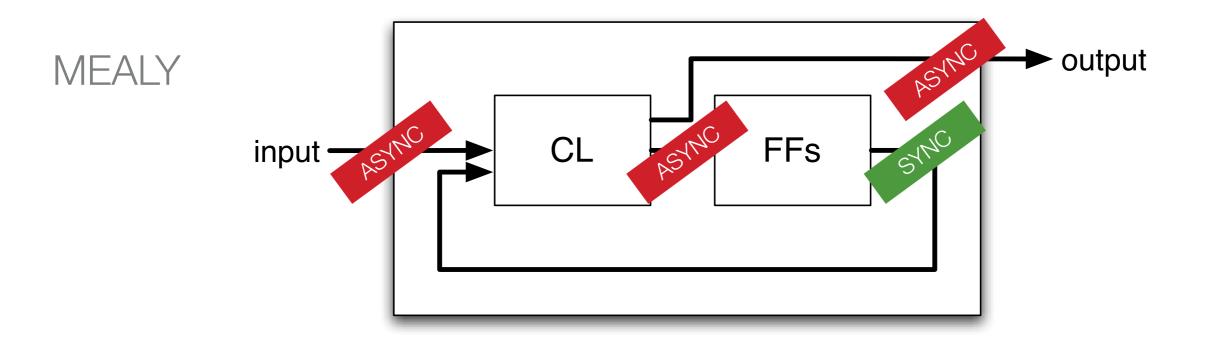
Write the output table

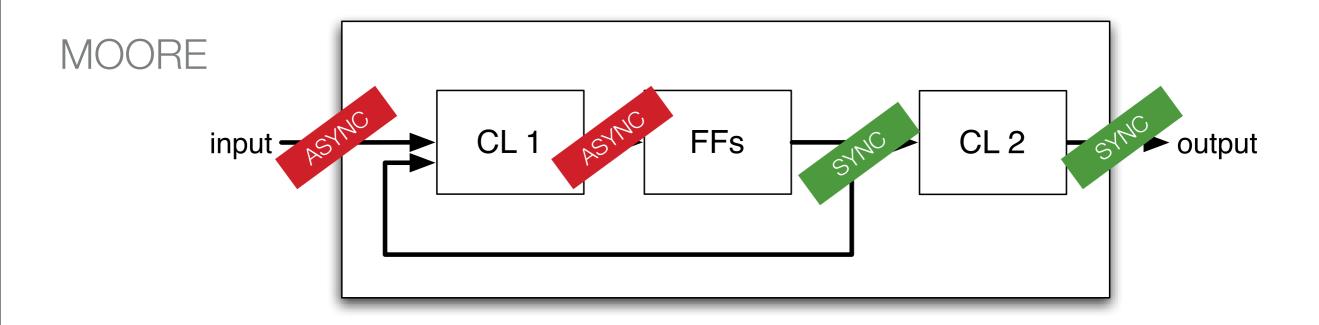
• For a Mealy machine:

Rewrite the combined state transition and output table with the selected state encodings

- Write Boolean equations for the next state and output logic
- Sketch the circuit schematic

FSM timing characteristics





Unused states: extra state encodings (e.g., using 3 FFs to represent 6 states leaves 2 unused states) can be treated as "don't care" values and used to simplify the combinational logic

State minimization: two states are equivalent if they transition to the same or equivalent states on the same inputs (while producing the same outputs in the case of a Mealy machine)