CSEE 3827: Fundamentals of Computer Systems

Finite State Machine Design

Recall: Sequential circuit

Example sequential circuit (schematic)

Reverse engineering a sequential circuit

State machine

A state machine model of a system's behavior in terms of states and transitions between those states that are triggered by actions.

State diagrams represent state machines

one or more states, indicated by nodes

input value that triggers transition on edge

Finite state machine (FSM)

A state machine that has a finite number of states

* Any finite state machine can be implemented with sequential logic
* All sequential circuits implement finite state machines

Implementing a finite state machine

2. convert to truth table

S	in	$S+$	out
00	0	10	0
00	1	01	0
01	0	10	1
01	1	01	1
10	0	10	0
10	1	01	0

4. annotate table with flip-flop inputs for next state
5. wire circuit and flipflops together together

S	in	S_{+}	out	T1	T2
00	0	10	0	1	0
00	1	01	0	0	1
01	0	10	1	1	1
01	1	01	1	0	0
10	0	10	0	0	0
10	1	01	0	1	1

From State Machine to Sequential Circuit

- Specify behavior of state machine (including input and output values)
- Encode states
- figure out how many bits needed to store state (one FF per bit)
- assign state values to states
- Select FF type (i.e., D, T, JK, etc.)
- Compute combinational logic functions
- "next state" logic: $S_{+}=F(S$, inputs $)$
- "output" logic:
- Mealy machine: output $=\mathrm{G}(\mathrm{S}$, inputs $)$
- Moore machine: output $=\mathrm{H}(\mathrm{S})$

Example State Machine

- 1 input, 1 output
- Let $X=\#$ of 1 's input so far, $Y=\#$ of 0 's input so far.
- Output 1 whenever $X-Y=0(\bmod 3)$

State label is current value of $X-Y$ mod 3

Binary Labeling

Design with D Flip-Flops

- D FF's are easy: we input the value to the FF that we want it set to

$A_{\text {cur }}$	$B_{\text {cur }}$	In	$A_{\text {next }}$	$B_{\text {next }}$	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	X	X	X
1	1	1	X	X	X

$A_{\text {cur }}$	$B_{\text {cur }}$	In	$A_{\text {next }}$	D_{A}	$B_{\text {next }}$	D_{B}	Out
0	0	0	1	1	0	0	0
0	0	1	0	0	1	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	0	0	0
1	0	0	0	0	1	1	0
1	0	1	0	0	0	0	1
1	1	0	X	X	X	X	X
1	1	1	X	X	X	X	X

New columns indicate what values feed into D FF (mimic "next" values for that FF)

Design with D Flip-Flops Cont'd

- Build K-Maps, get equations for output and FF input vals (in terms of inputs and previous F vals)

$A_{\text {cur }}$	$B_{\text {cur }}$	In	$A_{\text {next }}$	D_{A}	$B_{\text {next }}$	D_{B}	Out
0	0	0	1	1	0	0	0
0	0	1	0	0	1	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	0	0	0
1	0	0	0	0	1	1	0
1	0	1	0	0	0	0	1
1	1	0	X	X	X	X	X
1	1	1	X	X	X	X	X

$$
\begin{array}{r}
\mathrm{D}_{\mathrm{A}}=\overline{\mathrm{A}} \bar{B} \overline{\mathrm{I}}+\mathrm{BI} \\
\mathrm{D}_{\mathrm{B}}=\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{I} \\
\text { Out }=\mathrm{Al}+\mathrm{B} \overline{\mathrm{I}}
\end{array}
$$

Design with D FF's cont'd

Design with T Flip Flops

- Value fed into T FF is 0 if FF should maintain value, 1 if it should flop

$A_{\text {cur }}$	$B_{\text {cur }}$	In	$A_{\text {next }}$	$B_{\text {next }}$	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	X	X	X
1	1	1	X	X	X

$A_{\text {cur }}$	$\mathrm{B}_{\text {cur }}$	\ln	$\mathrm{A}_{\text {next }}$	T_{A}	$\mathrm{B}_{\text {next }}$	T_{B}	Out
0	0	0	1	1	0		0
0	0	1	0	0	1		0
0	1	0	0	0	0		1
0	1	1	1	1	0		0
1	0	0	0	1	1		0
1	0	1	0	1	0		1
1	1	0	X	X	X		X
1	1	1	X	X	X		X

T_{A} :

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{A}+\mathrm{BI}+\overline{\mathrm{B}} \overline{\mathrm{I}}
$$

Design with T Flip Flops

- Value fed into T FF is 0 if FF should maintain value, 1 if it should flop

$A_{\text {cur }}$	$B_{\text {cur }}$	In	$A_{\text {next }}$	$B_{\text {next }}$	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	X	X	X
1	1	1	X	X	X

$A_{\text {cur }}$	$\mathrm{B}_{\text {cur }}$	In	$\mathrm{A}_{\text {next }}$	T_{A}	$\mathrm{B}_{\text {next }}$	T_{B}	Out
0	0	0	1	1	0	0	0
0	0	1	0	0	1	1	0
0	1	0	0	0	0	1	1
0	1	1	1	1	0	1	0
1	0	0	0	1	1	1	0
1	0	1	0	1	0	0	1
1	1	0	X	X	X	X	X
1	1	1	X	X	X	X	X

In
TB:

$$
\text { A cur }^{}
$$

$$
T_{B}=A \bar{B} \bar{I}+\bar{A} \bar{B} I
$$

Design with JK Flip-Flops

- Note: to change $A_{\text {cur }}$ to the correct $A_{n e x t}$ value, two possible input pairs can be fed into the J,K inputs of a JK Flip-Flop

\mathbf{J}	\mathbf{K}	$\mathbf{Q (t + 1)}$
0	0	$Q(t)$
0	1	0
1	0	1
1	1	$\overline{Q(t)}$

Acur	$\mathbf{A n e x t}^{\text {J,K }}$	
0	0	0,0 or $0,1(0, X)$
0	1	1,0 or $1,1(1, X)$
1	0	0,1 or $1,1(X, 1)$
1	1	0,0 or $1,0(X, 0)$

Design with JK Flip-Flop

$\mathbf{A}_{\text {cur }}$	$\mathbf{A}_{\text {next }}$	$\mathbf{J , K}$
0	0	0,0 or $0,1(0, X)$
0	1	1,0 or $1,1(1, X)$
1	0	0,1 or $1,1(X, 1)$
1	1	0,0 or $1,0(X, 0)$

$A_{\text {cur }}$	$B_{\text {cur }}$	\ln	$A_{\text {next }}$	$B_{\text {next }}$	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	X	X	X
1	1	1	X	X	X

$A_{\text {cur }}$	$\mathrm{B}_{\text {cur }}$	In	$A_{\text {next }}$	J_{A}	K_{A}	$B_{\text {next }}$	J_{B}	K_{B}	Out
0	0	0	1	1	X	0			0
0	0	1	0	0	X	1			0
0	1	0	0	0	X	0			1
0	1	1	1	1	X	0			0
1	0	0	0	X	1	1			0
1	0	1	0	X	1	0			1
1	1	0	X	X	X	X			X
1	1	1	X	X	X	X			X

Design with JK Flip-Flop

Acur	A $_{\text {next }}$	$\mathbf{J , K}$
0	0	0,0 or $0,1(0, \mathrm{X})$
0	1	1,0 or $1,1(1, \mathrm{X})$
1	0	0,1 or $1,1(X, 1)$
1	1	0,0 or $1,0(X, 0)$

$A_{\text {cur }}$	$B_{\text {cur }}$	In	$A_{\text {next }}$	$B_{\text {next }}$	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	X	X	X
1	1	1	X	X	X

$A_{\text {cur }}$	$\mathrm{B}_{\text {cur }}$	In	$A_{\text {next }}$	J_{A}	K_{A}	$\mathrm{~B}_{\text {next }}$	J_{B}	K_{B}	Out
0	0	0	1	1	X	0	0	X	0
0	0	1	0	0	X	1	1	X	0
0	1	0	0	0	X	0	X	1	1
0	1	1	1	1	X	0	X	1	0
1	0	0	0	X	1	1	1	X	0
1	0	1	0	X	1	0	0	X	1
1	1	0	X						
1	1	1	X						

Design with JK Flip-Flop

Design with JK FF's cont'd

$$
J_{A}=B I+\bar{B} \bar{T} \quad K_{A}=1 \quad J_{B}=\bar{A} I+A \bar{T} \quad K_{B}=1
$$

In class exercise: design a 3-bit counter

Moore machine

a circuit in which the output depends only on the current state

Mealy machine

a circuit in which the outputs depend on the inputs as well as the current state

A Mealy or Moore circuit?

© 2008 Pearson Education, Inc.
M. Morris Mano \& Charles R. Kime

LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

An example Moore circuit

5-16

(a)

| Present
 state | Inputs | | | |
| :---: | :---: | :---: | :---: | :---: | | Inext |
| :---: | :---: | :---: | :---: |
| state | Output

(b) State table

FSM timing characteristics

MEALY

Advanced FSM design and implementation

Unused states: extra state encodings (e.g., using 3 FFs to represent 6 states leaves 2 unused states) can be treated as "don't care" values and used to simplify the combinational logic

State minimization: two states are equivalent if they transition to the same or equivalent states on the same inputs (while producing the same outputs in the case of a Mealy machine)

