
Xiaolan Zhang
Spring 2013

Unix System Programming, Spring 2013 1

CISC 3130
Unix System Programming

Outline

Unix System Programming, Spring 2013 2

 Important course information
 Objective
 Roadmap
 Requirement & policy

 Brief history of GNU/Linux
 GNU/Linux Architecture
 Getting started
 Log in, simple command, shell

You’ve written programs…

Unix System Programming, Spring 2013 3

• Lot of times, one can use existing tools to implement new
functionalities

• Real world applications are complicated:
– generate input & output, or have GUI
– communicate with other program (local or remote)
– use multiple processes or threads for improved interactivities
– Needs to be profiled/tested to improve performance

About this course

Unix System Programming, Spring 2013 4

 UNIX: time-sharing operating system, consisting of
 kernel (program that controls and allocates system resources, file

system)
 Essential programs: compilers, editors, commands & utilities

 Linux is a variation of Unix
 programming environment is very similar

Unix System Programming, Spring 2013 5

About this course
 Many levels of programming:

High-level:
Web
programming

Low-level:
kernel programming
device driver
programming

System
programming

Stronger awareness about
hardware and operating system

Application
programming

Operating System, Kernel

Unix System Programming, Spring 2013 6

 operating system: two different meanings
 the entire package consisting of central software managing a

computer’s resources and all of accompanying standard software
tools, such as command-line interpreters, graphical user
interfaces, file utilities, and editors.

 central software that manages and allocates computer resources
(i.e., CPU, RAM, and devices).

 kernel is often used as a synonym for second meaning

Unix System Programming, Spring 2013 7

What is Operating System?
• From app. programmer’s point of view:

– O.S. manages hardware resources
– O.S. provides user programs with a

simpler interface, i.e. system calls
• cnt=read(fd, buffer,nbytes)
• getc() etc.

• We will encounter OS concepts,
inevitably.

User –level applications

Operating System

Hardware: processor(s),
main memory, disks,
printers, keyboard, display,
network interface, etc.

System calls

Physical machine interface

Kernel Functionalities: Process
scheduling

Unix System Programming, Spring 2013 8

 Managing one or more central processing units (CPUs),
 Unix: a preemptive multitasking operating system
 multiple processes (i.e., running programs) can simultaneously

reside in memory and each may receive use of the CPU(s).
 Preemptive: scheduler can preempt (or interrupt) a process,

and resume its execution later => to support interactive
responses
 the processors are allowed to spend finite chunks of time

(quanta, or timeslices) per process

Kernel Functionalities: Memory
management

Unix System Programming, Spring 2013 9

 Manage physical memory (RAM) to be shared among
processes in an equitable and efficient fashion

 Virtual memory management:
 Processes are isolated from one another and from the kernel, so

that one process can’t read or modify the memory of another
process or the kernel.

 Only part of a process needs to be kept in memory, thereby
lowering the memory requirements of each process and
allowing more processes to be held in RAM simultaneously.

 better CPU utilization, since it increases the likelihood that, at
any moment in time, there is at least one process that the
CPU(s) can execute.

Other OS functionalities …

Unix System Programming, Spring 2013 10

 The kernel provides a file system on disk, allowing files to be
created, retrieved, updated, deleted, and so on.

 Creation and termination of processes
 Peripheral device: standardizes and simplifies access to

devices, arbitrates access by multiple processes to each device
 Networking: transmits and receives network packets on

behalf of user processes.
 Support system call interfaces: processes can request the

kernel to perform various tasks using kernel entry points
known as system calls.
 Second part of this course: Unix system call API

Unix System Programming, Spring 2013 11

Layers in UNIX/Linux System

Hardware (CPU, memory, disks, terminals, etc)

Unix/Linux kernel
(process management, memory management, file

system, I/O, etc)

Standard library

(open, close, read, write, fork, etc)

Standard utility programs

(shell, editors, compilers)

Users

System
call
interface

library
interface

POSIX

POSIX 1003.2

Goal of this course

Unix System Programming, Spring 2013 12

 Learn tools needed for develop application in GNU/Linux
 A working understanding about UNIX
 Basic commands, shell scripting
 GNU tools for app. development
 compiler, debugger, make, version control, library, testing/profiling tools

 System calls provided in Unix:
 to request services from operating system

Roadmap: a top-down approach

Unix System Programming, Spring 2013 13

• Get started topics
– Basic concepts & useful commands

• vi,emacs, sed, awk
• Bash programming
• Basic GNU Tools

– Compiler chain, make, debugger (gdb)

• Unix system calls
• Advanced GNU Tools

– Library, gcov, gprof, version control tools

Now let’s get started with some
background information.

Unix System Programming, Spring 2013 14

Unix System Programming, Spring 2013 15

Timeline of Unix/Linux, GNU

Dennis
Ritchie PDP-11

Ken Thompson

Windows 3X

Windows NT

1993

GNU history

Unix System Programming, Spring 2013 16

• GNU: GNU is Not Unix
• Richard Stallman (author of Emacs, and many
other utilities, ls, cat, …, on linux)

– 1983: development of a free UNIX-
like operating system
– Free Software Foundation (100s of
Programmers)

• Free software:
– freedom to run the program, for any purpose.
– freedom to study how the program works and adapt it to your needs.
– freedom to redistribute copies so you can help others.
– freedom to improve the program and release your improvements to

the public, so that everyone benefits.

GPL License

Unix System Programming, Spring 2013 17

 GNU General Public License is a free, copyleft license for
software and other kinds of works…
 “The licenses for most software and other practical works are designed to

take away your freedom to share and change the works. By contrast, the
GNU General Public License is intended to guarantee your freedom to share
and change all versions of a program--to make sure it remains free software
for all its users.”

 Manual pages for commands include copyright info:
COPYRIGHT

 Copyright © 2011 Free Software Foundation, Inc. License GPLv3+: GNU GPL
version 3 or later <http://gnu.org/licenses/gpl.html>.

 This is free software: you are free to change and redistribute it. There is NO

 WARRANTY, to the extent permitted by law.

Linux history

Unix System Programming, Spring 2013 18

• Linus Torvalds
– 1991: “hobby” operating system for
i386-based computer, while study in Univ. of Helsinki

 1996: Linux becomes a GNU software component

 GNU/Linux: A fairer name than Linux?
 “Most operating system distributions based on Linux as kernel are basically

modified versions of GNU operating system. We began developing GNU in
1984, years before Linus Torvalds started to write his kernel. Our goal was
to develop a complete free operating system. Of course, we did not develop
all the parts ourselves—but we led the way. We developed most of the
central components, forming the largest single contribution to the whole
system. The basic vision was ours too. “ --- RMS

Unix System Programming, Spring 2013 19

Linux kernel versions

Use “uname –a” to check system information
(including kernel version).

Linux version history

Unix System Programming, Spring 2013 20

 1.0: only supported single-processor i386-based computer

 1.2 support for computers using processors based on
the Alpha, SPARC, and MIPS architectures.

 2.0: SMP support (symmetric multiple processors) and support
for more types of processors

 2.2: removed global spinlock, improved SMP support,
support m68k and PowerPC architectures, new file systems
(including read-only support for Microsoft’s NTFS)

 2.4.0: support for ISA Plug and Play, USB, and PC Cards, PA-
RISC processor, Bluetooth, Logical Volume Manager (LVM)
version 1, RAID support, InterMezzo and ext3 file systems.

Linux version history

Unix System Programming, Spring 2013 21

 2.6.0 : integration of µClinux , PAE support, support for several new lines
of CPUs, integration of ALSA , support for up to 232 users , up to 229 process
IDs, increased the number of device types and the number of devices of each
type, improved 64-bit support, support for file systems of up to 16 terabytes,
in-kernel preemption, support for the Native POSIX Thread
Library (NPTL), User-mode Linux integration into the mainline kernel
sources, SELinux integration into the mainline kernel sources, …

 3.0 : 21 July 2011. the big change was, "NOTHING. Absolutely nothing.”
"...let's make sure we really make the next release not just an all new shiny
number, but a good kernel too." , released near the 20th anniversary of Linux

http://en.wikipedia.org/wiki/Physical_Address_Extension
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/User-mode_Linux
http://en.wikipedia.org/wiki/Security-Enhanced_Linux

Understanding uname

Unix System Programming, Spring 2013 22

$ uname -a

Linux storm.cis.fordham.edu 3.6.11-1.fc16.x86_64 #1 SMP Mon Dec 17
21:29:15 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux

 Kernel name: Linux:
 Hostname

 Kernel release: 3.6.11-1.fc16.x86_64
 Kernel version: #1 SMP Mon Dec 17 21:29:15 UTC 2012
 Machine hardware name: x86_64 (AMD64 instruction set)
 Processor:x86_64
 Operating system: GNU/Linux

Unix Standardization

Unix System Programming, Spring 2013 23

 Different implementations of Unix diverged:
 Different meaning for command options
 System calls syntax and sementatics

 POSIX, "Portable Operating System Interface", is a family
of standards specified by IEEE for maintaining compatibility
between Unix systems.
 C library level, shell language, system utilities and options, thread library
 currently IEEE Std. 1003.1-2004

 POSIX for Windows:
 Cygwin provides a largely POSIX-compliant development and run-time

environment for Microsoft Windows.

Single Unix Specification

Unix System Programming, Spring 2013 24

 1990: X/Open launches XPG3 Brand. OSF/1 debuts.
 1993: Novell transfers rights to "UNIX" trademark and

Single UNIX Specification to X/Open.
 1994: X/Open introduces Single UNIX Specification,

separating the UNIX trademark from any actual code stream
 1995:X/Open introduces UNIX 95 branding program for

implementations of Single UNIX Specification.
 1996 : Open Group forms as a merger of OSF and

X/Open.

X/Open => Open Group

Unix System Programming, Spring 2013 25

 1997: Open Group introduces Version 2 of Single UNIX
Specification, including support for realtime, threads and 64-bit
and larger processors.

 1998: Open Group introduces UNIX 98 family of brands,
including Base, Workstation and Server. First UNIX 98 registered
products shipped by Sun, IBM and NCR.

 1999: Open Group and IEEE commence joint development of a
revision to POSIX and the Single UNIX Specification.

 2001: Version 3 of the Single UNIX Specification unites
IEEE POSIX, The Open Group and the industry efforts.

Today’s Unix Systems

Unix System Programming, Spring 2013 26

 To be an officially Unix system, need to go through
certification based on the Single Unix Specification

 Registered Unix systems: AIX, HP/UX, OS X, Reliant
Unix, ….

 Linux and FreeBSD do not typically certify their
distributions, as the cost of certification and the rapidly
changing nature of such distributions make the process
too expensive to sustain.

Outline

Unix System Programming, Spring 2013 27

 Important course information
 Objective
 Roadmap
 Requirement & policy

 Brief history of GNU/Linux
 GNU/Linux Architecture
 Getting started
 Shell
 File system, file

A Quick Start

Unix System Programming, Spring 2013 28

 Terminal
 PuTTy, a telnet/ssh client
 a free and open source terminal emulator application
 a window in your desktop that works like old time terminal

 Enter your ID and password

Your first encounter: shell

Unix System Programming, Spring 2013 29

• Shell: a special-purpose program, command line
interpreter, read commands typed by a user and execute
programs in response to entered commands

• Many different shells:
• Bourne Shell (sh): oldest,

• I/O redirection, pipelines, filename generation (globbing), variables,
environment variables, command substitution, background command
execution, function

• C Shell (csh): syntax of flow-control similar to C, command
history, command-line editing, job control, aliases

• Korn Shell (ksh): “csh”, compatible with sh
• Bourne again Shell (bash): GNU’s reimplementation of Bourne

shell, supports features added in C shell, and Korn shell

Check/Change Login Shell

Unix System Programming, Spring 2013 30

 To check the shell you are using
 echo $SHELL
 echo $0

 login shell: default shell for a user, specified in /etc/passwd
 To change your login shell, use command
 chsh

Shell: interactive mode

Unix System Programming, Spring 2013 31

• A shell session (a dialog between user and shell)
1. Displays a prompt character, and waits for user to type in a

command line
 Prompt depends on shell: sh, ksh, bash: $ csh: % tcsh: >

 May be customized (with current directory, host, ...)
2. On input of a command line, shell extracts command name

and arguments, searches for the program, and runs it.
3. When program finishes, shell continues to step 1

4. The loop continues until user types “exit” or “ctrl-d” to end

UNIX command line

Unix System Programming, Spring 2013 32

• Command name and arguments:
command [[-] option (s)] [option argument (s)] [command argument (s)]

– Command arguments are mostly file or directory names
• cp prog1.cpp prog1.cpp.bak

– Options: used to control behavior of the command
• head -20 lab1.cpp
• wc –w lab2.cpp // count how many words
• Some options come with option argument

– sort –k 1 data.txt
– // use the first column of data.txt as the key to sort

The most important command !!!

Unix System Programming, Spring 2013 33

• man: displaying online manuals
– Press q to quit, space to scroll down, arrow keys to roll up/down

man ls

Correcting type mistakes

Unix System Programming, Spring 2013 34

• Shell starts to parse command line only when Enter key is
pressed

• Delete the whole line (line-kill): C-u
• Erase a character: C-h or backspace key
• Many more fancy functionalities:

– Auto-completion: press Tab key to ask shell to auto-complete
command, or path name

– History (repeat command): use arrow (up and down) keys to
navigate past commands

– …

Shell: batch/scripting mode

Unix System Programming, Spring 2013 35

 In batch mode, shell can interpret and execute shell scripts
#!/bin/bash
count number of files/directories in curr. directory
ls –l | wc –l

 Shell constructs:
 variables,
 Loop and conditional statements
 I/O commands (read from keyboard, write to terminal)
 Function, arrays …

Outline

Unix System Programming, Spring 2013 36

 Important course information
 Objective
 Roadmap
 Requirement & policy

 Brief history of GNU/Linux
 GNU/Linux Architecture
 Getting started
 Shell
 File systems, file,

Unix File

Unix System Programming, Spring 2013 37

 Files: store information
 a sequence of 0 or more bytes containing arbitrary information

 What's in a filename?
 Case matters, no longer limited to 14 chars
 Special characters such as -, spaces are allowed, but you shouldn’t use

them in filename
 Can you think of the reason ?

 Dot files are hidden, i.e., normally not listed by command ls
 To display all files, including hidden files, use ls -a

What’s in a file ?

38

 So far, we learnt that files are organized in a hierarchical
directory structure
 Each file has a name, resides under a directory, is associated with

some admin info (permission, owner)

 Contents of file:
 Text (ASCII) file (such as your C/C++ source code)
 Executable file (commands)
 A link to other files, …
 Virtual file:
 /proc: a pseudo-filesystem, contains user-accessible objects on runtime state

of kernel and executing processes

 To check the type of file: “file <filename>”

File Viewing Commands

Unix System Programming, Spring 2013 39

• cat: concatenate files and display on standard output (i.e., the
terminal window)

– cat [option] … [file] …
– cat proj1.cpp
– cat proj1.cpp proj2.cpp
– cat –n proj1.cpp // display the file with line #

• More: file perusal filter (i.e., displaying file one screen at a time)

– more proj1.cpp
• head, tail: display the beginning or ending lines of a file

– tail -f output // display the file, append more
lines as the file grows

[] means the argument is optional
… means there can be multiple
 arguments of this type

File manipulation commands

Unix System Programming, Spring 2013 40

• rm: remove one or multiple files or directories
– rm [option] … FILE …
– rm temp
– rm temp1 temp2

• Wildcards (metacharacter) can be used in command line
– Letter * matches with any string

• rm *.o: remove all .o files
– ?: match any one character
– [abc]: match with letter a or b or c

• rm –r: remove directories and their sub-dirs recursively
• rm –i : confirm with user before removing files

File manipulation commands (2)

Unix System Programming, Spring 2013 41

 cp: copy file or directory
 cp [OPTION] SOURCE DESTINATION

 To make a backup copy of your program before dramatic
change
 cp proj1.cpp proj1.cpp.bak

 To make a backup copy of a whole directory
 cp –r lab1_dir lab1_dir_backup
 -R, -r, --recursive: copy directories recursively

File manipulation commands (3)

Unix System Programming, Spring 2013 42

 mv: move (rename) files/directories
 mv [OPTION] SOURCE DEST
 Rename SOURCE to DEST

 mv proj1.cpp lab1.cpp
 mv [OPTION]… SOURCE… DIRECTORY
 Move SOURCE to DIRECTORY

 mv lab1.cpp lab2.cpp CISC3130

Hierarchical file system

Unix System Programming, Spring 2013 43

• Directory: a file that can hold other files
 Advantages of hierarchical file system:

• Files can have same names, as long as they are under
different directories

• Easier for protection
• Organized files

/ (root)

home

staff

bin

zhang

etc

passwd

dev

cdrom tty24

lib

group

Unix System Programming, Spring 2013 44

Absolute pathname, path
/ (root)

home

staff

bin

zhang

etc

passwd

dev

cdrom tty24

lib

 Pathname of a file/directory: location of file/directory in the file
system
 How do you tell other where your prog. Is located ?

 Absolute pathname: path name specified relative to root, i.e.,
starting with the root (/)
 e.g., /home/staff/zhang
 What’s the absolute pathname for the “passwd” file?

Home directory

Unix System Programming, Spring 2013 45

 Every user has a home directory created for him/her
 When you log in, you are in your home directory
 In home directory, a user usually has permission to create

files/directories, remove files ..
 ~ to refer to current user’s home directory
 ~username to refer to username’s home directory

Current directory & Relative Pathname

Unix System Programming, Spring 2013 46

 Tiring to specify absolute pathname each time
 To make life easier: working directory
 User can move around the file system, shell remembers where

the user is (i.e., current directory)

 To check your current directory, use command:
 pwd

Getting around in the file system

Unix System Programming, Spring 2013 47

• To create a subdirectory:
– mkdir [option]… directory…
– cd
– mkdir CISC3130
– cd CISC3130
– mkdir lab1

• To remove a directory:
– rmdir [option]… directory…
– Report failure if directory is not empty

• Can use rm –rf to remove non-empty directory

Command for change current directory
(move around)

Unix System Programming, Spring 2013 48

 cd [directory]
[zhang@storm Work]$ cd
[zhang@storm ~]$ pwd
/home/staff/zhang
[zhang@storm ~]$ cd Work
[zhang@storm Work]$ pwd
/home/staff/zhang/Work
[zhang@storm Work]$ cd ..
[zhang@storm ~]$ pwd
/home/staff/zhang
[zhang@storm ~]$

48

Relative pathname

Unix System Programming, Spring 2013 49

 Absolute pathname: specified relative to root

 Relative pathname: specified relative to current directory
 . (current directory), .. (parent directory, one level up)
 If current directory is at /home/staff/zhang, what is the

relative pathname of the file passwd?
 ../../../etc/passwd: go one level up, go one level up, go one level

up, go to etc, passwd is there

/ (root)

home

staff

bin

zhang

etc

passwd

dev

cdrom tty24

lib

Relative pathname

Unix System Programming, Spring 2013 50

 For all commands that take file/directory name as
arguments, you can use pathnames of the file/directory

 Example:
 cd /home/staff/zhang/public_html
 pico CISC3130/index.html
 cd .. (go up one level to parent directory)
 cp ../prog2.cpp prog2.cpp

Getting around in the file system

Unix System Programming, Spring 2013 51

 ls: list directory contents
 ls [OPTION] … [FILE]
ls: list files/directories under current directory
ls –l: long listing,
[zhang@storm CISC1600]$ ls -l
total 59180
-rw-r--r-- 1 zhang staff 509952 Sep 7 13:02 3_types.ppt
-rw-r--r-- 1 zhang staff 593408 Sep 14 23:38 4_computation.ppt
-rw-r--r-- 1 zhang staff 1297 Sep 2 12:18 account.html
-rw-r--r-- 1 zhang staff 3304448 Nov 7 18:24 ArrayVector1.ppt
drwxr-xr-x 2 zhang staff 4096 Dec 8 22:36 Codes

Long listing

52

 To get more information about each file
[zhang@storm Demo]$ ls -al
total 32
drwxr-xr-x 5 zhang staff 4096 2008-01-16 16:01 .
drwxr-xr-x 41 zhang staff 4096 2008-01-16 16:01 ..
drwxr-xr-x 2 zhang staff 4096 2008-01-16 15:55 CCodes
-rw-r--r-- 1 zhang staff 38 2008-01-16 16:01 .HiddenFile
-rw-r--r-- 1 zhang staff 53 2008-01-16 15:57 README
drwxr-xr-x 2 zhang staff 4096 2008-01-16 15:55 SampleCodes

drwxr-xr-x 4 zhang staff 4096 2008-01-16 15:56 ShellScriptes

Total disc space taken in blocks (1024 Byte)

d means
 directory

Who has permission to read/write the file
User name of the owner and its group

Long listing explained

53

drwxr-xr-x 4 zhang staff 4096 2008-01-16 15:56 ShellScriptes
 field 1
 1st Character: specifies the type of the file.
 - normal file, d directory, s socket file, l link file

 next 9 characters – File Permissions
 field 2: specifies the number of links for that file
 field 3 : specifies owner of the file
 field 4: specifies the group of the file
 field 5 : specifies the size of file.
 field 6: date and time of last modification of the file
 field 7: File name

File permissions

54

drwxr-xr-x 4 zhang staff 4096 2008-01-16 15:56 ShellScriptes

 Each file is associated with permission info.
 Differentiate three type of users: owner user, users from same

group as owner, others
 Three type of access: - in the field means no permission
 Read (r): use “cat” to open a file to read, use “ls” to list files/directories under

a directory
 Write (w): modify the contents of the file, create/remove files from the

directory
 Execute (x): execute the file, or “cd” or “search” the directory for file

 Trying to list other’s directory
[zhang@storm ~]$ ls ../roche/
ls: cannot open directory ../roche/: Permission denied

User and Group

Unix System Programming, Spring 2013 55

 Each user has unique login name (user name), and
corresponding numeric ID
 Group id, home directory, login shell:
 Stored in file /etc/passwd

 Groups: each user can belong to multiple groups
 For collaboration …
 Group name, group id, user list info stored in /etc/group

 Superuser
 ID: 0, username: root
 Bypass all permission checks …

More to play with

Unix System Programming, Spring 2013 56

 who: show who is logged on
 who am I

 write: write to another user’s terminal (IMS?)
 which: show the full path name of a command

$ which bash
/bin/bash

 How does shell find a command ?
 Environment variable PATH stores a list of paths to search for programs: “set

| grep PATH” or “echo $PATH”, “set” to show all variable settings
 PATH=$PATH:$HOME/bin:.

 Built-in commands: history, set, echo, etc.

 mail: send email from command line
 mail –s “graded project” zhang < proj1.cpp

Summary

Unix System Programming, Spring 2013 57

 Unix, a time-sharing operating system
 Operating system
 a program that sits between hardware and user
 Manages resources (CPU, memory, disk, network connection)

and present user interface to user

 Unix programming environment, i.e., platform
 the layered view

Summary (cont’d)

Unix System Programming, Spring 2013 58

• PuTTy emulates a terminal
• Shell: a command line interface

– Engage in dialog (a session with user)

• What’s in a command
– Name, and arguments

• Hierarchical file system: file and directory
• Commands for working with file system

	CISC 3130�Unix System Programming
	Outline
	You’ve written programs…
	About this course
	About this course
	Operating System, Kernel
	What is Operating System?
	Kernel Functionalities: Process scheduling
	Kernel Functionalities: Memory management
	Other OS functionalities …
	Layers in UNIX/Linux System
	Goal of this course
	Roadmap: a top-down approach
	Now let’s get started with some background information.
	Timeline of Unix/Linux, GNU
	GNU history
	GPL License
	Linux history
	Linux kernel versions
	Linux version history
	Linux version history
	Understanding uname
	Unix Standardization
	Single Unix Specification
	X/Open => Open Group
	Today’s Unix Systems
	Outline
	A Quick Start
	Your first encounter: shell
	Check/Change Login Shell
	Shell: interactive mode
	UNIX command line
	The most important command !!!
	Correcting type mistakes
	Shell: batch/scripting mode
	Outline
	Unix File
	What’s in a file ?
	File Viewing Commands
	File manipulation commands
	File manipulation commands (2)
	File manipulation commands (3)
	Hierarchical file system
	Absolute pathname, path
	Home directory
	Current directory & Relative Pathname
	Getting around in the file system
	Command for change current directory (move around)
	Relative pathname
	Relative pathname
	Getting around in the file system
	Long listing
	Long listing explained
	File permissions
	User and Group
	More to play with
	Summary
	Summary (cont’d)

