
CSS GRID LAYOUT

CONTENT MANAGEMENT

MA Web Design and Content Planning

Vanessa A Costa

Feb 2018

BASIC CONCEPTS OF GRID LAYOUT



CSS GRID LAYOUT

 Introduces a two-dimensional grid system to CSS;

 The grid is the intersecting set of horizontal and vertical lines, where elements are placed respecting 

these column and row lines;

 It can be used to layout major page areas or smaller user interface elements;

 After defining a grid on the parent element, all direct children become grid items;

 Grid is a powerful specification and when combined with other parts of CSS such as flexbox, can help 

you to create layouts that were previously impossible to build in CSS. 

It all starts by creating a grid in your grid container.



TERMINOLOGY

The Grid



Grid Container

To create a grid container just declare

display: grid or display: inline-grid on an element.

All direct children of that element will become grid items.



Grid Cells

Is the smallest unit on a grid. Conceptually it is like a table 

cell. When the grid is defined as a parent the child items will 

lay themselves out in one cell each of the defined grid.



Grid Tracks

To define rows and columns on the grid, it is used the 

grid-template-columns and the grid-template-rows 

properties. These define grid tracks. A grid track is the 

space between any two lines on the grid. There are 

column tracks and row tracks.



Grid Lines

When we define a grid we define the grid tracks.

Grid then gives us numbered lines to use when positioning 

items. 

In our five column, three row grid we have six column lines 

and 4 row lines (number of columns or rows +1).



Grid Areas

Items can span one or more cells both by row or by 

column, and this creates a grid area. 

Grid areas must be rectangular.

Example: grid area spans two row and two column tracks.



Gutters (grid-gap)

Gutters or alleys between grid cells can be created using the 

shorthand grid-gap, or grid-column-gap and grid-row-gap

properties.

grid-column-gap: 10px;

grid-row-gap: 1em;
grid-gap:10px (shortcut for both)



The fr Unit

▪ A grid can be created with fixed track sizes, using pixels for 

example. This sets the grid to the specified pixel which fits to 

the desired layout;

• But is also possible to create a grid using flexible sizes with 

percentages or with the new fr unit designed for this purpose, 

the creation of flexible grid tracks;

• The unit fr – fraction of the available space in the grid 

container;

• Using the fr unit allows to create flexible grids, which is great 

for a responsive web;

• The fr unit grows and shrinks in proportion of the available 

space;

• It can be combined with fixed sizes;

Fixed and Flexible Track Sizes



Track Listings with Repeat () Notation

In case of a grid with many tracks use the repeat() notation, to repeat all or a section of the track listing.

3 columns each with 1 fraction of the 

available space

8 columns: 1st with 20 px, 6 x 1fr , 8th with 20px

10 columns: 5 x (1 column 1 fr and 1 column 2fr)



The Implicit and Explicit Grid

▪ When you create a grid defining just the column tracks with the grid-template-columns property, the 

grid will create automatically rows for content.

▪ If you place something outside of that defined grid, or due to the amount of content more grid tracks 

are needed, then the grid creates rows and columns. These tracks will be auto-sized by default, 

resulting in their size being based on the content that is inside them.

▪ But you can also define a set size for tracks created in the implicit grid with the grid-auto-rows and 

grid-auto-columns properties.

Is the grid which you define number of columns and rows with grid-template-columns and grid-template-

rows.

Explicit Grid

Implicit Grid

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-rows
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-columns


When you are using an explicit grid or defining the size for automatically creating rows or columns and 

want to give tracks a minimum size, but also ensure they expand to fit any content that is added, use the 

minmax() function.

Track Sizing and Minmax()

Example:

Automatically created rows will be a minimum of 100 pixels tall, and a maximum of auto. 

Using auto means that the size will look at the content size and will stretch to give space 

for the tallest item in a cell, in this row.



Remember the grid lines...that is our target when we want to place items!

Positioning Items Against Lines

 The properties we need: grid-column-start, grid-column-end, grid-row-start, grid-row-end;

 Items can me placed into a precise location on the grid using line numbers, names or by 

targeting an area of the grid.



 Grid items can occupy the same cell.

Layering Items with Z-Index

box2 is now overlapping box1, it displays on top as it comes later in the source order.



THIS PROPERTY ALLOWS US TO MAKES DESIGNED LAYOUTS LIKE THIS:



 We can control the order in which items stack up by using the z-index property - just like positioned 

items. If we give box2 a lower z-index than box1 it will display below box1 in the stack.

Controlling the Order



NESTING GRIDS

▪ A grid item can become a grid container...

▪ The nested grid has no relationship to the 

parent. 

▪ The grid-gap of the parent and the lines in the 

nested grid do not align



FLEXBOX OR CSS GRID

Flexbox

 Unidimensional (row or column)

 Starts from the content defining the space-
content out;

 Calculations done in each row, one at the time, 

with no regard to the other rows;

 Things don't line up;

CSS Grid

 Bi-dimensional;

 Starts from the space, when you define the 
grid;

 Allocating the content to the grid;

 Possibility of overlapping elements;

 Grid aligns everything into two directions: row 
and columns;

Learn both and use accordingly to your goal!

When to use what...depends in what you want to do.





FLEX AND GRID



CAN I USE

https://caniuse.com/#feat=css-grid



MAKE

YOUR

LIFE

EASY!



USE CSS GRID.

THANK YOU!



REFERENCES

https://gridbyexample.com/

https://gridbyexample.com/learn/

https://gridbyexample.com/patterns/

https://developer.mozilla.org/en-US/docs/Web/CSS/grid

https://www.w3schools.com/css/css_grid.asp

https://codepen.io/collection/XQKoYq/4/#

https://caniuse.com/#feat=css-grid

https://hackernoon.com/the-ultimate-css-battle-grid-vs-flexbox-d40da0449faf

https://css-tricks.com/snippets/css/complete-guide-grid/

https://learncssgrid.com/

http://griddy.io/

https://gridbyexample.com/
https://gridbyexample.com/patterns/
https://developer.mozilla.org/en-US/docs/Web/CSS/grid
https://codepen.io/collection/XQKoYq/4/
https://caniuse.com/
https://hackernoon.com/the-ultimate-css-battle-grid-vs-flexbox-d40da0449faf
https://css-tricks.com/snippets/css/complete-guide-grid/
https://learncssgrid.com/


REFERENCES –YOU TUBE

https://www.youtube.com/watch?v=N5Lt1SLqBmQ (You Tube: Grid by Example, by Rachel Andrew)

https://www.youtube.com/watch?v=FEnRpy9Xfes (You Tube: Layout Land, by Jen Simmons)

https://www.youtube.com/watch?v=N5Lt1SLqBmQ
https://www.youtube.com/watch?v=FEnRpy9Xfes

