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Abstract

Observed distributions of wave heights and periods taken from one year of surface
wave monitoring near Martha's Vineyard are compared to distributions based on narrow-
band theory. The joint distributions of wave heights and periods and the marginal height
distributions are examined. The observed significant wave heights and the heights and
periods of the extreme waves are also studied.

Seas are classified by the shapes of their power density spectra. Spectra with a single
peak are designated as unimodal and spectra with two peaks as bimodal. Seas are further
classified by spectral width, a function of the three lowest spectral moments.

The joint distributions of wave heights and periods from seas with narrow spectral
widths take the general shape predicted by narrow-band theory and the statistics of
extreme waves for these seas are well described. As spectral width increases, agreement
between the theoretical and observed distributions diminishes and the significant wave
heights and statistics of extreme waves show increasing variability. Bimodal seas with
wide-banded spectra are found to have larger significant and extreme wave heights and
shorter extreme wave periods than unimodal seas of the same width. ,
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Chapter 1

Objectives

The relationship between a sea's energy spectrum and the joint distribution of wave

heights and periods is of significant engineering interest. This relationship is not well

understood for most spectral shapes.

The sea state is often described in the frequency domain by an energy spectrum. Much

wave hindcasting and forecasting is carried out in this domain (Forristall 1978). Design

engineers are more interested in a probability domain description of the sea surface.

A formulation of the joint distribution of wave heights and periods expressed as a

function of the power density spectrum (or selected spectral moments) is needed. This

function, and other distributions derived from it, provide the engineer with information

about the wave heights, periods and wave orbital velocities which may be encountered by

a ship or structure.

Developing a joint distribution valid for all spectral shapes is very difficult. Longuet-

Higgins (1975,1983) applies to the ocean environment the theory of Gaussian noise studied

by Rice (1944,1945). He proposes a joint distribution of wave heights and periods valid

for seas with spectra of narrow bandwidth.

Woods Hole Oceanographic Institution's Telemetry Project operated a Waverider buoy

southwest of Martha's Vineyard during 1987-1988. The time series and power density

spectra from this project are used here to check the agreement between the wave height

and period distribution given by narrow-band theory and those observed at sea. Particular

attention is paid to observed value s of significant wave height, and height and period of
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the extreme wave during each 20 minute monitoring interval.

Seas are often assumed to have spectra with single peaks. The Martha's Vineyard

Buoy data set provided many spectra with two distinct peaks. During analysis, two

spectral types, identified as unimodal and bimodal, are segregated to determine how their

height and period distributions differ.

In the work which follows, a progressive wave of permanent, sinusoidal form is shown

to solve the linearized equations of motion. Many sinusoidal wave trains of independent

amplitudes and phases are then superimposed. When the spectrum of the resulting process

is assumed to be narrow-banded, the theoretical joint distribution of wave heights and

periods is developed.

The joint distribution and other distributions derived from it are compared with wave

heights and periods observed by the Waverider buoy. The characteristics of unimodal and

bimodal seas are noted. A possible application of the result is presented.
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Chapter 2

Theoretical Height and Period

Distributions

2.1 Linear Theory for Periodic Waves

Study of wind waves requires an understanding of the allowable profiles of progressive

waves on the sea surface. The basic equations of motion are exceedingly difficult to solve

when applied to the ocean environment. Certain simplifications can be made to linearize

the governing equations and their boundary conditions. The resulting system may be

solved in closed form and produces a plane, progressive wave with a sinusoidal profile.

This derivation requires the following assumptions

" Sea water is an incompressible and inviscid fluid.

" Flows are irrotational.

" All forces are conservative.

" Waves are of constant period.

" Depth is constant.

" The problem is two dimensional.

11



The conditions listed above may seem unrealistic and one might discount the utility

of the resulting linear wave theory. Despite its approximate nature, linear theory agrees

well with observations of actual waves. Linearity also allows for superposition, so simple

sinusoidal waves may be combined to yield complex sea surface profiles. One must remain

mindful of linear theory's approximations and the conditions under which they are valid.

This derivation proceeds in the following sequence:

* Identification of governing equations.

" Specification of boundary conditions.

" System linearization.

" Solution for the surface profile.

This follows closely the treatment of basic wave theory given in the MIT graduate course

"Introduction to Coastal Engineering" taught by Prof. Ole S. Madsen.

2.1.1 Conservation of Mass and Momentum

Mass conservation is represented by

D + p(V .q) = 0 (2.1)
Dt

where
Dp _ OpDt +q-Vp
Dt Ot

is the material or total derivative, and

is the divergence operator. Mass conservation simplifies to

V q=0 (2.2)

under the assumption that the fluid is incompressible.

Newton's second law requires that momentum be conserved when viewed in an inertial

frame of referenc 2. When a coordinate system is fixed to the Earth's surface, Coriolis

12



correction terms must be used to account for angular acceleration of the non-inertial

frame. The wind seas considered here have periodic motions with periods of less than one

minute. For these periods, the Coriolis terms are small and may be neglected. Momentum

conservation becomes

Dq Vp - pgk + "viscous stresses" (2.3)
pDt

with "viscous stresses" including both viscous and turbulent effects. Viscous stresses will

be neglected in the present problem where they are important only in thin surface and

bottom boundary layers. This gives Euler's equation
Dq

p-if[ = -Vp- pgk (2.4)

a simplification of conservation of momentum.

Introduction of a velocity potential, 0, will simplify obtaining a solution. The velocity

potential and velocity are related by

VO = q (2.5)

This reduces three unknowns, the components of q, to one scalar. This simplification also

reduces the number of boundary conditions that must (or may) be satisfied. In particular,

the flow is restricted to be irrotational. As a result, it is not possible to enforce a no-slip

condition at the solid boundaries. This restriction is consistent with the neglect of viscous

stresses in the boundary layers. Introducing the velocity potential into mass conservation,

(2.2) gives the Laplace equation

V. q = V2  
=- 0 (2.6)

where
mV2 C 2 02 9(27-i + y2 + -(.

is the Laplacian operator.

Expressing Euler's equation in terms of the velocity potential gives the generalized

Bernoulli equation
a +  I( O 2+ E + gZ= f(t) (2 -8)
at 1 2 P
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with f(t) an arbitrary time function. This time function may be incorporated into the

velocity potential without affecting the resulting velocity field q. After this manipulation,

the generalized Bernoulli equation becomes

090 + 1(V )2 + - + gz = C (2.9)

where C is a constant and may be set equal to zero by selecting the appropriate datum

from which to measure z.

The problem has been reduced to two equations, (2.6) and (2.9), in two scalar un-

knowns, 4, and p. The Laplace equation with boundary conditions describes the kinemat-

ics of the problem and is solved for the velocity potential, 0. The dynamics of the system

are then satisfied by selecting the pressure field which solves the Bernoulli equation for

the 4, found above.

2.1.2 Bottom and Surface Boundary Conditions

The sea bottom is considered to be a fixed, impenetrable boundary. The general

mathematical expression for a surface

Sb(z, y, Z).=-h = 0 (2.10)

may describe the bottom. Fluid particles in contact with the boundary will remain in

contact with it. They move along the bottom but may have no component of velocity

normal to it. Equation (2.10) may be rewritten

Sb(-Tp(t), Yp(t),zp(t))I=_h = 0 (2.11)

where the fluid particle's coordinates, zp(t), yp(t), z,(t), always lie on the bottom. The

function Sb thus behaves as a property which is conserved by water in contact with the

bottom. Expressing this conservation as

DSb _ sbD -- + q VSb = 0 (2.12)Dt aot

and noting that as' = 0 for a fixed surface, the result

q - VSb = 0 -0 (2.13)
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is obtained, formalizing the earlier restriction on normal velocities. Tangential velocities

are unrestricted and there is no enforcement of a no-slip condition.

The sea surface may be defined by

z = 7(,y,t) (2.14)

where T has a time dependence to allow the surface to move. As at the bottom boundary,

the surface is expressed as a function of the three spatial coordinates,

S, = 17(Z, ,t) - z = 0 (2.15)

but there is now a temporal dependence as well. Assuming that fluid elements on the

surface remain on the surface, conservation of S for these elements gives the kinematic

free surface boundary condition

DS q-VS = 0 (2.16)
Dt at

a7 97 09 9 0- °  
(2.17)

evaluated at z = l(z, r, t), the free surface. A second boundary condition is obtained

by coupling the kinematics and dynamics of the problem. If the effect of surface tension

on fluid pressure is ignored, the pressure on a fluid element just below the surface is

atmospheric pressure, pa, and the Bernoulli equation becomes the dynamic free surface

boundary condition
- + 1(VO)2 + g7 = 0 (2.18)
Ot 2

evaluated at z = }(z, y,t). Wind waves of interest here have periods longer than two

seconds and lengths greater than six meters. These waves are sufficiently long to justify

neglecting surface tension. A study of gravity-capillary waves would need to consider

surface tension effects.

2.1.3 Linearizing the Boundary Conditions

The two free surface boundary conditions are non-linear. They are directly non-linear

in 0 and j7 due to terms of the form -___t and -A-2_- The boundary conditions areari azi 82i azi

enforced at z = i}(z,y,t) instead of z = 0, producing an additional non-linearity.
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Provided the wave height is small compared to the wave length and the water depth,

the non-linearities will be small compared to the linear effects. If the wave height is of

order H, wave length ic of order L, and water depth is of order h, it can be shown that the

non-linear terms are small compared to the linear terms in both boundary conditions if the

wave steepness is small, i.e., H/L << 1. The non-linearities resulting from applying the

boundary conditions at z = 17 are removed by expanding the velocity potential in a Taylor

series about z = 0. If the wave height is small compared to the water depth, H << h,

then second and higher order terms in the expansion may be neglected. Therefore, the

boundary conditions may be applied at z = 0.

The linearized free surface boundary conditions become

a 7  0 _ (2.19)

at Oz
ao + 97 0 (2.20)

at z = 0. Solving (2.20) for 77

1 8
77 1 o at z = 0 (2.21)

g at

and substituting the result into (2.19) gives a boundary condition in the velocity potential

only. The linear problem becomes

V 2 0 =0 (2.22)

o 0 at z = -h (2.23)

a2z=0 (2.24)- t -  + g z --0 a t z = 0 ( . 4

This system is solved for the velocity potential, then i? is found from (2.21), and the

pressure is given by

P + Pgz : -pa (2.25)

the linearized Bernoulli equation.

2.1.4 Finding the Surface Profile

A solution giving the surface profile for a progressive periodic wave of permanent form

may be found using separation of variables. For a wave moving in the positive z direction

16



with phase speed c, the velocity potential may be expressed as

= Z(z)F(O) (2.26)

where

0 = X - ct (2.27)

Substituting this into (2.6) gives

Z"(z) - -F"(0) _k 2  (2.28)

Z(z)- F(O)

where k is an arbitrary separation constant.

This may be rearranged into two ordinary differential equations

d2 FZ
d- 2Z k 2Z = 0 (2.29)

d#2 + O2F = 0 (2.30)

with general solutions

Z(z) = A 1 expkz +A 2 exp - kz (2.31)

and

F(O) = B1 cos k(z - ct) + B2 sin k(z - ct) = B3 sin(k(z - ct) + 6) (2.32)

where Ai and Bi are arbitrary constants and 6 is an arbitrary phase angle. The bottom

boundary condition, (2.13), reduces (2.31) to the form

Z = A 3 coshk(z + h) (2.33)

and gives a resulting velocity potential of

= A 3 B 3 coshk(z + h) sin k(z - ct) (2.34)

where the phase term 6 has been eliminated by choosing an appropriate origin for x. The

associated surface profile given by (2.21) is

= A 3B 3kc cosh kh cos k(z - ct)
g

= acos(k - ot) (2.35)

17



a sinusoidal wave of amplitude a = kc cosh kh and radian frequency ar = kc where the

wavenumber, k, is the separation constant.

By introducing the velocity potential given by (2.34) in the free surface boundary

condition, (2.24), a relationship among wavenumber, radian frequency and water depth,

known as the dispersion relationship,

r2 = kg tanh kh (2.36)

is obtained.

2.1.5 Orbital Velocities

The velocity potential for a linear, progressive wave may be expressed as

ag cosh h + h) sin(kz- o't) (2.37)

where a is the wave amplitude. The horizontal component of velocity is found from the

potential
u= _ agk coshk(z + h) cos(kz - ot) (2.38)

-9 0 coh kh cok-t)(.8

Using the dispersion relationship, (2.38) becomes

cosh k(z + h) cos(kz _ at) (2.39)

u = aot sinh kh

For waves in deep water, this reduces to

u = aor cos(kx - art) (2.40)

for the near-surface horizontal velocities. Similarly, the near-surface vertical velocities are

w = aa sin(kz - art) (2.41)

The horizontal and vertical velocities have a maximum value of ar = - where H = 2a

is the crest-to-trough height and r is the wave period. Knowing the wave height and period

is sufficient to determine the maximum horizontal and vertical velocities.

18



2.2 Development of Wave Height and Period Distribu-

tions for Narrow-Band Seas

The work of the previous section described that a progressive wave of permanent,

sinusoidal form is a solution to the linearized equations of motion. This section will build

on this result by superimposing many sinusoidal wave trains of independent amplitudes

and phases. The resulting sea surface profile will then be represented as a carrier wave

of fixed frequency modulated by a complex wave envelope function. The behavior of the

envelope's amplitude and phase will be analyzed to find the statistics of wave heights and

periods.

2.2.1 Superposition of Sinusoidal Wave Trains

Equation (2.35) showed that a sinusoidal wave

q(t) = acos k(z - ct) = acos(kz - ut) (2.42)

with radian frequency o, = kc solves the linearized equations of motion. A real sea surface

may be represented as the sum of a large number of simple sinusoids with independent

amplitudes and phases. This is shown graphically by Figure 2-1. Such a superposition

is valid only for small amplitude waves when the linearizing assumptions of Section 2.1.4

hold. It is not valid for waves approaching maximum height nor for waves of moderate

height entering shallow water when amplitudes and phases of harmonics are correlated

with those of the fundamental frequencies. This situation complicates the analysis and

will not be considered here.

The time history of sea surface heights viewed at a fixed location and expressed as a

combination of sinusoids may be written as

77(t) = E Cn cos(a'nt + 8.) (2.43)
n

where the frequencies an are densely spaced in the interval (0, co). Amplitudes, Cn, are

real independently distributed random variables with finite variances. Phases, 6,, are

independent and uniformly distributed in the interval (0,27r). This sea surface height is

19



Figure 2-1: Superposition of long-crested, sinusoidal wave trains gives a random sea sur-
face. From Pierson, Neuman, and James (1958).
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the sum of a large number of zero-mean independent random variables of finite variance.

Analysis based on a central limit theorem shows the probability distribution of sea surface

heights thus obtained is normally distributed with zero mean.

Another representation of sea surface height is

,q(t ) = R{- C. exp[i(ont + 6.)]} (2.44)
n

where R symbolizes the real part of a complex quantity. Each Fourier series coefficient,

C,, shows the energy present at its associated frequency, a.. These coefficients are related

to the energy spectrum, S(a),

S(o)da = 2 Cn (2.45)
n

where the summation includes only those values of n such that the frequencies correspond-

ing to Cn fall in the interval (a, o, + dor). The product on the left side of the equation and

the summation on the right are two ways of expressing the energy in the same narrow

band of wave frequencies.

2.2.2 Carrier-Envelope Representation

In order to express 71(t) as a modulated carrier wave, it is useful to define a mean

frequency, e, in terms of the moments of S(o). The spectral moments, in4, are defined as

" j = arS(o)d (2.46)

or as central moments

=r (0 - (2.47))d

When the mean frequency is defined by

a iM1  (2.48)mo

then the following relationships hold

11 = mo (2.49)

= 0 (2.50)
2in in2 - (2.51)

mO
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Some authors prefer to call & the centroid frequency (Nath and Yeh 1987) because it is

defined in terms of the moments of an energy spectrum instead of a probability distribution

and is not a mean in the statistical sense. Both terms refer to the same quantity and mean

frequency, the more commonly used of the two, will be used here.

Equation (2.44) may be expressed in terms of the mean frequency and a deviation

from the mean frequency

i7(t) = 3?{y: cn exp[i(o.t + 6.)] exp(iet)} (2.52)
n

where

0 i,, = i

is the frequency deviation from its mean value. If the complex envelope is defined as

pe- E cn exp[i(O'n't + 6)] (2.53)

then

77(t) = R{ pe'' exp(i~t)} (2.54)

envelope carrier

is a carrier of fixed frequency modulated by a complex wave envelope of amplitude p and

phase 0. The amplitude and phase are time-varying random variables and are functions

of cn and 6n.

2.2.3 Statistical Behavior of the Complex Envelope

The joint distributions of p and will be a key to understanding the distribution of

wave heights and periods. Following the approach used by Longuet-Higgins (1975) and

Rice (1944,1945), the envelope

pei ' = p cos 0 + ip sin 0 (2.55)

may be expressed as

Pei.0 = 61 + k2 (2.56)

where

: Cos(Ont + 6) (2.57)
n

e = Zcsin(a't+6n) (2.58)
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Since the time derivative of phase, q, is also of interest, define the time derivatives of (

and 62 as

= - Zo' , sin(o,,.t + 6.) (2.59)

(4 =C2+

= Z o"C' cos(OJ't + 6.) (2.60)

The four variables, i, are found through application of a central limit theorem to

be normally distributed random variables. Their joint distribution may be completely

described by their means and correlation matrix. The mean of , is

-= ZCcos(O'ut + 6n) (2.61)

where the overline represents an ensemble average. Equation (2.61) may be written as

= Z cos(O,.t + 6") (2.62)

because c, and bn are independent. The cosine term has phase uniformly distributed in

the interval (0, 2r) and therefore has zero mean. This gives

0 (2.63)

Through identical arguments one finds

0 (2.64)

The correlation matrix

6,( C1 (+ 6 6 -G3 ZT'(4
T 2c 2 6 CC (2.65)K3C1 3C2 3Z WC3C4

41 4 4C2 43 f4 e4

is simplified by the orthogonality of sinusoids. Terms of the form

cos(o'nt + 6,) sin(out + 6,n) (2.66)
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vanish for all m, n. Terms of the form

cos(ant + 6n) coS(C-t + 6,) (2.67)

or

sin(c t + 6n)sin(oft + 6m) (2.68)

vanish for m 6 n. This reduces the correlation matrix to

66 0 0 f14

R 03 0 (2.69)

410 0

Solving for 1i1

TT Z Z cc cos(ant + 6n) cos(G-t + 6m) (2.70)
n n

simplifies to

= c~COS2(ot+6,) (2.71)
n

using independence of the coefficients and phases and the orthogonality expressed in

(2.67). Since
1

cos2 (ornlt + 6n) = (2.72)

using (2.47) gives

= 2 P0 : Lo (2.73)

The same procedure gives
1 2 AO (2.74)

The solutions for 13T3 and 4 4 are similar and show

ZsTs= Em -'ircm sin(arnt + 6,.)sin(o4mt + 6m)
nt m

o'2c 2sin 2(ot + 6n)

n

n 2

A 2 (2.75)
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The four non-zero off-diagonal elements of R are found using a method similar to that

which follows for 1 4

ZIT, O U C.C. cos(C -t + b.) cos(et + 6,n)

- n~ Z~cCOS2(t + 6n)
11I

n

= 1 (2.76)

The resulting correlation matrix

( Lo 0 0 i

R =- 0 (2.77)

0 -ILI PL2 0

simplifies to a diagonal matrix

JLo 0 0 0

R 4 IO (2.78)
0 0 IL2 0

0 0 0 IL2

because pi = 0 with & as defined in (2.48). Therefore, 6, 6, 3, 4 are zero-mean, uncor-

related Gaussian random variables and are described by the following multivariate normal

distribution

1 exp[- 1 
+ 

2 ]ep[-3 + 4(2.79)(2r)2 JoIL2 2O 2112

The transformation

P(Po'A (, 0, , (2.80)

gives the joint density of the envelope amplitude, phase, and their time derivatives. Since

1 Cos i (2.81)

E2 = psin (2.82)

S= jcos -p sinS (2.83)

4 sino+pcoso (2.84)
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then
9(61, 6), 6, 4) = p (2.85)

Making the substitutions given by

2 + = p2(cos 2+.sin0q!)

= p (2.86)

632 + 42 = ('2 + p24 2)(cos 2  + sin 0)

+ (Apk - Ap4) cos 0 sin 4

= 2 +pY (2.87)

gives the density
P2 P_20 p 2p + P2 2

Pe p () (27r)2, ex -),exp(- ) (2.88)

Integrating with respect to A over (-oo, oo', and with respect to 4 over (0, 27-), the resulting

density for p, 4 is
pp 2  

p242

) P2 exp(-2 ) exp(--P= ) (2.89)
= (2w)~~0(0 12ex( -ep

or

P (2)[mo ,- ) 2M2)]. ep(- -- ),)) (2.90)

It is worthwhile to review the assumptions made up to this point. The hydrodynamic

problem was linearized based on a set of assumptions valid only for small amplitude waves

in deep water. This linearization allows for superposition. The wave spectrum is assumed

to have energy at all frequencies with independent coefficients and phases for the different

frequencies. This assumption is also restricted to small amplitude waves. No assumption

has been made about the amount of energy at the various frequencies, i.e., the spectral

shape. In particular, no narrow-band assumption has yet been needed.

The probability density given by (2.90) is a function of the second and lower moments

of the energy spectrum. Would it be necessary to consider a distribution involving higher

derivatives of p and 4, the density would be a function of higher order spectral moments.

Two moments are needed for each additional time derivative. This is undesirable when
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Figure 2-2: Definitions of wave height, H, and period, 7. H1 , and ri are based on zero-
up-crossings of 77(t). H2, and r 2 use crests to define the waves.

the resulting theory is to be applied to real data. The fourth moment, in4, may depend

critically on the behavior of the spectrum at high frequencies (Longuet-Higgins 1983).

These frequencies are also likely to contain considerable noise (Nath and Yeh 1987).

2.2.4 Wave Height and Period Defined

There are two commonly used definitions for the wave heights and periods of a con-

tinuous function, 77(t). In the first, a wave is defined to extend from a time when 77(t) is

increasing and crosses the mean level to the next time this happens. This time interval is

called the zero-up-crossing period (r in Figure 2-2). The associated wave height, (H 1 ),

is the difference between the maximum and minimum values of 77(t) in this interval. This

is the definition to be used in the present work.

An alternate approach defines a wave as extending from one crest to the next (r 2 in

Figure 2-2). The wave height, H2, may then be defined as the difference between a crest

and its succeeding trough.

The zero-up-crossing period has been chosen because it is more appropriate for the
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Figure 2-3: Narrow-band signal, il(t), with its envelope function. The extrema of r7(t) lie
nearly on the envelope.

distributions used here which depend on the second moment of the energy spectrum. The

crest-to-crest definition may be more appropriate for distributions based on the fourth

moment, m 4 (Longuet-Higgins 1983).

2.2.5 Finding the Wave Height and Period - The Narrow-Band Hy-

pothesis

Equation 2.54 expressed the sea surface height as a modulated carrier wave

(t)= { pei46 exp(idt)} (2.91)

envelope carrier

If 0 and p are slowly varying functions of time, then the maxima and minima of 77(t) lie

nearly on the envelope function. There is one extremnum for each maximum or minimum of

the carrier. There are no additional extrema generated by rapid variation of the envelope.

This is shown in Figure 2-3.

The definition of the envelope,

peio = Zcexp[i(r't + 6n)] (2.92)
n

O'n -- Ur

indicates p and 0 will vary slowly when spectral energy is concentrated in a small band

of frequencies near e, where on is small.
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Under this assumption, wave height, H, is rel.ted simply to the magnitude of the

envelope. With extrema lying nearly on the envelope, a wave amplitude, a, equals the

magnitude of the envelope function, a = p. A wave height is twice the amplitude, or

H = 2a = 2p (2.93)

and the probability densities of H and p differ only by a multiplicative constant.

The wave period, T, is related to 4, the rate of change of the phase of the envelope.

The total phase of q(t),

X - 4 + at (2.94)

will be a strictly increasing function of time because 4) varies slowly compared to at. The

rate of change of phase is

i = + (2.95)

Zero-up-crossings of q(t) will be spaced at intervals of 21r in X. (The function, i7(t), will

also go to zero if p vanishes but this is a statistically rare event.) The wave period is given

by
21r 21r

-2 (2.96)
x &~+0

It is useful to normalize the height and period. Write

H p (2.97)

(8mo)'2- (2mo) (

T + ml (2.98)

where
2w" 2 w'mo

- -- 2=(2.99)

These definitions allow the joint probability of the carrier amplitude and phase rate

to be transformed to the joint density of wave height and period. The transformation

follows O(p, 4)) 210

p(R,T) = p(p,) (2.100)

where

O~p4))_ ~0 12 m,O(RT) o ;Z (2.101)
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The resulting density is

p(RT) 2 2 e - R 2 [1 +(1-1/T) 2 /2] (2.102)

R E (0,oo0)

T E (-oo,oo)

where
- 2v2 M_ noM2 - Mn

M2  (2.103)

is a measure of the width of the energy spectrum. The distribution given by (2.102)

above includes negative wave periods. This is not physically sensible and the narrow-band

hypothesis restricts periods to be non-negative by requiring the phase of the envelope to

increase monotonically. The probability density may be rescaled with a limited domain

p(RT) = 2 R 2[+(11/T)2/V ]L(v) (2.104)

R E (0, oo)

T E (0, oo)

where L(v) is a normalizing factor to correct the total probability to unity. Integration

of (2.104) over its range shows

L(v) 2,,Fl (2.105)

1+ -,/l- +V 2

and L(v) z 1 for small values of v. Longuet-Higgins (1983) defines a narrow spectrum as

one for which v 2 < 0.36, or v < 0.6.

Contours of p(R, T)/pmaz for several values of v are shown in Figure 2-4. Two fea-

tures of the distributions are worthy of note. The highest waves are expected to be the

most regular in period, with the conditional probability concentrated near T = 1. Also,

the distribution is asymmetric in period which agrees with observation. Earlier work

(Longuet-Higgins 1975) produced a distribution that used the same measure of spectral

width but was symmetric in period and inconsistent with observed distributions. Cavani6

proposed a distribution which was appropriately asymmetric but used a spectral width
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Figure 2-4: Contours of p(R, T)/pm,,, for several spectral widths. Contours are shown for
the values (0.99, 0.9, 0.7, 0.5, 0.3, 0.1) x pmaz- following Longuet-Higgins (1983).
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parameter involving the fourth spectral moment, M 4 . As discussed in Section 2.2.3, this

is inconvenient when applied to real spectra.

Equation 2.104 provides a foundation from which to build the distributions which

follow. These derived distributions, like (2.104), will be characterized by the single pa-

rameter, v.

2.2.6 Marginal Density of Wave Heights

The marginal density of wave heights, p(R), is found from p(R, T) by integrating over

all values of T in the interval (0, oo).

p(R) -- p(R,T)dT

2 R2e-R2 L(V) Jo -R 2 (1-1/T)2 /" dT (2.106)

Making the substitution
1 - (2.107)

gives the marginal density

p(R) ~I fp~2~~ 00e 2 (2.108)
Rayleigh % - ,

correction

The wave height distribution is nearly Rayleigh but has a correction factor that depends

on spectral width. The effect of this correction is to reduce the probability of small

amplitude waves and increase the probability of waves near the mode, shifting the mode

slightly to the higher values of T. The correction has an exponentially small effect on the

tail of the Rayleigh density. The tail governs the probabilities of large waves and is the

region of greatest engineering interest.

Figure 2-5 shows the Rayleigh density and p(R) for various values of P.
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Figure 2-5: Marginal wave height densities, p(R), for v = (0, 0.3, 0.5, 0.7). The case with
v = 0 is the Rayleigh distribution and is shown as the dotted curve.

2.2.7 Marginal Density of Wave Periods

The marginal density of wave periods, p(T), is found by integrating p(R, T) over all

values of R in the interval (0, co).

p(T) = p(R,T)dR

2- / J0 R2e-R 2[1+(1-1/T) 2 1v2dR

2L(v). + ( - 1/T)2IV2I-l---
- vT 2 fr [+(1-1T 24

L(v) [1 + (1 - 1/T) 21v]- (2.109)
2vT 2

Figure 2-6 shows the marginal density, p(T), for several values of spectral width.

2.2.8 Conditional Distribution of Wave Periods

The conditional distribution of periods for a given wave height is given by

p(TIR) =p( R, T)
p(R)

1 R e_ R(llr),V(
- R (-/)/ T2 e-d3) -  (2.110)
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Figure 2-6: Marginal wave period densities, p(T), for Y = (0, 0.3,0.5,0.7).

The mode, or peak, of this function is found where 4(TIR) = 0. Differentiating (2.110)OT

gives

Op(TIR) 2R e-t 2 (1-1/T)/1 2 ( dR/' " [ 2R 2 1 1-TT~ e- dP)- [-2-()(1 - )- 1] (2.111)OT T3V . - ,,2T

Then
Op(TIR) - 0 => T = 2[1 + (1 + 4v2/R2)]]1 (2.112)

gives the value of T at the mode.

The quartiles, Q,,, of the conditional distribution are found from

], 1
p(TIR)dT 1 n (2.113)

n = 1,2,3

which is solved numerically for Qn. For a fixed R, half the probability of p(TIR) will lie in

the interval T E (Ql,Q3). Figure 2-7 shows the quartiles and mode of p(TIR) for various

values of v. Note how the highest waves are likely to have periods near 1.0.

2.2.9 Statistics of the Extreme Wave Heights

The distribution of R, the largest of N independent wave heights is of considerable

interest. The marginal wave height density, (2.108), provides a base from which to derive

p(Rmoz). The marginal density is very nearly equal to the Rayleigh density in the tail of
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Figure 2-7: Quartiles (solid curves) and mode (dotted curve) of the conditional wave
period distribution, p(TIR).
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the distribution. As noted in Section 2.2.6, it is the tail that controls the extreme value

distribution. The following analysis is based on the simplification that p(R) is Rayleigh.

p(R) = 2Re - R 2  (2.114)

RE (0,oo)

Let t(R) represent the probability that a single realization of wave height exceeds the

value R

,t(R) J- 23e- 02 do = e -
2 (2.115)

The probability that a single realization is less than R is

1 - t(R) = 1 - e - R 2  (2.116)

N independent wave heights will all be less than R with probability

(1 - P(R))N (2.117)

and the derivative of (2.117) gives the probability density for the maximum wave height

d [(1
P(Ra=)- dRna(1 - (Rmaz)Nz - 1 N O=Rma )

N(1 - e-RL-o)N-1(2PmazeRvI ' ) (2.118)

Figure 2-8 shows p(R) and p(Rma.) for several values of N.

The expected value or mean of R,,. is given by

E(Rmaz) = j0 Rmazp(R,)dR,.

= R .. d[(1 -

- Razd[l _ (1 ((Rmaz))N] (2.119)
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Figure 2-8: Wave height and extreme value probability distributions for groups of N =

(100,200,300,400,500) waves.

Integrating by parts produces

E(R.a.) = -0?,a[1 - (1

+ j[1 - (1 - P(Rnaz))N]dRmax

= fo°[1 -( Pra)Nd!ra

= [1 - (1 - e-RL-te)N]dRma (2.120)

Let 0 Ra.

E(R a) f [i - (1 - e-9)N]2d0 (2.121)

This integral may be solved by employing the binomial theorem but the resulting

expansion has terms involving N! and is practical only for small N. The following ap-

proximation suggested by Longuet-Higgins (1952) proves useful. Substituting

0o - InN (2.122)

0 E Oo+0' (2.123)

leads to

(1 - e-O)N = (1 - e-("°+6'))N

= ( 1 _ e-)N (2.124)
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This function rises quickly from 0 to 1 in the vicinity of 0' = 0. It may be simplified by

letting z = e - 8' and expanding in a Maclaurin series

' N=,X 2(N-1) X3 (N -2)(N-z1)

N lz+ 2! N 3! N 2  (2.125)

For large N, this simplifies to

(1- )N - z21 - (2.126)

giving

(1 - e-O)N , e- -  (2.127)

1 - (1 - e-)N 1 - e- (2.128)

and
an{ 1 O<inN

1>-(1-e 0-#N nN (2.129)

Employing this approximation, the integral becomes
1 o

E(Rmz.) -J OA dO + C (2.130)

where C is the approximation error. In fact, this error may be evaluated

C = 00 2[_ e' dO'-+ (1- e- ")d']

11 (1-da da
-00 2[ + (1 -
2 Jia Jo a
1 -r 00 1 dak C: eoJ - e-- + C'2 02 o +a e aI+

1 -I
00 7 (2.131)

7 = 0.57722... Euler's constant

3

where C' is an error term of order 00 2. The expected value is therefore approximated as

E(Rm,,) (In N) 1 +1y(n N)-1 (2.132)

3
with an error of order (In N)-2.

The expected value given by (2.132) is sometimes confused with the most probable

value (Forristall 1978). The most probable value refers to that value of R,z for which
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N E(Rm.5) p(R z) &.0

100 2.2615 2.1779 0.2701
150 2.3502 2.2627 0.2607
175 2.3830 2.2910 0.2574
200 2.4111 2.3193 0.2546
225 2.4356 2.3476 0.2522
250 2.4573 2.3759 0.2501
275 2.4767 2.3900 0.2483
300 2.4944 2.4042 0.2467
325 2.5105 2.4183 0.2452
350 2.5253 2.4324 0.2439
500 2.5954 2.5032 0.2377

Table 2.1: Statistics of the extreme value of N independent wave heights.

p(R,.rn) takes its maximum value and is sometimes designated p(Rm=). It is slightly

smaller than E(Rma,).

The variance of Ra..

or2 R2 .0 p(Rma...)dRr,. - E(R.ma) 2  (2.133)

is difficult to find analytically. Representative values found numerically are listed in

Table 2.1.

It will be more useful to have an expression for the disiribution of the extreme wave

height expected during a time interval of fixed length t as the number of waves will not

be known apriori. The expected frequency of zero-up-crossings, No+, is found by Rice

(1945) to be
1 m 2 I

No+ = 2w-no" )(2.134)

which gives the expected number of waves in a time interval of length t to be

= (a2 pl. (2.135)

This gives an expected maximum wave height during the interval

t m2  1 ly1l1nt m 2  (2.136)
LA a)= 2ir mo 2 2v Vr o

2.2.10 Significant Wave Height

The significant wave height, Ho, is a commonly used measure of sea state. It is defined

as the average of the highest one-third wave heights. Given a theoretical distribution for
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the wave heights, H, is found as the mean of the highest one-third of the distribution.

The following is solved for He, the lower limit of the upper one-third of the heights

Pr[H > H,] = J p(H) dH = -(2.137)
e3

Then H, is given by

H. = 3f H p(H) dH (2.138)

A normalized significant wave height, R,, may be similarly defined using the probability

density p(R) of normalized wave height. If wave height is normalized by

R H (2.139)

then

p(R) = p(H)V8i (2.140)

Under the assumption that waves are Rayleigh distributed (equivalent to the assump-

tion that in (2.108) v = 0), the normalized probability density is given by

p(R) = 2Re- R2  (2.141)

and the procedure described above yields

Rc = Vri (2.142)

R, = 1.416... (2.143)

H, = r x 4.004.- (2.144)

Due to this result, significant wave height is often approximated H. 5  4v .

When spectral width is non-zero, the normalized wave height distribution is given by

the full (2.108). The following is solved for R.,

1 2 R202I
- = Re- 2L(v) e '6 2 dO3dR (2.145)

Changing the order of integration,

1 - )IR /e42dO J2Re-R2 dR (2.146)

3 JooI00

+ J e- dOdO, 2Re-RdR] (2.147)
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Figure 2-9: Expected value of H,/fiii Rvas as a function of spectral width.

gives

e )erf(R/v))± 1er( (2.148)

This is best solved numerically for R. Then R. is found by integrating

R. = 3 2R2e-R 2 L(v)I e-6 d/3dR (2.149)
J J-00

Figure 2-9 shows R°Vr8/ for v values from 0.0 to 1.0. Note the deviation from the

approximate value of 4.0 at high spectral widths. The change is slight, with v = 0.8

giving a significant wave height only three percent larger than v = 0.0 for the same

spectral energy.

2.3 Extension to Non-Narrow-Band Seas

The wave height and period distributions of Section 2.2 were derived based on the

narrow-band hypothesis. This requires the spectral energy to be concentrated in a narrow

range of frequencies. It is reasonable to assume that the sea may sometimes satisfy this

requirement. The most satisfactory situation is a sea state dominated by waves from a

distant storm of limited duration. Wind waves generated by the storm may have energy

spread over a wide frequency band. Since gravity waves are dispersive, they will spread

out according to frequency. The longest period waves (lowest frequencies) will arrive
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Figure 2-10: Non-narrow-band signal, 7 (t), with its envelope ',nction.

first in the area of interest. Therefore, a measurement interval that is not too long will

include waves of nearly a single frequency. The associated power density spectrum will

be narrow-banded.

Real seas often have spectra which are not characterized by the description above.

Their spectra often deviate from the narrow-band case in two ways:

" There is a single peak but it is not sufficiently narrow (v > 0.6), or

" Energy is concentrated around two or more distinct peaks.

These spectral shapes do not support the preceding distributions of wave heights and

periods. The joint probability density of the envelope amplitude and phase rate, (2.90),

is unchanged, assuming the assumptions needed to linearize the equations of motion and

superimpose the results are still satisfied. It is no longer possible, however, to find the

wave height and period from the envelope amplitude and phase rate. It works for the

narrow-band case because the envelope varies slowly compared to the carrier wave. For

non-narrow-band seas, the amplitude and phase no longer vary slowly. As Figure 2-10

shows, there may be maxima and minima not associated with extrema of the carrier wave.

There is no simple method to transform (2.90) to the joint distribution of wave height

and period.

Cartwright and Longuet-Higgins (1956) present a theoretical distribution of sea surface

height maxima that is valid for all spectral widths. This distribution is not used here for
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two reasons.

The objective in studying the distribution of wave heights and periods is often to find

the wave orbital velocities. For sinusoidal waves, (2.40) and (2.41) relate these velocities

to crest-to-trough wave height and zero-crossing period. There is no simple relationship

between orbital velocities and the distribution of sea surface height maxima.

The distribution of maxima depends on the fourth moment of the energy spectrum

which is sensitive to the high frequency behavior of the spectrum. This is not desirable

when applied to real sea surface height data.
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Chapter 3

Sea Surface Height Data Set

3.1 Data Acquisition

Woods Hole Oceanographic Institution's Telemetry Project maintained a Waverider

buoy southwest of Martha's Vineyard from Spring of 1987 until Autumn of 1988. The buoy

sensed sea surface acceleration and generated a time history of sea surface height. The

elevation record was then transmitted to WHOI where power density spectral estimates

were computed. Data files were made available to interested users and archbved in several

formats.

A complete description of this data acquisition and dissemination project is available in

Briscoe et al. (1988). Sharpe and Graber (1990) presents graphical and tabular summaries

of wind and wave data collected over 16 months at five stations, including the Martha's

Vineyard Waverider buoy.

3.1.1 Sea Surface Height Measurement

The Martha's Vineyard Buoy Telemetry Project was operated under the University

Research Initiative Program at WHOI. A general goal of the project was to develop

techniques for gathering in situ data from the ocean and disseminating them to users in a

timely and efficient way. A secondary objective was to test the feasibility of a telemetering

technique for long-term surface wave monitoring in coastal waters. The data collected

provides a convenient record of sea surface elevation in the vicinity of Martha's Vineyard.
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The Waverider buoy used in this project was moored 16 km southwest of Martha's

Vineyard. The region is shown in Figure 3-1. Details of the mooring are depicted in

Figure 3-2. The mooring is located in the Buoy Farm, an engineering test site operated

by WHOI's Department of Applied Ocean Physics and Engineering.

The buoy, a 70 cm floating sphere, closely followed the ocean's surface. A gimbaled,

gravity stabilized accelerometer measured vertical acceleration. This was integrated twice

to get a continuous time history of sea surface height. The buoy was sensitive to acceler-

ation at frequencies from 0.035 to 0.65 Hz (periods from 1.5 to 29 s).

Sea surface elevation was sampled at a rate of 2 Hz during 17 minute intervals centered

on each hour and half hour. These records were transmitted to a station on Gay Head

and from there to WHOI.

Processing at WHOI included computation of power spectral density estimates for

each 17 minute record. Each record contains 2048 sea surface elevation values. These

were divided into eight segments of 256 values each. The mean of each segment was

found and removed and the spectral density estimates computed. Only the 60 estimates

corresponding to frequencies from 4/128 to 63/128 Hz were retained.

3.1.2 Data Dissemination

After processing, the data were stored in three types of files.

" Raw data fie:

The 2048 sea surface elevation values.

* Spectral coefficient file:

Contains the time, the spectral estimates, and three spectral moments, M0 , MI, m2

calculated using angular frequency.

" Computed product file:

Contains date, time, sea surface variance (to), significant wave height (4V/i),

mean wave period (mo/m), upcrossing wave period (v7o ), Waverider bias (a

measure of transmission quality), maximum crest height, minimum trough height,

and frequency of the spectral peak.
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Figure 3-2: Waverider mooring schematic for Buoy Farm deployment. Fom Briscoe et
al. (1988).
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3.2 Finding Wave Heights and Periods from Sea Surface

Elevation Data

It is necessary to find wave height and period pairs from the Waverider's records of

sea surface elevation. This process would appear to consist of the following simple steps:

" Determine the times at which the sea surface rises through the mean level. These

are the zero-up-crossing times.

" Record the differences between successive zero-up-crossing times as wave periods.

" Measure the range of elevation for each wave and record as wave height.

These steps, however, may not be performed until the time series has been properly

interpolated, as described below.

3.2.1 The Need for Upsampling

The Waverider time series of sea surface elevations must be recognized as a set of

discrete time samples of an underlying continuous time process. Wave heights and periods

of the continuous time process are of interest. Zero-up-crossings of the underlying process

will likely fall between samples, with one sample below the mean level and the following

sample above. A method must be chosen to assign appropriate times to these events.

The maximum and minimum elevations in a wave interval are also difficult to determine.

The maximum sample is not likely to fall exactly at the wave crest of the underlying

process. The actual crest height will be slightly higher than the highest sample, and the

actual trough height slightly lower than the lowest sample. These actual elevations must

be estimated from the discrete time samples.

One method used to overcome these difficulties is to resample the continuous time

process at a higher rate so that the samples present a more complete picture of the process.

Once this is done, there will be a sample value close enough to each zero-up- crossing that

the sample time may be taken as the zero-crossing time. Similarly, the sample nearest to

each crest or trough will be close enough so that the sample value may be taken as the

extreme elevation.
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Figure 3-3 demonstrates these effects for the simple case of a sine wave of constant

amplitude and frequency. In the first plot, a 0.5 Hz sine wave has been sampled at a

rate of 2 Hz. The continuous time process is shown as a dotted line and the samples are

shown as small circles. Note how no sample adequately represents a zero-crossing nor an

extreme. The second plot shows the same signal sampled at a rate of 10 Hz. Note how

samples may be found which fall quite close to the features of interest.

3.2.2 Band-limited Interpolation

Ideally, one would generate the new time series by measuring the original process

again at the new, higher sampling rate. For the sea surface elevations used here, that

is, of course, not possible since the available data are sampled at 2 Hz. If the original

measurements were made at a rate high enough to capture all the frequencies present

in the continuous process, the discrete samples may be used to reproduce the original

process exactly. The reconstructed process may be resampled at the desired rate. The

critical sampling rate is called the Nyquist rate and it equals twice the highest frequency

component present in the continuous time process. Since the Waverider samples sea

surface elevation at a rate of 2 Hz, the samples carry a full description of the sea surface

elevation if no appreciable energy is present at frequencies above 1 Hz (periods of less

than 1 s). This is a reasonable assumption. Based on the buoy's frequency sensitivity

(given in Section 3.1.1) and a knowledge of the periods of the wind waves of interest,

it is reasonable to make the more restrictive assumption that wave energy is limited to

frequencies below 0.5 Hz (periods greater than 2 s). This is consistent with the WHOI

Telemetry Project's truncation of the power density spectral estimates for frequencies

above 63/128 Hz. Under this assumption, the original sampling rate of 2 Hz exceeds the

Nyquist rate by a factor of two and provides slight oversampling.

The method by which samples of a process are used to create a new sequence of more

closely spaced samples is called band-limited or lowpass interpolation. Oppenheim and

Schafer (1989, pp. 105-111) develop the theory of low-pass interpolation of discrete-time

signals. An original sequence of length N that is resampled to length M is said to have

been upsampled by a factor of M/N. This is carried out in two steps.
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Figure 3-3: One-half Hz sine wave sampled at two rates. The continuous time process is
shown as a dotted curve. The samples are shown as circles. First plot shows samples at
twice the Nyquist rate. Note how zero-crossings, maxima and minima of the underlying
process are poorly represented by the samples. The second plot shows the same process
sampled at ten times the Nyquist rate. The samples are now dense enough to show the
sine wave's shape clearly.
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First, MIN - 1 zero values are inserted between each pair of original samples. The

result is filtered using a discrete time finite impulse response (FIR) filter. The filter has

a cutoff frequency appropriate for the bandwidth of the data and is designed to leave the

original sample values unchanged and to assign the appropriate interpolated values to the

new samples. Details of the Matlab algorithm used to perform the interpolation are found

in Little and Shure (1988, pp. 2-73,74).

The Waverider sea surface heights, originally sampled at 0.5 s intervals were upsampled

by a factor of five to get 0.1 s spacing. The FIR filter used had a cutoff frequency of 0.5

Hz. A sample segment is shown in Figure 3-4. The first plot shows the original samples.

The second plot shows the result after upsampling. The original samples are unchanged

but the new samples help to fill in and better depict the continuous process.

3.2.3 Other Interpolation Methods

Some studies of wave statistics have upsampled using linear interpolation (Chakrabarti

and Cooley 1977). This is a simpler computation but the interpolated values are distorted

samples of the underlying process, even when the process is band limited. The distortion

is acceptably small only if the original process is sampled at many times the Nyquist rate

(Oppenheim and Schafer 1989).

Most spectra observed in the present study show negligible energy at the highest

frequencies and are effectively oversampled. Linear interpolation would adequately repro-

duce the sea surface for all but the shortest period waves. The computational feasibility

of band-limited interpolation makes it unnecessary to accept even this limited amount of

distortion. Linear interpolation is not used here.
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Figure 3-4: Thirty second segment of Waverider sea surface height record. Upper plot
shows samples at original sampling rate of 2 Hz. Lower plot shows sequence interpolated
to a rate of 10 Hz.
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3.3 Characterizing the Power Density Spectra

A six parameter formulation has been developed that expresses a spectrum as the sum

of a low frequency component and a high frequency component. This spectrum is fit to

each power density spectrum computed from its Waverider sea surface height record. The

result is used to classify each spectrum as unimodal or bimodal. Bimodal spectra are

further classified by the relative sizes and locations of the two peaks.

3.3.1 Development of the Six Parameter Spectrum

Traditional mathematical descriptions of wave spectra have a single peak and a tail

that decreases exponentially with frequency. Many observed spectra show multiple peaks

or have a plateau of nearly constant energy at high frequencies. The traditional spectral

formulations may fit the low frequency part of these observed spectra reasonably well but

cannot express the high frequency peak nor plateau.

To develop a formulation with wider applicability to observed spectral shapes, Ochi

and Hubble (1976) developed a six parameter spectrum

1 4] + 1 exp[-( 4'j + 1)( j)4] (3.1)s 4 E rcAj) 0.4,i + 1 4
"=1

with or in radians per second, or

W2 [(4Aj 1)(27rfmi )4 /4]'\j C,2  +___1
S(f) = - E r(j) f 4 A,+l exp[-( 4 + ')(L )4] (3.2)

2 j= f

with f in cycles per second. The spectrum decomposes into two parts, each with three

parameters. The two parts have identical algebraic expressions and differ only in the

values taken by the parameters.

The parameter Cj determines the size (energy) of each part. This energy, the moment

moi of the appropriate part of (3.2), is found to satisfy

Cj = 4V/i_ (3.3)

and for this reason C, is referred to as significant wave height. This terminology is unfor-

tunate because C, does not equal the original definition of significant wave height H. given
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in section 2.2.10. The different notation will serve to keep the two quantities distinct. For

the combined spectrum, (3.2), one finds

= + C2 (3.4)

The modal frequency, am or f,, is a location parameter. It positions the spectrum by

fixing the position of its maximum value.

The parameter A controls the spectral shape. Large values of A generate a sharply

peaked shape with a rapidly decaying tail. Small values give a flat shape with considerable

energy in the tail. The tail decays as a - (4 A+ l ) .

Figure 3-5 shows the effect of varying each of the parameters with the others held

constant.

3.3.2 Fitting the Six Parameter Spectrum to Data

The six parameter spectrum is fit to each observed power density spectrum by finding

the appropriate values for the parameters. This is a non-linear minimization problem

in six dimensions. The parameters are selected to minimize the sum of the squared

errors between the 60 spectral estimates and the spectrum evaluated at the estimates'

frequencies.

The minimization is carried out using the Nelder-Mead simplex algorithm. This

method is chosen because it is simple and requires function evaluations only, not eval-

uations of derivatives. Details of multi-dimensional minimization using this method are

found in Press et al. (1986).

3.3.3 Identifying Unimodal and Bimodal Spectra

Once the six parameter formulation is fit to a power density spectrum, it is used to

place the spectrum into one of two categories, unimodal or bimodal. A unimodal power

density spectrum has a single peak. The six parameter spectrum has one peak and no local

minimum. A bimodal power density spectrum has energy distributed between two distinct

peaks. The six parameter spectrum has a local minimum, dividing the low frequency
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Figure 3-5: Effect of varying parameters on the three parameter shape S(or). When they
are held constant, parameters take the following values: C = 1 m, 0

'rr = 1 rad/s, A = 2.0.
(a) C = 0.5,1.0,1.5 m; (b) or, = 0.5,1.0,1.5,2.0 rad/s; (c) A = 0.1,0.5,1.0,2.0,10.0.
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Figure 3-6: Typical six parameter spectral shapes. (a,b) Unimodal. (c,d) Bimodal.

region from the high frequency region. Figure 3-6 shows examples of six parameter spectra

for unimodal and bimodal cases.

Power density spectra which are designated as bimodal are further characterized by

the energy and position of the low and high frequency regions. If the local minimum in

the six parameter spectrum is located at a frequency f f .. i,, then the power density

spectral estimates are broken into two groups:

Low frequency f < f.mmn

High frequency f > f,,,

The moments mo and ml are found from the spectral estimates for each section indepen-

dently. For each section, an energy, e = io, and mean frequency, I = mj/(21rmo), are
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found. From these, energy and frequency ratios

e, = e2 /el (3.5)

f, = f2 /f1 (3.6)

are found, with the subscript 1 referring to the low-frequency domain and the subscript

2 referring to the high-frequency domain.

The energy ratio, e, is a measure of the relative strengths of the two peaks. A small

e, means the low frequency peak dominates. A high e, means the high frequency peak is

larger.

The frequency ratio, f,, gives a measure of the separation of the peaks. A large

f, indicates the peaks are widely separated. As f, decreases, the peaks move closer

together. Values of f,. < 1.5 are not observed in data because peaks that are sufficiently

close together have no local minimum and are classified as unimodal.

It should be emphasized that the energy and frequency ratios are computed from the

power density spectral estimates. The six parameter spectrum is used only to identify the

spectrum as unimodal or bimodal and to divide the bimodal spectra into two sections.

Moments are not calculated from the six parameter spectra.

3.4 Examples of Unimodal and Bimodal Seas

The figures which follow show sea surface elevation time series and spectral information

from seas typical of four spectral classifications. The first two figures show seas with

spectra classified as unimodal. The last two figures show bimodal seas. The following

plots are provided for each sea condition:

" Power density spectral estimates (60 values). The six parameter spectrum is super-

imposed.

" Thirty second segment of sea surface elevation time series.

* Three minute segment of sea surface elevation time series.
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Figure 3-7 represents seas with a unimodal spectrum and a small spectral width. For

the example shown,

v =0.2658.

The time series clearly shows the behavior of a carrier wave modulated by a slowly varying

envelope function.

Figure 3-8 represents seas with a unimodal spectrum and a large spectral width. For

the example shown,

= 0.5769.

Figure 3-9 represents seas with a bimodal spectrum dominated by low frequency swell.

For the example shown,

, = 0.5496,

e, = 0.4014.

Figure 3-10 represents seas with a bimodal spectrum dominated by high frequency

wind sea. For the example shown,

v = 0.4004,

e, = 3.206.
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Figure 3-7: Time and frequency domain behavior of a sea with a unimodal spectrum and
narrow bandwidth. (a) Power density spectral estimates and the best fit six parameter
spectrum. The estimates are shown as circles and the six parameter spectrum as a solid
curve. Spectra are in units of meters squared per radian per second. (b) Thirty second
segment of sea surface elevation record. Elevation is in meters. (c) Three minute segment
of the record.
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Figure 3-8: Time and frequency domain behavior of a sea with a unimodal spectrum
and wide bandwidth. (a) Power density spectral estimates and the best fit six parameter
spectrum. The estimates are shown as circles and the six parameter spectrum as a solid
curve. Spectra are in units of meters squared per radian per second. (b) Thirty second
segment of sea surface elevation record. Elevation is in meters. (c) Three minute segment
of the record.
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61



0.2

0.15

E 0.1

00

'-00-0 0 0005 0°0O0

00 0 0
I 00000 0 0 0000000 00000000

01 000

0 0.5 1 1.5 2 2.5 3 3.5

frequency (rad/s)

2

-- 1

.0 0

-21

0 5 10 15 20 25 30

time (s)

2

.o 0

-2-
0 0.5 1 1.5 2 2.5 3

time (min)

Figure 3-10: Time and frequency domain behavior of a sea with a bimodal spectrum.
The swell energy is smaller than the high frequency wind sea energy. (a) Power density
spectral estimates and the best fit six parameter spectrum. The estimates are shown as
circles and the six parameter spectrum as a solid curve. Spectra are in units of meters
squared per radian per second. (b) Thirty second segment of sea surface elevation record.
Elevation is in meters. (c) Three minute segment of the record.
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Chapter 4

Comparison of Wave Data to

Theoretical Distributions

4.1 Overview of the Data Analyses

Narrow-band theory proposes a joint distribution for wave height and period for seas

with narrow spectra. Twelve months of sea surface monitoring by WHOI's Martha's Vine-

yard Waverider buoy provide several thousand 17 minute sea surface elevation time series.

The availability of these time series and their power density spectra allows comparison of

the observed wave heights and periods to those predicted by narrow-band theory.

4.1.1 Questions to be Investigated

The theoretical joint density of normalized wave height and period, p(R, T), is a

function of the single parameter, v, the spectral width. Given the three lowest spec-

tral moments, MO, m 1 , M 2 , the joint distribution may be transformed to one involving

dimensional height and period, p(H,r).

While the description of waves of all heights and periods is important, the behavior

of the highest waves is of particular interest to ocean engineering and marine operations.

One would like to know the accuracy of narrow-band theory in describing the significant

wave height and the height and period of the highest wave in a given time period.

In the analyses which follow, observed wave heights and periods are compared to those
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predicted by narrow-band theory from spectral information. This is done for unimodal

seas with narrow spectra, where the theory is expected to work well, and for wide unimodal

and bimodal seas, where narrow-band theory is no longer valid but may still provide useful

information.

Analyses are performed to support the following inquiries.

" Is the applicability of narrow-band theory to describe the distribution of wave heights

and periods a function of the spectral width?

" Is the accuracy different for unimodal and bimodal seas of the same spectral width?

" Where observed values fall outside the range predicted by narrow-band theory, how

large are the errors?

4.1.2 Selecting Time Series for Analysis

Time series representing the spectral shapes and widths of interest are selected from

among the 10,928 available time series. The series are grouped as unimodal or bimodal

using the procedure described in section 3.3. There are 5,021 unimodal and 5,907 bimodal

series. Within the two major groups, subgroups with 25 time series each are built such

that the seas represented in each subgroup cover a narrow range of spectral widths.

The frequency of occurrence of spectral widths for twelve months of records is shown

in Figure 4-1 for unimodal and bimodal seas. The records are densely spaced in spectral

width such that the 25 seas in each subgroup have nearly equal width.

Selecting 25 as the number of seas in each subgroup represents a compromise between

conflicting objectives. It is small enough to allow each subgroup to cover a small range of

spectral width but large enough to allow statistical conclusions to be drawn.

Table 4.1 shows the mean spectral width, P, and the range of widths covered by each

subgroup.
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Figure 4-1: Histograms showing the density of spectral width for (a) unimodal seas, and
(b) bimodal seas. Spectral width, v, is shown on the horizontal axis. The vertical axis
scale is adjusted so the total area under the histogram is unity.

Unimodal Group Bimodal Group
Subgroup in Subgroup Vmin Vma1 0.2910 0.3003 0.3085
1 0.2903 0.2999 0.30870_02 0.3485 0.3500 0.3511
2 0.3493 0.3500 0.3509

3903 0.3995 0.4000 0.4004
3 0.3993 0.3999 0.4004 4 0.4495 0.4500 0.4506
4 0.4488 0.4491 0.4495 5 0.4995 0.5000 0.5008
5 0.4991 0.5000 0.5011 6 0.5495 0.5500 0.5507
6 0.5479 0.5499 0.5528 7 0.5991 0.6000 0.6011
7 0.5968 0.5997 0.6046 8 0.6389 0.6424 0.6455
8 0.6423 0.6499 0.6617 9 0.6848 0.6991 0.7224

Table 4.1: Range of spectral width v covered by the 25 time series in each subgroup.
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4.2 Analysis Results - Unimodal Seas

The following graphs and tables present the results obtained by analyzing eight sub-

groups of 25 time series from seas characterized as unimodal. The analyses are grouped

into three subject areas:

" Joint distribution of wave heights and periods.

" Marginal distribution of wave heights.

" Distribution of extreme wave heights.

A narrative describing the analysis methods and plot features accompanies each set

of results.

In describing use of the Waverider data, the distinction between dimensional wave

height and period and their normalized counterparts must be kept clear. The dimensional

heights and periods have units of meters and seconds and are represented by H and r

respectively. Heights from each time series are normalized based on the energy of that

time series' spectrum,
H

R- H(4.1)

where R is the non-dimensional, normalized height. Periods are normalized by the mean

period of the spectrum,

T= ' 1 (4.2)

where T is the non-dimensional, normalized period. These normalizations are carried out

for each time series individually. This allows time series with different energies and mean

periods to be compared using the same theoretical distributions of normalized wave height

and period.

Wave heights and periods described in the text are normalized unless otherwise noted.

4.2.1 Joint Distribution of Wave Heights and Periods

Description of Analyses

Three plots are shown for each subgroup. In the first of these plots, the height and

period of each wave are plotted as a point in the T, R plane. The domain of this plot is
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restricted to T E (0, 2.5), R E (0,3) to provide uniformity and to allow for comparison

of different plots. Most waves will fall inside this domain but some may fall outside and

would not be shown here.

The other two panels show the contours of the observed and theoretical joint distri-

butions of wave heights and periods, p(R, T). The tleoretical density is shown using the

six contour values

(0.99, 0.9, 0.7, 0.5, 0.3, 0.1) x Pt,m,

where pt,m az is the value of the theoretical density at its mode

pt,m.az = 0.415(v + 1/v)L(v) (4.3)

L(v) 2v (4.4)
1+ V1i-+V 2

using the spectral width appropriate for the subgroup under consideration. The mode is

always located near (R,T) = (1, 1). Its density, Pt,mz, is shown.

The observed distribution is determined by dividing the domain into bins of width

6T = 6R = 0.1 and counting the number of waves, Ni, in each bin. This is converted to

an estimate of the probability density using

3(R1 ,Ti) Ni (4.5)15Ri i)-M 6T 6R

where

M = E Ni (4.6)
i

is the total number of waves.

Contours are plotted for the values of probability density

(0.99, 0.9, 0.7, 0.5, 0.3, 0.1) X Pomz

where Po,,az is the value of the observed density at its mode. The value of Po,max and

the location of the mode are shown.

It is seen that the mode of the observed density is located much closer to the origin

than is the mode of the theoretical density. To allow the theoretical and observed densities

to be compared in the region of the theoretical mode, the largest value of the observed

density in the vicinity of (R,T) = (1,1) is shown.
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The theoretical density decreases monotonically moving outward from the mode so

the sequence of the contour lines is unambiguous. The observed density may have local

maxima and minima other than the mode. To eliminate confusion, a cross (+) is placed

inside any closed contour which encloses a local maximum.

Discussion of Results

The scatter plot is useful for displaying the general shape of the observed density. In

regions of high probability, density gradients and extrema are difficult to interpret, but

the outline of the distribution, i.e., the contour outside which few waves fall, is readily

apparent.

The outline of the theoretical distribution shows two features common to all spec-

tral widths. The smallest waves have the shortest periods and the largest waves have

normalized periods near unity.

At the smaller spectral widths, the scatter plots in Figure 4-2 do show this general

shape. This agreement becomes worse with increasing spectral width. The concentration

near unity of periods of the highest waves is practically nonexistent for P of 0.4500 and

above, with the highest waves having a broad range of periods. For all but the narrowest

spectra, there are more short period waves of all heights than expected. Only the minimum

wave height for each pericd, the lower edge of the outline of the distribution, remains in

close agreement with theory for all spectral widths.

The contour plot provides information about the mode and gradients of .he observed

density. The theoretical density predicts a mode near (R,T) = (1,1) for al spectral

widths. The density value at the mode, pt,,a, decreases with increasing v.

The modes of the observed densities are not located near (R, T) = (1, 1), but .re much

closer to the origin. This indicates an excess of small amplitude, short period waves not

predicted by narrow-band theory. The value of the density at the mode, Po,maz, shows an

increasing trend with spectral width, unlike the behavior of the theoretical mode.

The observed density of the subgroup with v = 0.2999, shown in Figure 4-2 (a2), does

show a local maximum near the location of the theoretical mode. The value of the density

p = 1.69 at this local maximum is within 10% of the density of the theoretical mode,
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p .,,a = 1.54. To investigate the behavior of the observed densities in the vicinity of their

theoretical modes, the largest value of each of the observed densities in the vicinity of

(R, T) = (1, 1) is shown. This value decreases as width increases and remains within 10%

of the theoretical value (except for the subgroup in Figure 4-2 (h2) with v = 0.6499 where

the difference is 16%).

This indicates that the density of waves with heights and periods near (R, T) = (1, 1)

agrees with that given by narrow-band theory. This is not the mode of the observed

density because of the large number of short, small amplitude waves observed.
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Figure 4-2: Umimodal Seas: Joint Distribution of Wave Heights and Periods. In the scatter
plot, each point represents the normalized height and period of one wave. The contour
plots show contours of the theoretical and observed joint density, p(R, T). Contours are
shown for values of (0.99,0.9,0.7,0.5,0.3,0.1) x p,,.. Local maxima are identified by
crosses (+). The value of pm, is given for the theoretical and observed densities and th
location of the mode of the observed density is shown. The largest value of the observed
density in the vicinity of(R,T) (1,1) is also shown. (a) v = 0.2999, (b) P 0.3500.
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Figure 4-2: (continued). (c) P' 0.3999, (d) T/ 0.4491.
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Figure 4-2: (continued). (e) P / 0.5000, (f) P =0.5499.
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Figure 4-2: (continued). (g) P~ 0.5997, (h) P' 0.6499.
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4.2.2 Marginal Distribution of Wave Heights

Description of Analyses

The observed density of wave heights for each subgroup is plotted as a histogram. The

density is determined by dividing the domain into bins of width 5R = 0.2, counting the

number of waves, Ni, in each bin, and converting to a probability density

M6R 
(4.7)

where M is the total number of waves. The marginal density predicted by narrow-band

theory, p(R), is shown as a solid curve. The Rayleigh density is shown as a dotted curve.

The second figure for each subgroup involves the ratio of measured significant wave

height to the square root of the spectral energy. This ratio, H./l/Thi, is shown in sec-

tion 2.2.10 to have an expected value approximately equal to 4.0 and to be weakly depen-

dent on spectral width. One value of this ratio is observed for each of the 25 time series in

a subgroup. Each histogram which follows shows the distribution of the observed ratios

for a subgroup. The vertical scale is adjusted so the area under the histogram is unity.

The third plot for each subgroup compares the number of waves observed in each

time series, No, to the expected number of waves, NE, a function of the moments of the

spectrum. The slope of the line passing through the origin which best fits the data points

is listed and this line is superimposed.

Discussion of Results

Each histogram in Figure 4-3 has a shape which is similar to that given by narrow-

band theory and by the Rayleigh distribution. The agreement is not perfect, however,

and it is useful to examine the plots to determine how and where the observations differ

from theory.

The smallest amplitude waves are always underpredicted. For narrow spectra, only

the bin with R, = 0.1 is affected. As spectral width increases, more bins are affected and

the number of small amplitude waves observed increases significantly. For P - 0.6499,

normalized wave heights up to R = 0.6 are underpredicted. This observation is consistent
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with the abnormally high probability values near the origin of the joint density of wave

heights and periods.

The significant wave height is controlled by the region of the marginal density where

R > 1.4. The observed and theoretical densities agree well in this region for the narrow

spectra. For wider spectra, P > 0.5499, there are fewer waves here than expected. This

agrees with the observation that there are too many small amplitude waves.

The extreme tail of the distribution describes the largest amplitude waves and is of

interest. Waves with amplitudes R > 2.6 are overpredicted for P < 0.5000 and underpre-

dicted for P > 0.5499.

In summary, the agreement between the observed and theoretical distributions be-

comes worse with increasing spectral width. For the widest spectra, there are more small

and large amplitude waves and fewer medium amplitude waves than expected.

The preceding discussion has been qualitative. A rigorous chi-square test can be used

to quantify the goodness-of-fit of the theoretical distributions to the data. It provides two

important results. First, the Rayleigh distribution provides a better fit to the data than

3oes the density p(R) given by narrow-band theory. This holds true for every spectral

width. Yet this fit is seldom good enough to satisfy the chi-square test at the 0.00001

level of significance. This level of significance means that the chi-square test would reject

the correct distribution in only 0.001% of all realizations. This broad acceptance of

correct hypotheses causes the test to be more likely to accept an incorrect distribution

as well. The low level of significance indicates a reduced ability to discriminate among

competing distributions. Despite this insensitivity, at the level given, the test would reject

the density given by narrow-band theory for all spectral widths. The fit of the Rayleigh

density would be acceptable (at this level) only for the subgroup with P = 0.3500 shown in

Figure 4-3 (bl).

A detailed discussion of using chi-square statistics to evaluate goodness-of-fit is given

in Hald (1952, pp. 739-755).
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Figure 4-3: Unimodal Seas: Distribution of Wave Heights. Upper histogram shows the
observed density of wave heights. The distribution given by narrow-band theory is shown
as a solid curve. The Rayleigh distribution is the dotted curve. Middle histogram shows
the distribution of the ratio Ho/ iii . This ratio is displayed on the horizontal axis and
its frequency of occurrence on the vertical axis. Each circle in the lower plot shows the
expected and observed number of waves during one time series. The slope is given for the
line passing through the origin that best fits the data. (a) P = 0.2999, (b) P = 0.3500.
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Figure 4-3: (continued). (c) i = 0.3999, (d) ii = 0.4491.
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Figure 4-3: (continued). (e) i = 0.5000, (f) i = 0.5499.
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Figure 4-3: (continued). (g) P =0.5997, (h) P = 0.6499.
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Unimodal Seas
Mean of Standard Deviation Mean of Standard Deviation

P (H./fmi) of (H/'/q) (NO/NE) of (No/NE)
0.2999 3.887 0.130 1.09 0.036
0.3500 3.916 0.177 1.10 0.060
0.3999 3.911 0.130 1.14 0.110
0.4491 3.885 0.223 1.20 0.104
0.5000 3.877 0.186 1.27 0.171
0.5499 3.891 0.298 1.30 0.188
0.5997 3.836 0.271 1.30 0.164
0.6499 3.912 0.529 1.26 0.187

Table 4.2: Unimodal Seas: Statistics of Significant Wave Height and Number of Waves.
Statistics of the ratios Ho/./ii and NO/NE.

The significant wave height histograms provide additional insight into the behavior

of the largest one-third wave heights. Table 4.2 gives the mean and standard deviation

of the ratio H5 /./i for each subgroup. For narrow spectra, the significant wave height

ratios are approximately equal for all time series. As spectral width increases, the mean

of the ratio rises slightly but the dominant trend is the increase in standard deviation.

For the wide spectra, most of the ratios fall below 4.0 but some take values considerably

higher.

At narrow spectral widths, the 25 time series in a subgroup all have significant wave

heights close to that predicted by narrow-band theory. For wide spectra, the significant

wave heights for seas with the same spectral width may differ markedly.

Several observations may be made about the number of waves in a time series. There

are almost always more waves than expected. This may be expressed as the ratio of the

number of waves observed, No, to the number expected, NE. The mean and standard

deviation of this ratio are listed in Table 4.2. The mean of this ratio increases from 1.1 at

F = 0.2999 to approximately 1.3 at P = 0.6499. This trend is consistent with the earlier

observation that the number of short period waves is greater than expected and increases

with spectral width.

The scatter about the mean also varies with width. For narrow spectra, the ratios for

the individual time series are all near the mean. The ratios for time series with wider

spectra show considerable variation about the mean.
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4.2.3 Distribution of Extreme Wave Heights

Description of Analyses

These plots provide information about the height and period of the highest wave from

each time series. Three plots are shown for each subgroup.

The first plot is a scatter plot of wave height and period. Its domain is limited to wave

heights R > 1.517, the region where the highest 10% of the waves are expected. Quartiles

of the conditional distribution of wave periods, p(TIR), are shown. Half of the waves are

expected to have periods which fall between the two outer quartiles, Q, and Q3. The

fraction of the waves which do fall in the interquartile range is shown as a percentage in

the corner of the plot. The point representing the extreme wave in each time series is

circled.

In the second plot, each circle represents the normalized height of the highest wave in

one time series, plotted against the observed number of waves in the series. The expected

value of the extreme wave and the ±2o, bounds (from Table 2.1) are superimposed. They

are functions of the number of waves in the time series.

The third plot shows the normalized period of the highest wave in each time series,

plotted against the wave height. The quartiles of p(TIR) are superimposed.

Discussion of Results

The upper plate in Figure 4-4 shows the distribution of the heights and periods of

the largest waves. For narrow spectra, the periods are concentrated near T = 1 and

approximately half fall in the interquartile range, as expected. As width increases, more

wave periods fall above and below this range.

The mean value of the extreme wave height is slightly less than expected for spectral

widths up to P = 0.5499. Seas from subgroups with wider spectra have mean values

slightly greater than expected. This behavior is consistent with the observed excess of

very large waves at high widths.

More pronounced is the variance about the mean. The extreme wave heights for the

narrow spectra are well contained by the ±2a bounds but the variation increases with
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spectral width.

The periods of extreme waves show similar trends. The mean is just slightly higher

than its expected value for narrow spectra and increases to approximately 1.3 times its

expected value for the widest spectra. The scatter also increases with spectral width.
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Figure 4-4: Unimodal Seas: Extreme Wave Heights and Periods. Scatter plot for the
region where the highest ten percent waves are expected. Quartiles of p(TIR) are super-
imposed; half the waves should fall between the two outermost quartiles. The number
observed in this region is shown as a percentage. The extreme wave from each time series
is circled. In the middle plot, the extreme wave height from each time series is plotted
as a function of the observed number of waves. The expected value and ±2or bounds are
shown. The lower plot shows periods of the extreme waves and quartiles of p(TIR). (a)

- 0.2999, (b) P - 0.3500.
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Figure 4-4: (continued). (c) P 0.3999, (d) T, 0.4491.
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Figure 4-4: (continued). (e) F = 0.5000, (f) iv 0.5499.
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Figure 4-4: (continued). (g) F/ 0.5997, (h) P~ 0.6499.
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Unimodal Seas
Mean of Standard Deviation Mean of Standard Deviation

P~ R../E(R&,) of Rmaz/E(Rmaz.) T...z of Tmci,
0.2999 0.939 0.097 1.063 0.073
0.3500 0.941 0.094 1.079 0.130
0.3999 0.971 0.082 1.135 0.089
0.4491 0.977 0.136 1.154 0.236
0.5000 0.992 0.149 1.280 0.456
0.5499 0.988 0.143 1.242 0.469
0.5997 1.015 0.129 1.264 0.273
0.6499 1.101 0.491 1.380 0.500

Table 4.3: Unimodal Seas: Extreme Wave Height and Period Statistics. Statistics of the
ratio of extreme wave height to its expected value, Rmaz/E(R,,), and the period, T
of the extreme wave.

Table 4.3 is provided to supplement the graphical presentation of Figure 4-4. For each

subgroup, the table lists the mean and standard deviation of two quantities, the ratio of

extreme wave height to its expected value, and the period of the extreme wave.

4.3 Analysis Results - Bimodal Seas

The following graphs and tables present the results obtained from analyzing nine

subgroups of 25 time series from seas characterized as bimodal. Narratives describing the

analysis methods and plot features are found in the previous section.

Discussions will focus on differences between the behaviors of unimodal and bimodal

seas.

4.3.1 Joint Distribution of Wave Heights and Periods

Discussion of Results

The scatter plots in Figure 4-5 show some characteristics similar to those for unimodal

seas. For narrow spectra, the outline of the scatter plot matches the shape of the theoret-

ical density. As spectral width increases, periods of the highest waves become scattered

and deviate from unity. These features are also observed for unimodal seas.

As the contour plots show, the theoretical mode near (R,T) = (1,1) is not observed
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in the data, although local maxima are visible there in Figure 4-5 (a2, c2, and e2). The

observed mode is located closer to the origin, but not as close as for the unimodal seas.

The density value at the observed mode increases with v, but the increase is not as

pronounced as for unimodal seas.

The maximum observed density in the vicinity of (R, T) = (1, 1) does not track the

value of the theoretical mode, as it did for unimodal seas. Bimodal seas with 0.4000 <

v < 0.5500 show more waves with heights and periods near (R, T) = (1,1) than theory

predicts and more than were observed for unimodal seas.

The most probable wave for bimodal seas of all widths has a smaller height and shorter

period than the most probable wave given by theory. It is slightly larger and has a longer

period than its unimodal counterpart.
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Figure 4-5: Bimodal Seas: Joint Distribution of Wave Heights and Periods. In the scatter
plot, each point represents the normalized height and period of one wave. The contour
plots show contours of the theoretical and observed joint density, p(R, T). Contours are
shown for values of (0.99,0.9,0.7,0.5,0.3,0.1) X p,-- Local maxima are identified by
crosses (+). The value of p,,,, is given for the theoretical and observed densities and the
location of the mode of the observed density is shown. The largest value of the observed
density in the vicinity of(R,T) (1,1) is also shown. (a) P. 0.3003, (b) f= 0.3500.
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Figure 4-5: (continued). (c) P =0.4000, (d) P = 0.4500.
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Figure 4-5: (continued). (e) Pi 0.5000, (f) P' 0.5500.
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Figure 4-5: (continued). (g) P~ 0.6000, (h) T, 0.6424.
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4.3.2 Marginal Distribution of Wave Heights

Discussion of Results

The observed number of small amplitude waves always exceeds the expected number

predicted by narrow-band theory. For bimodal seas, more histogram bins in Figure 4-6

show this excess than for unimodal seas of the same spectral width. In the subgroup

with P = 0.3500, there are more waves with heights up to R = 0.4 than expected. In the

subgroups with P from 0.4000 to 0.5500, wave heights up to R = 0.6 are affected, and for

P > 0.6000, this extends to R = 0.8.

The excess number of waves of small amplitude is balanced by a net deficit at moderate

to large amplitudes. For small spectral widths, there are fewer waves than expected from

the mode through the tail of the distribution. For T > 0.4500, this deficit continues except

for a surplus of the largest amplitude waves. For these subgroups, the smallest and largest

waves are underpredicted and those with amplitudes in between are overpredicted.

A chi-square analysis shows that the Rayleigh distribution always provides a better

fit to the observed wave height density than does the marginal wave height density given

by narrow-band theory. This fit is seldom good enough to satisfy the chi-square test at

the 0.00001 level of significance. At this level, the test would reject the density given

by narrow-band theory for all spectral widths. At the same level, the fit of the Rayleigh

density would be acceptable only for the subgroups with P = 0.4000 and 0.4500.
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Figure 4-6: Bimodal Seas: Distribution of Wave Heights. Upper histogram shows the
observed density of wave heights. The distribution given by narrow-band theory is shown
as a solid curve. The Rayleigh distribution is the dotted curve. Middle histogram shows
the distribution of the ratio H,/v/6i. This ratio is displayed on the horizontal axis and
its frequency of occurrence on the vertical axis. Each circle in the lower plot shows the
expected and observed number of waves dtring one time series. The slope is given for the
line passing through the origin that best fits the data. (a) P = 0.3003, (b) P = 0.3500.

95



I = 0.4000 1 nu =0.4500

0.8- (ci) 0.8- (dl1)
0.6.

.. 0.6 -; J- 0.6 -

S0.4 - 0.4

0.2 / 0.2

0 0
0 1 2 3 0 1 2 3

R R

5 5

4 (c2) 4 (U2)

3 3

2 2

0 0 n m
3 4 5 6 3 4 5 6

Hs / sqrt(mO) Hs / sqrt(mO)

500 500-~-
Best-fit Best-fit
slope: slope:

400 1.11 I'll ' 400 1.20 

300 300
0"

0 200 c3) 0 200 ,P _

100 - 100
100 200 300 400 500 100 200 300 400 500

WAVES, EXPECTED WAVES, EXPECTED

Figure 4-6: (continued). (c) F = 0.4000, (dl) P = 0.4500.
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Figure 4-6: (continued). (e) P =0.5000, (f) P = 0.5500.
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Figure 4-6: (continued). (g) P = 0.6000, (h) P = 0.6424.
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Bimodal Seas
Mean of Standard Deviation Mean of Standard Deviation

(H.! fii) of(H./fii) (No/NE) of (NOINE)
0.3003 3.870 0.107 1.12 0.040
0.3500 3.903 0.124 1.10 0.041
0.4000 3.840 0.145 1.11 0.057
0.4500 3.926 0.319 1.20 0.077
0.5000 3.942 0.298 1.22 0.155
0.5500 4.003 0.413 1.25 0.168
0.6000 4.067 0.586 1.32 0.188
0.6424 4.141 0.671 1.29 0.187
0.6991 4.287 0.667 1.26 0.150

Table 4.4: Bimodal Seas: Statistics of Significant Wave Height and Number of Waves.
Statistics of the ratios H.//1i; and No/NE.

Table 4.4 is provided to supplement the significant wave height histograms and plots

of No versus NE. It shows the mean of H./l/rii increasing with spectral width, a trend

predicted by narrow-band theory but not seen in Table 4.2 for unimodal seas. The variance

of this ratio also increases with spectral width. For the widest spectra, these ratios are

distributed nearly uniformly from 3.5 to 6.0 (see Figure 4-6 [f2-i2]).

Figure 4-7 depicts these trends. The increase in the mean of H././i i with increasing

v is clearly evident for bimodal seas. This mean remains less than the expected value of

H,/iii; given by theory for all subgroups except bimodal seas with v > 0.6424.

There are nearly always more waves than expected in a time series. This is consistent

with the excess of short period waves. Figure 4-8 shows the mean and standard deviation

of the ratio NO/NE for unimodal and bimodal seas. The statistics for the two types of

seas are nearly identical.
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Figure 4-7: Mean and Standard Deviation of H,//Thi for Unimodal and Bimodal Seas.
Values for unimodal seas are shown by crosses and a solid line. Values for bimodal seas
are shown by circles and a dashed line. The expected value of H.//iii is given by the
dotted line.
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Figure 4-8: Mean and Standard Deviation of No/NE for Unimodal and Bimodal Seas.
Values for unimodal seas are shown by crosses and a solid line. Values for bimodal seas
are shown by circles and a dashed line.
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4.3.3 Distribution of Extreme Wave Heights

Discussion of Results

The plots of Figure 4-9 (a3-i3) show a trend not observed for uximodal seas. For

v > 0.5500, the periods of the highest of the extreme waves are considerably less than

unity and many are below the lower quartile. The energy ratios, e,, were checked for a

correlation between the dominant peak (the spectral peak with the largest energy) and

the period of the extreme wave. As defined by (3.5), e, gives the ratio of the energy of

the high frequency peak to the energy of the low frequency peak. Since a sea with energy

only at low frequencies has waves with long periods and a sea with energy only at high

frequencies has waves with short periods, it was suspected that a spectrum dominated by

a large high-frequency peak would produce an extreme wave with T,,a. < 1. The opposite

was suspected for spectra where the low-frequency swell peak dominates.

No such correlation is found between the energy ratio and the period of the extreme

wave. Forty-two percent of all bimodal seas studied have T,,. < 1. Considering only

spectra with e,. > 1, 41% of the extreme waves have T,az < 1. In the subset of bimodal

seas with e, < 1, 42% of the extreme waves have T, < 1. The period of the extreme

wave appears to be independent of e,.
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Figure 4-9: Bimodal Seas: Extreme Wave Heights and Periods. Scatter plot for the region
where the highest ten percent waves are expected. Quartiles of p(TIR) are superimposed;
half the waves should fall between the two outermost quartiles. The number observed in
this region is shown as a percentage. The extreme wave from each time series is circled.
In the middle plot, the extreme wave height from each time series is plotted as a function
of the observed number of waves. The expected value and ±20r bounds are shown. The
lower plot shows periods of the extreme waves and quartiles of p(TIR). (a) ' = 0.3003,
(b) P = 0.3500.
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Figure 4-9: (continued). (c) P~ 0.4000, (d) F/ = 0.4500.
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Figure 4-9: (continued). (e) P =0.5000, (f) P = 0.5500.
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Figure 4-9: (continued). (g) i' = 0.6000, (h) P= 0.6424.
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4

Bimodal Seas
Mean of Standard Deviation Mean of Standard Deviation

P R, 2 /E(R.,) of R,../E(R.z) T,... of T,o.

0.3003 0.927 0.077 1.007 0.087
0.3500 0.937 0.115 1.055 0.118
0.4000 0.974 0.153 1.086 0.220
0.4500 0.978 0.197 1.165 0.352
0.5000 0.992 0.155 1.132 0.271
0.5500 1.059 0.211 1.052 0.404
0.6000 1.250 0.404 1.047 0.454
0.6424 1.266 0.437 1.045 0.556
0.6991 1.508 0.646 0.999 0.757

Table 4.5: Bimodal Seas: Extreme Wave Height and Period Statistics. Statistics of the
ratio of extreme wave height to its expected value, Rmz/E(Rz), and the period, T,,
of the extreme wave.

Table 4.5 is provided to supplement the graphical presentation of extreme wave statis-

tics in Figure 4-9. For each subgroup, the table lists the mean and standard deviation of

two quantities, the ratio of extreme wave height to its expected value, and the period of

the extreme wave.

The mean value of the extreme wave height is slightly less than expected for spectral

widths up to P = 0.5000 as was the case for unimodal seas. Seas from subgroups with

wider spectra have larger mean values than expected. The increase in the mean is slightly

greater than for unimodal seas. This behavior is consistent with the observed excess of

very large waves at high widths.

More pronounced is the variance about the mean. The extreme wave heights for the

narrow spectra are well contained by the ±2o bounds but the variation increases with

spectral width. Figure 4-10 shows this trend for unimodal and bimodal seas. The mean

values of Rmaz/E(Rma) are nearly identical for v < 0.5000. For wider seas, this ratio

is greater for bimodal than unimodal seas. The standard deviation of R ,/E(R,7 ,)

increases with spectral width and behaves similarly for unimodal and bimodal seas.

The periods of extreme waves behave differently for bimodal seas than for unimodal.

The mean of Tmaz does not show an increase with spectral width, as it did for unimodal

seas. This results from the appearance of extreme waves with short periods for some

bimodal seas with wide spectra. The variation of Tmaz about the mean does increase with
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spectral width. This is shown in Figure 4-11.
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Figure 4-10: Mean and Standard Deviation of P,..,/E(P ,,) for Unimodal and Bimodal
Seas. Values for unimodal seas are shown by crosses and a solid line. Values for bimodal
seas are shown by circles and a dashed line.
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Figure 4-11: Mean and Standard Deviation of Tma for Unimodal and Bimodal Seas.
Values for unimodal seas are shown by crosses and a solid line. Values for bimodal seas
are shown by circles and a dashed line.
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Chapter 5

Summary and Conclusions

5.1 Application of Results

The previous chapter compared observed distributions of wave heights and periods to

those given by narrow-band theory. The agreement between the theory and data depends

strongly on spectral width. Some differences between unimodal and bimodal seas were

also noted.

Most of the previous work involved normalized wave heights. Spectra were considered

without regard to their energies. One issue to be investigated here is the dependence of

spectral shape and width on sea state.

Another issue is the distinction among spectra of different shapes and widths. What

do these categorizations allow one to conclude about wave heights and periods?

5.1.1 Spectral Shapes of Storm Seas

The importance of understanding the behavior of seas of different spectral types and

widths depends on the application. In one situation, it may be necessary to know the

distribution of wave heights and periods associated with the spectrum of any sea condition.

In this case, all observed spectral shapes are important.

Alternatively, one may need to know only the distributions for the highest sea states

to be encountered during a long period. If the highest seas are always of one spectral

shape, understanding the other sea conditions becomes less important.
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To investigate the spectral shapes observed during high sea states, spectra are sorted

by spectral energy, io. The five most severe storms from the twelve month period are

listed in Table 5.1. The storms lasted from hours to days and many twenty minute time

series were recorded during each one. Each storm is ranked by the highest energy observed

during its duration. The spectral shapes and widths associated with each storm are listed.

The sea state, spectral type and width, energy ratio and frequency ratio are given for the

time series with the greatest energy during each storm.

The highest sea state from the twelve month period has a bimodal spectrum. Both

unimodal and bimodal spectra of various widths are observed during each of the five

storms. This would seem to indicate that no single shape nor width is uniquely identified

with high sea states, however, not all bimodal spectral shapes are equally significant.

The energy and frequency ratios give additional information about the shapes of bi-

modal spectra associated with the highest sea states. None of the four sets of ratios

indicates a bimodal spectrum with peaks that are well separated in frequency and ap-

proximately equal in energy. (Spectra with peaks which are sufficiently separated in

frequency to remain distinct are observed to have frequency ratios of approximately 3.0

and greater.) The spectra from the highest sea states in storms one and two have peaks

which are spaced close together and overlap each other. There are local minima between

the peaks, resulting in bimodal classifications, but the overall shapes are very similar to

unimodal spectra. The spectra from the highest sea states in storms three and five have

high frequency peaks which are much smaller than the low frequency peaks. Again, the

resulting spectra are very similar in shape to unimodal spectra.

These observations would indicate that a high sea state is likely to have a unimodal

spectrum or a spectrum which is classified as bimodal but is shaped much like a unimodal

spectrum, with one peak that is much larger than the other or two overlapping peaks.

The storm sea spectrum may be narrow-banded, as in storm 5 where the widest spectrum

observed has , = 0.4040. Narrow-band theory may work well for analysis of this sea. The

storm may also have a wide spectrum, as in storm two with widths up to v = 0.5962. The

results from applying narrow-band theory to these seas may not be acceptable.
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Storm 1 12-13 February 1988
4 V65i 2.55 to 3.75 m
Unimodal Spectral Widths: 0.3516 < v < 0.5735
Bimodal Spectral Widths: 0.3979 < v < 0.5869

Highest sea state during storm: 4viii = 3.75m

Spectral type: Bimodal = 0.4081
e, = 0.5221 f, = 1.800

Storm 2 16-17 December 1987
4Vi 2.62 to 3.50 m

Unimodal Spectral Widths: 0.4451 < v < 0.5848
Bimodal Spectral Widths: 0.4971 < v < 0.5962

Highest sea state during storm: 4,65i = 3.50m
Spectral type: Bimodal v = 0.5572
e, = 0.5669 f, = 2.276

Storm 3 18-19 November 1987
4./iii 2.56 to 3.32 m

Unimodal Spectral Widths: 0.4362 < v < 0.5588
Bimodal Spectral Widths: 0.4864 < v < 0.5546

Highest sea state during storm: 4 = = 3.32m
Spectral type: Bimodal v = 0.4864

e, = 0.0741 f,. = 2.663

Storm 4 23 February 1988

4,/i 2.59 to 3.31 m

Unimodal Spectral Widths: 0.3959 < v < 0.4295
Bimodal Spectral Widths: 0.3909 < P < 0.4353

Highest sea state during storm: 4/Wi = 3.31m
Spectral type: Unimodal v = 0.4155

Storm 5 28 October 1987
4 /f i- 2.56 to 3.10 m

Unimodal Spectral Widths: 0.3515 < v < 0.3820
Bimodal Spectral Widths: 0.3345 < v < 0.4040

Highest sea state during storm: 4,/5i = 3.10m
Spectral type: Bimodal v-- 0.3345

e'. = 0.0091 f, = 2.711

Table 5.1: Storm Seas: Wave heights and spectral shapes observed during the five highest
sea states during the period September 1987 - August 1988.
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5.1.2 Using Spectral Type and Width

Given a sea's energy spectrum, one may need to estimate the significant wave height

and the height and period of the extreme wave during a known time interval. It is also

necessary to place bounds on the estimates. These estimates and their confidence limits,

may be obtained using theoretical distributions given by narrow-band theory.

How should the spectral width be used in this process? As seen in the previous

chapter, the simple Rayleigh distribution provides a better description of the marginal

distribution of wave heights than does the distribution derived from narrow-band theory

which includes a dependence on spectral width. The theoretical distribution of extreme

wave heights is nearly independent of spectral width.

A knowledge of width seems most useful not for its inclusion in the theoretical formu-

lations, but for identifying confidence limits for the estimates obtained from narrow-band

theory. The information in Tables 4.2, 4.3, 4.4, and 4.5 may be used to correct the

expected values of H,/.ii, R,,,.., and T,,,2 and to assign confidence limits. These

confidence limits are strongly dependent on spectral type and width. The narrow-band

theory is not valid for wide spectra, but if it is used for these spectra, the results tabulated

here indicate the errors which may be expected. The following procedure is an example

of the way in which these results may be applied.

One may estimate the significant wave height from information in the energy spectrum.

The energy of the spectrum can be multiplied by the mean value of H,/lviii from Table 4.2

or 4.4 giving an expected H, appropriate for the spectral type and width used to enter

the table. Confidence limits may be placed on the result using the standard deviation of

H°/,/iii from the same table.

Estimating the height of the extreme wave from spectral information is a three step

process. First, narrow-band theory (2.135) gives the number of waves to be expected

during the time interval of interest. This number is modified using the mean value of

the ratio No/NE from Table 4.2 or 4.4. Then, once the number of waves is known, the

expected extreme wave height is found from (2.132) then modified and bounded using

the mean and standard deviation of RI/E(R) from Table 4.3 or 4.5. Finally, this

normalized wave height is converted to a dimensional height using (2.97).
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The normalized period of the extreme wave is estimated as the mean of T,,az from

Table 4.3 or 4.5 and confidence limits are based on the standard deviation. The normalized

period is converted to a dimensional period using (2.98).

A caution is in order about using the resulting estimates of R,.. and Tmaz, to obtain

orbital velocities. These velocities are shown by (2.40) and (2.41) to be fully specified by

wave height and period. A designer may wish to know the orbital velocities associated

with the extreme wave. Once the expected values and confidence bounds are known for

the height and period of the extreme wave, finding the possible velocities seems easy.

This will not be the case for bimodal or wide spectra. The orbital velocity equations are

derived for a sinusoidal wave and they may not be accurate when the wave height and

period are taken from a complicated sea surface.

The procedure outlined above is one possible application suggested by the results

of this study. Responsible engineering application of this procedure would require the

analysis a much more comprehensive data set than has been examined here.
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