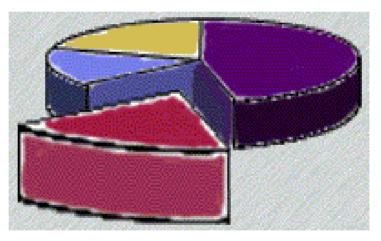


SECA Core Technology Program

Cummins Power Generation 10kWe SOFC Power System Commercialization Program Team Program Overview November 16, 2001 Pittsburgh, PA


- In 1992, Cummins acquired Onan Corporation
- Commercial Gensets are branded Cummins Power Generation
- Consumer Gensets (RV, Marine) are branded Onan
- Cummins Engine Company renamed Cummins Corporation to reflect diversification and Power Generation focus

Cummins revenues - \$6.6 billion in 2000

Filtration \$1.1 billion

Industrial \$1.0 billion

Automotive \$3.2 billion

Power Generation \$1.3 billion

Market Leadership

Cummins Power Generation is the largest volume manufacturer and distributor of premium Gensets in the 3kWe to 12 kWe size range for

- Commerical
 - Standby
 - Peaking
 - Distributed Generation
- Consumer
 - Recreational Vehicle (RV)
 - Marine
 - Portable
- Department of Defense

Sales and Markets

- CPG Sales \$1.3 billion in 3kWe to 2 MWe range
- \$200 million in 3kWe to 12 kWe range
- System meeting SECA program cost and performance targets will displace current reciprocating engine technology in 3-12 kWe range
- Driving factors are low noise, low vibration, high reliability, and low emissions

Cummins Power Generation Products Represent Innovation

- 170 distribution centers worldwide
- Manufacturing sites in U.S., U.K., Singapore, China

Cummins Power Generation leads the industry in generator manufacturing

Cummins Power Generation Americas Minneapolis Headquarters and Manufacturing

Existing Markets Identified in SECA Program

- Recreational Vehicle (RV)
- Commercial Mobile
- Telecommunications Standby

CPG Fuel Cell Product Vision

- Base rating 10kWe
- Supplemented by battery boost system
- Control provides load sharing between battery and SOFC

- LP (Propane)
- Simple and cost effective
- Already in use on RV's for cooking, heating, water heating, refrigeration, Gensets
- Market research indicates customers will accept LP on vehicles to gain benefits
- LP may gain market share as propulsion fuel over Fuel Cell development period

- Start-up sequence initiated from cold when power need is anticipated
- Development program will minimize start-up time
- Battery boost inverter can power loads during warm-up
- Idle mode during low electrical demand
- Shut down when no power need is anticipated for extended time

Installation

 Same size envelope -- 0.4 m3 (15 ft3) as Diesel Genset

Recreational Vehicle Market

Why do RV's need Power Generation?

To run:

- Air conditioners
- Microwave ovens
- TV's
- VCR's
- Blenders
- Hair Dryers
- Lighting
- Water pumps
- Battery chargers

Fuel Cells for RV's

Why Fuel Cells for RV's?

- Noise
- Vibration
- Reliability
- Environmentally responsible

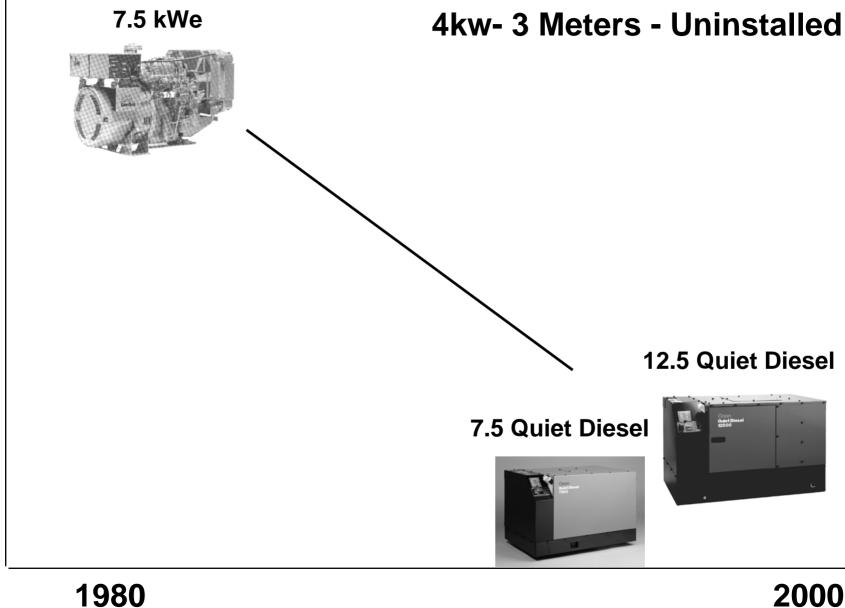
Gasoline RV GenSet Noise Levels

5.0/ 6.5 Emerald

4kw - 3 Meters - Uninstalled

5.5/7 Marquis

4.0 Microlite



Marquis Platinum

Noise dBA

Diesel RV GenSet Noise Levels

Commercial Mobile Markets

Commercial Mobile

- Utility boom and lift trucks,
- Telephone repair trucks,
- Emergency and rescue vehicles
- Vendor vans
- Mobile health care
- Product requirements similar to RV

Commercial Mobile Market Drivers

- High reliability
- Low maintenance
- Low noise
- Increasing awareness of emissions

Telecommunications Markets

Telecommunication Emergency Power

- Wireless cell site cabinets
- Remote fiber optic network terminal cabinets
- Coax broadband cable cabinets

Telecommunications Applications

Wireless cell site with Cummins Genset.

Fiber optic network site with Cummins Genset.

Telecommunications Market Drivers

- High reliability
- Suitable for long term storage without degradation
- Lower scheduled maintenance
- Low noise for use in residential areas

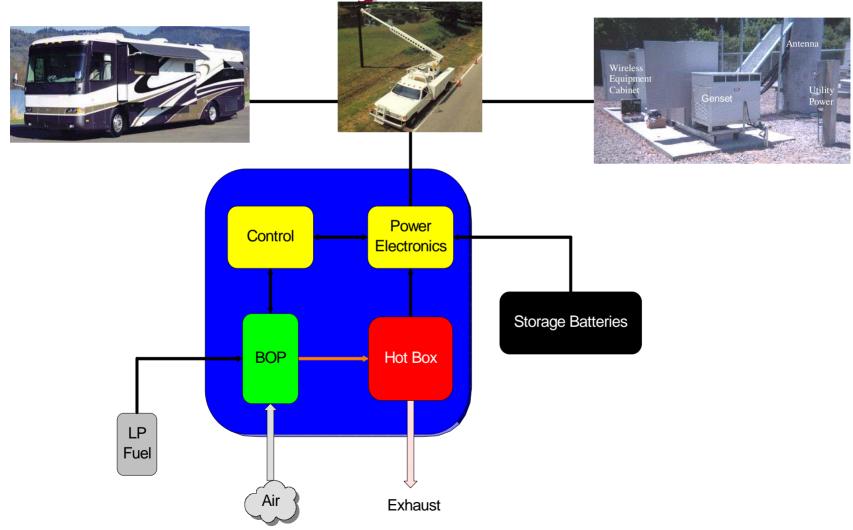
Cummins Power Generation SOFCo

10kWe Commercialization Team

CPG - SOFCo Team

Power Generation

- Electronic Controls
- Power electronics
- Fuel systems
- Air handling systems
- Noise and vibration
- System integration
- Manufacturing
- Marketing, Sales, Distribution


Clean Energy for the World

Planar SOFC technology Reformer technology Material Science Heat Transfer Computational Fluid Dynamics Numerical modeling Multi-Layer Ceramic (MLC) manufacturing

CPG SOFC System Architecture

SOFC System Architecture Team responsibilities

	Responsibility	Description
System Integration	Cummins Power	Control system logic and algorithms,
	Generation	BOP interface
SOFC Fuel Cell / Hot	SOFCo	SOFC stack, manifolding, heat
Box		exchange, high temp insulation
Balance of Plant	Cummins Power	Fuel system, air system, insulation,
(BOP)	Generation	shock and vibration isolation, packaging
Control	Cummins Power	System level control for all sub-systems
	Generation	including SOFC-Battery Load Sharing
Power Electronics	Cummins Power	DC Boost and Inverter, Power
	Generation	Conditioning
LP Fuel Storage	Vehicle Manufacturer	Conventional Pressure Tank
Storage Batteries	Vehicle Manufacturer	Conventional Wet Lead-Acid

Objective: develop a SOFC system including

- SOFC stack
- Balance of plant
- Factory cost of \$400/ kWe net by end of Phase III
- Commercialized at earliest possible date
- Phase I -- 4 years
- Phase II -- 3 years
- Phase III -- 3 years

- Phase I -- 4 years
- Objectives: develop a fuel cell system capable of:

1) demonstrating the SECA Phase I requirements at \$800 / kW

2) removing base technology barriers to commercialization in the target markets

- Phase II -- 3 years
- Objectives:continued development and improvement to:

1) demonstrate the SECA Phase II requirements at \$600 / kW

2) releasing the Phase II design to limited production

- Phase III -- 3 years
- Objectives: further enhance the fuel cell system to:

1) demonstrate the SECA Phase III requirements at \$400 / kW

2) release the Phase III design to full production

Program Benefits for identified Markets...

- Low noise
- Low vibration
- High reliability
- Clean power

Program Summary

Project challenges...

- Start up time
- Idle fuel consumption
- Power density
- Cost, cost, cost...

SECA Core Technology Program Cummins Power Generation 10kWe SOFC Power System Commercialization Program Program Overview Pittsburgh, PA November 16, 2001

This presentation was prepared with the support of the U.S. Department of Energy, under Award no. DE-FC26-01NT41244. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the DOE.