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Abstract

In recent weeks, the novel Coronavirus causing COVID-19 has dramatically changed the
shape of our global society and economy to an extent modern civilization has never experi-
enced. In this paper, we collate a large data repository containing COVID-19 information from
a range of di↵erent sources.1. We use this data to develop several predictors for forecasting the
short-term (e.g., over the next week) trajectory of COVID-19-related recorded deaths at the
county-level in the United States using data from January 22, 2020, to April 8, 2020. Specifically,
we produce several di↵erent predictors and combine their forecasts using ensembling techniques,
resulting in an ensemble we refer to as Combined Linear and Exponential Predictors (CLEP).
Our individual predictors include county-specific exponential and linear predictors, an exponen-
tial predictor that pools data together across counties, and a demographics-based exponential
predictor. We also incorporate a linear predictor and demographic features into our ensemble.
The hope is that an understanding of the expected number of deaths over the next week or so
will help guide necessary county-specific decision-making and provide a realistic picture of the
direction in which we are heading.

1
All collected data and code for modeling, along with visualizations, are updated daily and available at https:

//github.com/Yu-Group/covid19-severity-prediction
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1 Introduction

Our goal is to both provide access to a large data repository (that combines data collected by a

range of di↵erent sources) and to provide a predictor to forecast short-term COVID-19 mortality

at the county-level in the United States. Predicting the short-term impact of the virus in terms of

the number of deaths (e.g., over the next week) is critical for many reasons. Not only can it help

elucidate the overall impacts of the virus, but it can also help guide di�cult policy decisions, such

as when to impose/ease lock-downs. While many other studies focus on predicting the long-term

trajectory of COVID-19, these approaches are currently di�cult to verify due to a lack of data. On

the other hand, predictions for immediate short-term trajectories are much easier to verify and are

likely much more accurate than long-term forecasts (at least in terms of the short-term predictions

for which they are designed).

In this paper, we focus on predicting confirmed deaths, rather than confirmed cases, since

confirmed cases fail to accurately capture the true prevalence of the virus due to limited testing

availability. Moreover, comparing di↵erent counties based on confirmed cases is di�cult since some

counties have performed many more tests than others: the number of positive tests does not equal

the number of actual cases. We note that the confirmed death count is also likely to be an under-

count of the number of true COVID-19 deaths (since it seems as though in many cases only deaths

occurring in hospitals are being counted). Nonetheless, the confirmed death count is believed to

be more reliable than the confirmed case count.

Unsurprisingly death rates are still climbing (as of today, April 10, 2020) across almost all

counties, but they are climbing faster in some counties relative to others. On the one hand,

our predictors accurately predict the number of deaths a week or so into the future for counties

experiencing exponential growth in death counts. On the other hand, we found that it is harder to

predict the death counts for counties that have started exhibiting either sub-exponential (slower

than exponential) or super-exponential (faster than exponential) growth.

There is a large number of papers covering many dimensions of COVID-19 (see Section 5 for

related work) as researchers across academia and industry refocus their e↵orts towards combating

this universal viral threat we face. However, to the best of the authors’ knowledge, there is no

related work addressing county level predictions of COVID-19.

Making both data and the methods used in this paper accessible to others is key to ensuring the

usefulness of these resources. Thus the data, code, and predictors we discuss in this paper are all

updated daily and are available on GitHub2. Of particular note is the data that we have curated

from a wide range of sources. This data includes a wide variety of COVID-19 related information

in addition to the county-level death counts and demographics data that we use to develop the

predictors in this paper. The results in this paper contain case and death information in the U.S.

2
As of April 14, there have been 307 clones, 510 unique visitors, and 4,497 views of the Github repository:

https://github.com/Yu-Group/covid19-severity-prediction
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from January 22, 2020 to April 8, 2020, but the data and forecasts in the GitHub repository update

daily.

2 COVID-19 data repository

One of our primary contributions is the curation of a COVID-19 data repository that we have made

publicly available on GitHub, which is updated daily with new information. Specifically, we have

compiled and cleaned a large corpus of hospital-level and county-level data from a variety of public

sources to aid data science e↵orts to combat COVID-19. We are continually updating and adding

to this repository. Currently, it includes data on COVID-19-related cases, deaths, demographics,

health resource availability, health risk factors, social vulnerability, and other COVID-19-related

information. We provide a small snapshot of data sources from the repository below:

1. USA Facts [3]: contains cumulative COVID-19-related confirmed cases and death counts by

U.S. county dating back to January 22, 2020, currently updated daily.

2. The New York Times [7]: similar to the USA Facts dataset, but it includes aggregated death

counts only in New York city without county breakdowns.

3. Area Health Resources Files [2]: contains county-level data on health facilities, health profes-

sions, income estimates, mortality rates, demographics, and socioeconomic and environmental

characteristics.

4. County Health Rankings & Roadmaps [1]: contains estimates of various health outcomes and

behaviors for each county, including the percentage of adults who are current smokers (2017).

5. The CDC’s Diagnosed Diabetes Atlas [4]: contains the estimated (age-adjusted) percentage

of people who have been diagnosed with diabetes per county (from 2016).

6. The CDC’s Interactive Atlas of Heart Disease and Stroke [6]: contains the estimated heart

disease and stroke death rate per 100,000 (all ages, all races/ethnicities, both genders, 2014-

2016).

7. Kaiser Health News [5]: contains information on the number of hospitals and the number of

ICU beds in each county.

Further details, as well as the full corpus of data, are available on GitHub. Note that similar

but complementary county-level data was recently aggregated and released in another study [18].

For the predictive approaches we discuss in this paper, we primarily use the county-level case

and death reports provided by USA Facts. In Sec 3 and Sec 4, we use the number of deaths and

cases from January 22, 2020 to April 8, 2020, along with some county-level demographics and

health data.
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Table 1: Overview of the 5 predictors used here. The best model is a combination of the expanded
shared predictor and the linear predictor (see Sec 3.6).

Predictor name Type Fit separately to

each county?

Fit jointly to all

counties?

Use neighboring

counties?

Use demograph-

ics?

Separate Exponential

Shared Exponential

Expanded

shared
Exponential

Demographics

shared
Exponential

Linear Linear

3 Predictors for forecasting short-term death counts

Our approach involves fitting several di↵erent statistical methods. Since each method captures

slightly di↵erent data trends, we also evaluate weighted combinations of these models. The five

predictors we consider in this paper are:

1. A separate-county exponential predictor (the “separate” predictors): a series of

separate predictors built for each county using only data from that county, used to predict

deaths in that county.

2. A shared-county exponential predictor (the “shared” predictor): a single predictor

built using data from all counties, used to predict death counts for individual counties.

3. An expanded shared-county exponential predictor (the “expanded shared” pre-

dictor): an predictor similar to the shared-county exponential predictor, but also includes

COVID-19 case numbers and neighboring county cases and deaths as predictive features.

4. A demographics shared-county exponential predictor (the “demographics shared”

predictor): an predictor also similar to the shared-county exponential predictor, but also

includes various county demographic and health-related predictive features.

5. A separate-county linear predictor (the “linear” predictor): an predictor similar to

the separate county exponential predictors, but uses a simple linear format, rather than the

exponential format.

After fitting these predictors, we also fit various combinations of them, which we refer to

as Combined Linear and Exponential Predictors (CLEP). CLEP produces a weighted average

of the predictions from the individual predictors, where we borrow the weighting scheme from

prior work [26]. Higher weight is given to those predictors which have more accurate predictions,
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especially on recent time points. In practice, we find that the CLEP that combines only the

expanded shared predictor and the linear predictor has the best predictive performance.

For the rest of this section, we expand upon the individual predictors and the weighting proce-

dure for the CLEP ensembles.

3.1 The separate-county exponential predictors (the “separate” predictors)

Our initial approach aims to capture the reported exponential growth of COVID-19 cases and

deaths [21]. Hence, we approximate the best fit exponential curve for death count, separately for

each county using the most recent 5 days of data from that county. These predictors have the

following form:

E(deathst | t) = e�0+�1t, t = 1, . . . , 5, (1)

where t denotes the day, and we fit a separate predictor for each county. The coe�cients �0 and

�1 are fit for each county using maximum likelihood estimation under a Poisson generalized linear

model (GLM) with t as the independent variable and deathst as the observed variable. If the first

death in a county occurred less than 5 days prior to fitting the predictor, only the days from the

first death were used for the fit. If there is only one day’s worth of data, we simply predict the

most recent value for future values. We also fitted exponential predictors to the full time-series of

available data for each county, but due to the rapidly shifting trends, these performed worse than

our 5-day predictors. Besides, we found that predictors fit using 6 days of data yielded similar

results to predictors fit using 5 days of data, and using 4 days of data performed slightly worse,

where we cross-validated on previous days’ data.

To handle possible over dispersion of data (when the variance is larger than the mean), we also

estimated �0,�1 by fitting a negative binomial regression model (in place of Poisson GLM) with

inverse-scale parameter taking values in {0.05, 0.15, 1}. However, when evaluating our predictions

on earlier data (before April 1), this yields a larger mean absolute error than the Poisson GLM for

counties with more than 10 deaths.

3.2 The shared-county exponential predictor (the “shared” predictor)

To incorporate additional data into our predictions (i.e., extending beyond using 5 data points from

each county to fit separate predictors), we fit an predictor that combines data across the counties.

In particular, we produce a single “shared” predictor that pools information from counties across

the nation to predict future deaths in the individual counties.

The format of the shared predictor is slightly di↵erent from the separate county predictors.

First, instead of only including the most recent 5 days of data from each county, we include all days

after the third death in each county. Thus the data from many of the counties extend substantially
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further back than 5 days. Second, we pool all of the county-specific data points together and fit a

single predictor. By using data that extends much further back, the early-stage data from counties

that are now much further along could inform the predictions for current early-stage counties.

Third, instead of basing the exponential predictor prediction on time t, we base the prediction

on the (logarithm of the) previous day’s death count. This log-transformation makes the counties

comparable since the outbreaks began at di↵erent time points in each county. The shared predictor

is given as follows:

E(deathst | t) = e�0+�1 log(deathst�1+1), (2)

where the coe�cients �0 and �1 are fitted by maximizing the log-likelihood corresponding to Poisson

GLM (like that in the separate county model (1)).

3.3 The expanded shared predictor (the “expanded shared” predictor)

Next, we expand the shared county exponential predictor to include other COVID-19 dynamic

(time-series) features. In particular, we include the number of confirmed cases in the county

as this may give an additional indication to the severity of an outbreak, as well as the number

of confirmed deaths and cases in neighboring counties. Let casest, neigh deathst, neigh casest
respectively denote the number of cases in the county at time t, the total number of deaths across

all neighboring counties at time t, and the total number of cases across all neighboring counties at

time t. Then our (expanded) predictor to predict the number of confirmed deaths k days into the

future is given by

E[deathst|t] = e�0+�1 log(deathst�1+1)+�2 log(casest�k+1)+�3 log(neigh deathst�k+1)+�4 log(neigh casest�k+1),

(3)

where the coe�cients {�i}4i=0 are shared across all counties and are fitted using the Poisson GLM.

Note that while fitting the model, e.g., at time t, while we use the death count of the county till

time t� 1, we use the new features (cases in the current county, cases in neighboring counties, and

deaths in neighboring counties) only up to time t � k. For predicting the death count for a given

county k days into the future (say t+ k), we iteratively use the day-by-day sequential predictions

for the death counts for that county, and use the information for the other features only till time

t3. It may be possible to jointly predict the new features along with the number of deaths, but we

leave this to future work.

For this predictor, we found it beneficial to implement feature scaling and regularization. We

3
More precisely, first we estimate ddeathst+1 using (deathst, casest�k+1, neigh deathst�k+1, neigh casest�k). Then,

for j = 1, 2, . . . , k � 1 we recursively plug-in ( ddeathst+j , casest�k+j+1, neigh deathst�k+j+1, neigh casest�k+j+1) in

equation (3) to estimate ddeathst+j+1, and finally obtain an estimate ddeathst+k for k-days ahead.
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scaled all features to have mean 0 and variance 1 and applied elastic net with an equal penalty

on the `1 and `2 regularization terms. The regularization penalty of 0.01 was chosen through

cross-validation on previous days’ data.

3.4 The demographics shared predictor (the “demographics shared” predictor)

The demographics shared county exponential predictor (the “demographics shared” predictor) is

again very similar to the shared predictor. However, it includes several static county demographic

and healthcare-related features to address the fact that some counties will be a↵ected more severely

than others due to several factors. The severity in the counties can depend on (a) their population

makeup, e.g., older populations are likely to experience a higher death rate than younger popu-

lations, (b) their hospital preparedness, e.g., if a county has very few ICU beds relative to their

population, they might experience a higher death rate since the number of ICU beds as this is cor-

related strongly (0.96) with the number of ventilators [25]), and (c) their population health, e.g.,

age, smoking history, diabetes, cardiovascular disease, and respiratory diseases are all considered

to be likely risk factors for acute COVID-19 infection [15, 24, 16, 14, 28]).

For a county c, given a set of demographic and healthcare-related features dc1, . . . , d
c
m (such as

median age, population density, or number of ICU beds), the demographics shared predictor is

given by

E[deathst|t, c] = e�1 log(deathst�1+1)+�0+�d1
dc1+···+�dmdcm , (4)

where the coe�cients {�0,�1,�d1 , . . . ,�dm} are fitted by maximizing the log-likelihood of the cor-

responding Poisson generalized linear model. The features we choose fall into three categories:

1. County density and size: population density per square mile (2010), population estimate (2018)

2. County healthcare resources: number of hospitals (2018-2019), number of ICU beds (2018-2019)

3. County health demographics: median age (2010), percentage of the population who are smokers

(2017), percentage of the population with diabetes (2016), deaths due to respiratory diseases per

100,000 (2017), deaths due to heart diseases per 100,000 (2014-2016).

3.5 The separate county linear predictor (the “linear separate” predictor)

We also fit a linear version of the separate county predictors where we use linear regression to

generate a linear prediction (rather than an exponential prediction) fit to the most recent 4 days

of data in a county. We use this predictor because some counties have started exhibiting sub-

exponential growth. For these counties, the exponential predictors introduced in the previous

section may not be a good fit to the data. The linear separate predictor is given by

E[deathst|t] = �0 + �1t, (5)
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where we fit the coe�cients �0 and �1 using ordinary least squares. The separate county linear

predictor (5) is not a good fit for the counties that still exhibit exponential growth. In the following

section, we introduce the Combined Linear and Exponential Predictor (CLEP), which incorporates

the abilities of our exponential predictors (to deal with exponential trends) and linear predictor

(to deal with sub-exponential trends). In practice, we found that combining the expanded shared

predictor and the linear predictor has the best predictive performance.

3.6 The combined predictors: CLEP

Finally, we consider various combinations of the five predictors we have introduced using an ensem-

ble approach similar to that described in [26]. The Combined Linear and Exponential Predictors

(CLEPs) are developed as follows.

Let us first consider the procedure for generating a combined predictor for any two of our

predictors. Let by1t+k and by2t+k be the predictions of (cumulative) deaths by day t+ k made on day

t by the two predictors that we can index arbitrarily by predictor 1 and 2. Note that we only have

access to complete confirmed cases and recorded deaths data up to day t � 1 on day t, because

recorded deaths and confirmed cases are not fully updated until the end of the day. The prediction

of the combined estimates of deaths by day t+ k can be written as

bycombined
t+k = w1

t by1t+k + w2
t by2t+k, (6)

where w1
t � 0 and w2

t � 0 represent the weights of the first and second predictors respectively, and

w1
t +w2

t = 1. We select weights for the two predictors based on their past predictive performance,

using an exponential decay term (a function of t). As a result, more recent predictive performance

has more influence on the weight term than less recent performance. Let bymi (where m = 1, 2)

denote the predicted number of deaths from predictor m for day i, yi denote the actual deaths

for day i, and `(bymi , yi) denote a loss function (used for measuring predictive performance). Then

following [26], the exponential weighting term wm
t for predictor m applied on day t is given by

wm
t / exp

 
�c(1� µ)

t�1X

i=t0

µt�i`(bymi , yi)

!
, (7)

where µ 2 (0, 1) and c > 0 are tuning parameters, t0 represents some past time point, and t

represents the day on which the prediction is calculated. Since µ < 1, the µt�i term represents the

greater influence given to more recent predictive performance. Note that the loss terms `(bymi , yi)

used in the weights are calculated based on the three-day predictions from seven predictors built

over the course of a week; starting with the predictor built 11 days ago (for predicting counts 8

days ago) up to the predictor built 4 days ago (for predicting yesterday’s counts). The influence

of each predictor’s loss decreases as we go back in time due to the exponential decaying term µt�i
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in the weight expression (7). We chose the past week’s 3-day performance in the weights since it

yielded good performance for our ensemble predictor for predicting death counts several days in

the future.

In [26], the authors choose `(bymi , yi) = |bymi � yi| as their loss function, since their errors roughly
had a Laplacian distribution. In our case, we found that using this loss function led to vanishing

weights due to the heavy-tailed nature of our error distribution. To help address this, we apply a

logarithm to the predictions and the true values, and define `(bymi , yi) = | log(1+ bymi )� log(1+ yi)|,
where we add a one inside the logarithm to handle potential zero values. We found that this

transformation improved performance in practice.

To generate our predictions, we use the default value of c in [26] which is 1. However, we

change the value of µ from the default of 0.9 to 0.5 for two reasons: (i) we found µ = 0.5 yielded

better empirical performance, and (ii) it ensured that performance more than a week ago had little

influence over the predictor. We chose t0 = t � 7 (i.e., we aggregate the predictions of the past

week into the weight term), since we found that performance did not improve by extending further

back than 7 days. (Moreoever,the information from more than a week e↵ectively has a vanishing

e↵ect due to our choice of µ.) Thus, in practice, we used weights for predictor m of the form:

wm
t / exp

 
�0.5

t�1X

i=t�7

(0.5)t�i |log(1 + bymi )� log(1 + yi)|
!
, (8)

where bymi is the 3-day ahead prediction from the predictor m trained on data till time i� 3.

To extend our ensemble approach to developing and Combined Linear and Exponential Predic-

tors (CLEPs) consisting of more than two predictors, the weights are calculated in the same way,

and normalized so that
PM

m=1w
m
t = 1, where M is the total number of predictors that make up

the CLEP.

4 Results

In this paper, we focused on short-term (up to 10 days) predictive accuracy. Table 2 summarizes

the Mean Absolute Errors (MAEs) of our predictions for cumulative recorded deaths by April 8th

using (a) the un-scaled death counts ( 1n
Pn

i=1 |byi � yi|), and (b) using a log-scale ( 1n
Pn

i=1 | log(byi +
1) � log(yi + 1)|). In each column, the smallest mean absolute error is displayed in bold. We

compared di↵erent predictors to predict death count for k-days in future for k 2 {3, 5, 7, 10} and

filtered for counties with � j deaths for j 2 {10, 100}. In all the choices, either the expanded

shared predictor or the CLEP ensemble that combines the expanded shared exponential predictor

and the separate county linear predictors perform the best.

In Figure 1, we explore the results of our best performing predictor: the CLEP ensemble pre-

dictor with the expanded shared predictor and the linear predictors, focusing on 7-day predictions.

9



Table 2: Mean Absolute Errors (Top: raw scale; Bottom: log scale) of our predictions for deaths
by April 8, 2020. “t-day prediction” (t = 3, 5, 7, 10) indicates predictions made t days ahead of
April 8. “deaths� j” (j = 10, 100) indicates average error across all counties with nonzero cases
and cumulative deaths greater than j on April 8. “Average deaths” are average cumulative deaths
across all counties in the corresponding category and are given here for reference. The smallest
error in each column is displayed in bold.

(a) Raw scale MAE

3-day prediction 5-day prediction 7-day prediction 10-day prediction

deaths>= 10 >= 100 >= 10 >= 100 >= 10 >= 100 >= 10 >= 100

separate 22.71 95.74 56.64 197.46 87.94 310.57 297.85 1113.44

shared 17.37 84.87 23.01 100.57 40.39 197.24 46.15 201.38

demographics 25.25 133.22 29.05 146.12 56.70 307.74 74.24 379.76

expanded shared 13.02 55.35 15.30 47.77 24.02 86.46 31.18 111.39
linear 11.10 39.50 21.75 98.74 30.85 142.07 47.64 215.37

CLEP (all 5 predictors) 14.56 66.46 22.52 86.59 33.58 144.77 60.97 249.12

CLEP (expanded +linear) 8.59 29.51 14.40 52.08 16.40 63.14 29.77 123.70

Average deaths

(for reference)
75.53 373.29 75.53 373.29 75.53 373.29 75.53 373.29

(b) Log scale MAE

3-day prediction 5-day prediction 7-day prediction 10-day prediction

deaths>= 10 >= 100 >= 10 >= 100 >= 10 >= 100 >= 10 >= 100

separate 0.30 0.20 0.62 0.54 0.82 0.60 1.43 1.04

shared 0.17 0.16 0.28 0.23 0.36 0.36 0.54 0.51

demographics 0.20 0.23 0.26 0.29 0.38 0.49 0.61 0.78

expanded shared 0.17 0.13 0.25 0.12 0.36 0.19 0.52 0.46
linear 0.24 0.12 0.33 0.26 0.53 0.47 1.07 1.05

CLEP (all 5 predictors) 0.18 0.14 0.31 0.26 0.37 0.34 0.64 0.63

CLEP (expanded +linear) 0.17 0.09 0.24 0.15 0.27 0.20 0.52 0.65

Average log of deaths

(for reference)
4.34 5.93 4.34 5.93 4.34 5.93 4.34 5.93
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Since there are over 3,000 counties in the United States, we first focus on results for six of the

currently worst a↵ected counties, including Queens County, NY; King County, WA; Kings County,

NY; New York County, NY; Orleans County, LA; and Wayne County, MI. Later, we also consider

results for six randomly selected counties.

Specifically, Figure 1 displays the number of cumulative deaths (by days since 10 deaths) up

to April 8, 2020, for these six worst a↵ected counties. The predicted number of deaths based on

the best-performing ensemble predictor (the expanded shared predictor plus the linear predictor)

for the 7 days of April 2-8 (inclusive) are displayed as a dashed blue line. These predictions were

made on April 1. Overall, the CLEP appears to fit the data closely for three of these counties

(Orleans County LA, Queens County NY, and Wayne County MI). However, our predictor (i)

greatly under-predicts the number of deaths in Kings County NY (whose growth in the past few

days also grew more than would be expected under exponential growth), (ii) slightly under-predicts

the number of deaths in New York County NY (whose growth in the past few days also grew more

than expected), and (iii) slightly over-predicts the number of deaths in King County WA (which

now appears to be exhibiting sub-exponential growth).

Figure 2 shows these line plots for 6 randomly selected counties, and again, we see that our

predictors perform very well for three of the counties (Broward County FL, Dougherty County

GA, and Monmouth County NJ), but performs slightly less well for Bergen County NJ, Su↵olk

County NY and Oakland County MI. However, in these counties with poorer performance, the

trends in the data between April 4 and April 8 are surprisingly irregular. For instance, Su↵olk

County NY reported no new deaths on April 5 but reported 60 new deaths on April 6. These

strange behaviours in the observed counts are likely due to death reports not being released on the

weekend (April 5 was a Sunday).

Figure 3 compares the actual number of deaths by April 8 against the predicted number of

deaths by April 8 for all counties based on the ensemble predictor based on the expanded shared

and the linear predictors. Note that the predictions were generated on April 1, using data from

seven days prior to the prediction date April 8. We observe that overall the predictions are very

close to the true values.

5 Related Work

Several recent works have tried to predict the number of cases and deaths related to COVID-19.

But to our best knowledge, none of these works have predicted deaths and cases at the county

level. In addition, directly comparing other researcher’s forecasting results to our own is di�cult

for several other reasons: (1) the predictors mostly make strong assumptions and involve little

data-fitting, (2) we do not have access to a direct implementation of their predictors (or results),

and (3) their predictors focus on substantially longer time horizon when compared to ours. Keeping
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Figure 1: A grid of line charts displaying the cumulative number of confirmed COVID-19 deaths
by day measured since 10 deaths for six of the worst-a↵ected counties. The observed data is shown
in grey. The seven-day predicted deaths from the ensemble predictor consisting of the expanded
shared predictor and the linear predictor based on the data up to April 1 is shown in the dashed
blue. Overlapping text annotations are hidden.
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Figure 2: A grid of line charts displaying the cumulative number of confirmed COVID-19 deaths
by day measured since 10 deaths for six randomly selected counties. The observed data is shown
in grey. The seven-day predicted deaths from the ensemble predictor consisting of the expanded
shared predictor and the linear predictor based on the data up to April 1 is shown in the dashed
blue. Overlapping text annotations are hidden.
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Figure 3: A scatterplot displaying the actual number of deaths on April 8 against the predicted
number on deaths by April 8 (where the prediction was generated seven days earlier on April 1).
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these points in mind, we now provide a brief summary of recent work on predictive modeling for

COVID-19.

Two recent works [20] and [13] have modeled the death counts at the state level in the US. While

the Institute for Health Metrics and Evaluation (IHME) [20] model4 is based on Farr’s Law with

feedback from Wuhan data, the Imperial College predictor [13] uses an individual-based simulation

predictor with parameters chosen based on prior knowledge. On the topic of Farr’s Law, we note

that a 1990 paper [10] used Farr’s Law to predict that the total cases from the AIDS epidemic

would diminish by the mid-1990s and the total number of cases would be around 200,000 in the

entire lifetime of the AIDS epidemic. It is now estimated that 32 million people have died from the

disease so far. While the AIDS pandemic is very di↵erent to the COVID-19 pandemic, it is still

worth keeping in mind.

Another approach uses exponential smoothing from time series predictors to estimate day-level

COVID-19 cases [11]. In addition, several works use compartment epidemiological predictors such

as SIR, SEIR and SIRD [12, 23, 9] to provide simulations at the national level. Other works [22, 17]

simulate the e↵ect of social distancing policies either in future for USA, or in a retrospective manner

for China. Finally, several papers estimate epidemiological parameters retrospectively based on

data from China [27, 19].

6 Discussion

We recognize the value that prediction intervals hold and the utility that giving a range of possible

predictions provides. However, there are some key challenges to creating good prediction intervals

for predicting COVID-19 recorded deaths which implicitly require an objective way of evaluating

the quality of such an interval. The curves in Figure 1 and Figure 2 suggest a large source of

prediction inaccuracy was due to regime changes, in which the number of deaths would exhibit

sharp transitions in behavior (either a sharp uptick in number of record deaths or a change from

exponential growth to something closer to linear). Due to the highly dynamic nature of COVID-

19, it can be challenging to create good intervals that can account for these sharp regime changes.

Furthermore, the progression of theses curves can be subject to external influences such as major

policy changes (such as states revoking shelter-in-place orders) or human behavior changes or

scientific developments (such as technology allowing multiple people to use a single ventilator).

Even without these dynamic considerations, constructing good prediction intervals requires careful

thought since confidence interval construction methods are typically built upon assumptions that

the underlying probabilistic models hold (approximately or to a desirable extent). We note that

validity of bootstrap also hinges upon probabilistic assumptions. These assumptions are very

4
The IHME model has been updated regularly since its first release on March 26, 2020. Here we briefly described

their version released on March 26, 2020. In their model, the authors say that they are no longer using Farr’ Law

but the precise modeling details were not available until the submission of this manuscript.
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di�cult to check in a dynamic situation. Furthermore, there has not yet been a consensus way to

construct these intervals. As a matter of fact, a widely cited COVID-19 prediction model (at the

state level) [20] has been experimenting with di↵erent approaches resulting very di↵erent prediction

interval constructions [8] in di↵erent versions of their model. Despite these challenges, we hope to

create prediction intervals for our model in future work.

Conclusion In this paper, we introduce a repository of datasets containing COVID-19-related

information from a variety of public sources, and we used this data to fit a series of separate

(exponential and linear) predictors as well as ensemble predictors each designed to predict the

short-term (i.e. on the scale of 1 week) number of county-level deaths. We found that for the

majority of counties that appear to exhibit exponential growth, our predictors accurately predict

the number of deaths over the next week. Our predictors are less accurate for counties that no

longer appear to exhibit exponential growth, either because their reported death counts are growing

faster or slower than an exponential rate. We hope that our data repository and our predictors for

predicting the short-term trends of the COVID-19 deaths at the county level will help to provide

useful information for those who need to make di�cult decisions at this critical time in the evolving

pandemic.
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