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Slow Coherency

A large power system usually consists of tightly connected control
regions with few interarea ties for power exchange and reserve
sharing

The oscillations between these groups of strongly connected
machines are the interarea modes

These interarea modes are lower in frequency than local modes
and intra-plant modes

Singular perturbations method can be used to show this time-scale
separation
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Klein-Rogers-Kundur 2-Area System
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Coherency in 2-Area System
Disturbance: 3-phase fault at Bus 3, cleared by removal of 1 line
between Buses 3 and 101
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Power System Model

An n-machine, N -bus power system with classical electromechanical
model and constant impedance loads:

miδ̈i = Pmi − Pei = Pmi −
EiVj sin(δi − θj)

x′di
= fi(δ, V ) (1)

where

machine i modeled as a constant voltage Ei behind a transient
reactance x′di
mi = 2Hi/Ω, Hi = inertia of machine i

Ω = 2πfo = nominal system frequency in rad/s

damping D = 0

δ = n-vector of machine angles

Pmi = input mechanical power, Pei = output electrical power
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Power System Model

the bus voltage

Vj =
√

V 2
jre + V 2

jim, θj = tan−1

(

Vjim

Vjre

)

(2)

Vjre and Vjim are the real and imaginary parts of the bus voltage
phasor at Bus j, the terminal bus of Machine i

V = 2N -vector of real and imaginary parts of load bus voltages
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Power Flow Equations
For each load bus j, the active power flow balance

Pej − Real







N
∑

k=1,k 6=j

(Vjre + jVjim − Vkre − jVkim)

(

Vjre + jVjim

RLjk + jXLjk

)∗






− V
2

j Gj = g2j−1 = 0 (3)

and the reactive power flow balance

Qej −Imag







N
∑

k=1,k 6=j

(Vjre + jVjim − Vkre − jVkim)

(

Vjre + jVjim

RLjk + jXLjk

)∗






−V
2

j Bj +V
2

j

BLjk

2
= g2j = 0

(4)

RLjk, XLjk, and BLjk are the resistance, reactance, and line
charging, respectively, of the line j-k

Pej and Qej are generator active and reactive electrical output
power, respectively, if bus j is a generator bus

Gj and Bj are the load conductance and susceptance at bus j

Note that j denotes the imaginary number if it is not used as an index.
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Electromechanical Model

Mδ̈ = f(δ, V ), 0 = g(δ, V ) (5)

M = diagonal machine inertia matrix

f = vector of acceleration torques

g = power flow equation
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Linearized Model
Linearize (5) about a nominal power flow equilibrium (δo, Vo) to obtain

M∆δ̈ =
∂f(δ, V )

∂δ

∣

∣

∣

∣

δo,Vo

+
∂f(δ, V )

∂V

∣

∣

∣

∣

δo,Vo

= K1∆δ +K2∆V (6)

0 =
∂g(δ, V )

∂δ

∣

∣

∣

∣

δo,Vo

+
∂g(δ, V )

∂V

∣

∣

∣

∣

δo,Vo

= K3∆δ +K4∆V (7)

∆δ = n-vector of machine angle deviations from δo

∆V = 2N -vector of the real and imaginary parts of the load bus
voltage deviations from Vo

K1, K2, and K3 are partial derivatives of the power transfer
between machines and terminal buses, K1 is diagonal

K4 = network admittance matrix and nonsingular.

the sensitivity matrices Ki can be derived analytically or from
numerical perturbations using the Power System Toolbox
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Linearized Model

Solve (6) for
∆V = −K−1

4 K3∆δ (8)

to obtain
M∆δ̈ = K1 −K2K

−1
4 K3∆δ = K∆δ (9)

where

Kij = EiEj (Bij cos(δi − δj)−Gij sin(δi − δj))|δo,Vo
, i 6= j (10)

and Gij + jBij is the equivalent admittance between machines i and j.
Furthermore,

Kii = −
n
∑

j=1,j 6=i

Kij (11)

Thus the row sum of K equals to zero. The entries Kij are known as
the synchronizing torque coefficients.
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Slow Coherent Areas

Assume that a power system has r slow coherent areas of machines and
the load buses that interconnect these machines

Define

∆δαi = deviation of rotor angle of machine i in area α from its
equilibrium value

mα
i = inertia of machine i in area α

Order the machines such that ∆δαi from the same coherent areas
appears consecutively in ∆δ.
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Weakly Coupled Areas

We attribute the slow coherency phenomenon to be primarily due to
the connections between the machines in the same coherent areas being
stiffer than those between different areas, which can be due to two
reasons:

The admittances of the external connections BE
ij much smaller

than the admittances of the internal connections BI
pq

ε1 =
BE

ij

BI
pq

(12)

where E denotes external, I denotes internal, and i, j, p, q are bus
indices. This situation also includes heavily loaded high-voltage,
long transmission lines between two coherent areas.
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The number of external connections is much less than the number
of internal connections

ε2 =
γ̄E

γI
(13)

where

γ̄E = max
α

{γEα }, γI = min
α

{γIα}, α = 1, ..., r (14)

γEα = (the number of external connections of area α)/Nα

γIα = (the number of internal connections of area α)/Nα

where Nα is the number of buses in area α.
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Internal and External Connections
For a large power system, the weak connections between coherent areas
can be represented by the small parameter

ε = ε1ε2 (15)

Separate the network admittance matrix into

K4 = KI
4 + ǫKE

4 (16)

where KI
4 = internal connections and KE

4 = external connections.
The synchronizing torque or connection matrix K is

K = K1 −K2(K
I
4 + ε(KI

4 ))
−1K3

= K1 −K2(K
I
4 (I + ε(KI

4 )
−1KE

4 ))−1K3 = KI + ǫKE (17)

where
KI = K1 −K2(K

I
4 )

−1K3, KE = −K2K
E
4εK3 (18)

In the separation (17), the property that each row of KI sums to zero
is preserved.
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Slow Variables

Define for each area an inertia weighted aggregate variable

yα =

nα
∑

i=1

mα
i ∆δαi /m

α, α = 1, 2, . . . , r (19)

where mα
i = inertia of machine i in area α, nα = number of machines

in area α, and

mα =

nα
∑

i=1

mα
i , α = 1, 2, . . . , r (20)

is the aggregate inertia of area α.
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Denote by y = the r-vector whose αth entry is yα.
The matrix form of (19) is

y = C∆δ = M−1
a UTM∆δ (21)

where
U = blockdiag(u1, u2, . . . , ur) (22)

is the grouping matrix with nα × 1 column vectors

uα =
[

1 1 . . . 1
]T

, α = 1, 2, . . . , r (23)

Ma = diag(m1,m2, . . . ,mr) = UTMU (24)

is the r × r diagonal aggregate inertia matrix.
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Fast Variables
Select in each area a reference machine, say the first machine, and
define the motions of the other machines in the same area relative to
this reference machine by the local variables

zαi−1 = ∆δαi −∆δα1 , i = 2, 3, . . . , nα, α = 1, 2, . . . , r (25)

Denote by zα the (nα − 1)-vector of zαi and conside zα as the αth
subvector of the (n− r)-vector z. Eqn. (25) in matrix form is

z = G∆δ = blockdiag(G1, G2, . . . , Gr)∆δ (26)

where Gα is the (nα − 1)× nα matrix

Gα =













−1 1 0 . 0

−1 0 1 . 0

. . . . .

−1 0 0 . 1













(27)
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Slow and Fast Variable Transformation

A transformation of the original state ∆δ into the aggregate variable y
and the local variable z

[

y

z

]

=

[

C

G

]

∆δ (28)

The inverse of this transformation is

∆δ =
(

U G+
)

[

y

z

]

(29)

where
G+ = GT (GGT )−1 (30)

is block-diagonal.
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Slow Subsystem
Apply the transformation (28) to the model (9), (17)

Maÿ = ǫKay + ǫKadz

Mdz̈ = ǫKday + (Kd + ǫKdd)z (31)

where

Md = (GM−1GT )−1, Ka = UTKEU

Kda = UTKEM−1GTMd, Kda = MdGM−1KEU

Kd = MdGM−1KIM−1GTMd,Kdd = MdGM−1KEM−1GTMd (32)

Ka, Kad, and Kda are independent of KI

System (31) is in the standard singularly perturbed form

ε is both the weak connection parameter and the singular
perturbation parameter

Neglecting the fast dynamics, the slow subsystem is

Maÿ = εKay (33)
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Formulation including Power Network
Apply (28) to the model (6)-(7)

Maÿ = K11y +K12z +K13∆V

Mdz̈ = K21y +K22z +K23∆V

0 = K31y +K32z + (KI
4 + εKE

4 )∆V (34)

where

K11 = UTK1U, K12 = UTK1G
+, K13 = UTK2, K21 = (G+)TK1U

K22 = (G+)TK1G
+, K23 = (G+)TK2, K31 = K3U, K32 = K3G

+(35)

Eliminating the fast variables, the slow subsystem is

Maÿ = K11y +K13∆V

0 = K31y +K4∆V (36)

This is the inertial aggregate model which is equivalent to linking the
internal nodes of the coherent machines by infinite admittances.
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2-Area System Example
Connection matrix

K =













−9.4574 8.0159 0.5063 0.9351

8.7238 −11.3978 0.9268 1.7472

0.6739 0.9520 −9.6175 7.9917

1.3644 1.9325 8.1747 −11.4716













(37)

Decompose K into internal and external connections

K
I =













−8.0159 8.0159 0 0

8.7238 −8.7238 0 0

0 0 −7.9917 7.9917

0 0 8.1747 −8.1747













(38)

εK
E =













−1.4414 0 0.5063 0.9351

0 −2.6739 0.9268 1.7472

0.6739 0.9520 −1.6258 0

1.3644 1.9325 0 −3.2969













(39)
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EM Modes in 2-Area System

λ(M−1K) = 0,−14.2787,−60.7554,−62.2531 (40)

with the corresponding eigenvector vectors

v1 =













0.5

0.5

0.5

0.5













, v2 =













0.4878

0.4031

−0.5672

−0.5271













, v3 =













0.6333

−0.7446

0.1924

−0.0863













, v4 =













0.1102

−0.1494

−0.8098

0.5566













(41)

Interarea mode:
√
−14.279 = ±j3.779 rad/s

Local modes:
√
−60.755 = ±j7.795 rad/s and√

−62.253 = ±j7.890 rad/s
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Slow and Fast Subsystems of 2-Area System

Slow dynamics:

Ma =
1

2π × 60

[

234 0

0 234

]

, εKa =

[

−4.1154 4.1154

4.9227 −4.9227

]

(42)

The eigenvalues of M−1
a Ka are 0 and −14.561 ⇒ an interarea mode

frequency of
√
−14.561 = ±j3.816 rad/s.

Fast local dynamics:

Md =
1

2π × 60

[

58.500 0

0 55.611

]

, Kd =

[

−8.3699 0

0 −8.0628

]

(43)
The eigenvalues of M−1

d Kd are −53.939 and −54.660 ⇒ local modes of
±j7.3443 and ±j7.3932 rad/s.
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Finding Coherent Groups of Machines

1 Compute the electromechanical modes of an N -machine power

2 Select the (interarea) modes with frequencies less than 1 Hz

3 Compute the eigenvectors (mode shapes) of these slower modes

4 Group the machines with similar mode shapes into slow coherent
groups

5 These slow coherent groups have weak or sparse connections
between them
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Grouping Algorithm
Plot rows of the slow eigenvector Vs of the interarea modes

1
 

2
 

0

1
 

2
 

0 1

1

Use Gaussian elimination to select the r most separated rows as
reference vectors and group them into Vs1 and reorder Vs as

Vs =

[

Vs1

Vs2

]

⇒
[

Vs1

Vs2

]

V −1
s1 =

[

I

L

]

=

[

I

Lg

]

+

[

0

O(ε)

]

(44)

Use Vs1 to form a new coordinate system
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Coherent Groups in 2-Area System

Vs =













0.5 0.4878

0.5 0.4031

0.5 −0.5672

0.5 −0.5271













Gen 1

Gen 2

Gen 11

Gen 12

, Vs1 =

[

0.5 0.4878

0.5 −0.5672

]

Gen 1

Gen 11

(45)
Then

V ′
sV

−1
s1 =













1 0

0 1

0.9198 0.0802

0.0380 0.9620













Gen 1

Gen 11

Gen 2

Gen 12

(46)
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Coherency for Load Buses

Vθ =















































0.5 0.4283

0.5 0.3535

0.5 0.2556

0.5 0.3844

0.5 −0.5018

0.5 −0.4667

0.5 −0.3556

0.5 0.3128

0.5 −0.0523

0.5 −0.4671

0.5 −0.4125















































Bus 1

Bus 2

Bus 3

Bus 10

Bus 11

Bus 12

Bus 13

Bus 20

Bus 101

Bus 110

Bus 120

VθV
−1

s1 =















































0.9436 0.0564

0.8727 0.1273

0.7800 0.2200

0.9020 0.0980

0.0620 0.9380

0.0953 0.9047

0.2006 0.7994

0.8342 0.1658

0.4880 0.5120

0.0949 0.9051

0.1466 0.8534















































(47)

Bus 101
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17-Area Partition of NPCC 48-Machine System
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EQUIV and AGGREG Functions for Power System

Toolbox

L group: grouping algorithm

coh-map, ex group: tolerance-based grouping algorithm

Podmore: R. Pormore’s algorithm of aggregating generators at
terminal buses

i agg: inertial aggregation at generator internal buses

slow coh: slow-coherency aggregation, with additional impedance
corrections

These functions use the same power system loadflow input data files as
the Power System Toolbox.
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