CURENT Course

Power System Coherency and Model Reduction

Prof. Joe H. Chow

Rensselaer Polytechnic Institute ECSE Department

November 1, 2017

Slow Coherency

- A large power system usually consists of tightly connected control regions with few interarea ties for power exchange and reserve sharing
- The oscillations between these groups of strongly connected machines are the interarea modes
- These interarea modes are lower in frequency than local modes and intra-plant modes
- Singular perturbations method can be used to show this time-scale separation

References:
J H. Chow, G. Peponides, B. Avramovic, J. R. Winkelman, and P. V. Kokotovic, Time-Scale Modeling of Dynamic Networks with Applications to Power Systems, Springer-Verlag, 1982.
J. H. Chow, ed., Power System Coherency and Model Reduction, Springer, 2013.
© J. H. Chow (RPI-ECSE)

Klein-Rogers-Kundur 2-Area System

Coherency in 2-Area System

Disturbance: 3-phase fault at Bus 3, cleared by removal of 1 line between Buses 3 and 101

© J. H. Chow (RPI-ECSE)
Coherency
November 1, 2017

Power System Model

An n-machine, N-bus power system with classical electromechanical model and constant impedance loads:

$$
\begin{equation*}
m_{i} \ddot{\delta}_{i}=P_{m i}-P_{e i}=P_{m i}-\frac{E_{i} V_{j} \sin \left(\delta_{i}-\theta_{j}\right)}{x_{d i}^{\prime}}=f_{i}(\delta, V) \tag{1}
\end{equation*}
$$

where

- machine i modeled as a constant voltage E_{i} behind a transient reactance $x_{d i}^{\prime}$
- $m_{i}=2 H_{i} / \Omega, H_{i}=$ inertia of machine i
- $\Omega=2 \pi f_{o}=$ nominal system frequency in rad $/ \mathrm{s}$
- damping $D=0$
- $\delta=n$-vector of machine angles
- $P_{m i}=$ input mechanical power, $P_{e i}=$ output electrical power

Power System Model

- the bus voltage

$$
\begin{equation*}
V_{j}=\sqrt{V_{j \mathrm{re}}^{2}+V_{j \mathrm{im}}^{2}}, \quad \theta_{j}=\tan ^{-1}\left(\frac{V_{j \mathrm{im}}}{V_{j \mathrm{re}}}\right) \tag{2}
\end{equation*}
$$

- $V_{j \text { re }}$ and $V_{j \mathrm{im}}$ are the real and imaginary parts of the bus voltage phasor at Bus j, the terminal bus of Machine i
- $V=2 N$-vector of real and imaginary parts of load bus voltages

Power Flow Equations

For each load bus j, the active power flow balance

$$
\begin{equation*}
P_{e j}-\text { Real }\left\{\sum_{k=1, k \neq j}^{N}\left(V_{j \mathrm{re}}+j V_{j \mathrm{im}}-V_{k \mathrm{re}}-j V_{k \mathrm{im}}\right)\left(\frac{V_{j \mathrm{re}}+j V_{j \mathrm{im}}}{R_{L j k}+j X_{L j k}}\right)^{*}\right\}-V_{j}^{2} G_{j}=g_{2 j-1}=0 \tag{3}
\end{equation*}
$$

and the reactive power flow balance
$Q_{e j}-\operatorname{Imag}\left\{\sum_{k=1, k \neq j}^{N}\left(V_{j \mathrm{re}}+j V_{j \mathrm{im}}-V_{k \mathrm{re}}-j V_{k \mathrm{im}}\right)\left(\frac{V_{j \mathrm{re}}+j V_{j \mathrm{im}}}{R_{L j k}+j X_{L j k}}\right)^{*}\right\}-V_{j}^{2} B_{j}+V_{j}^{2} \frac{B_{L j k}}{2}=g_{2 j}=0$

- $R_{L j k}, X_{L j k}$, and $B_{L j k}$ are the resistance, reactance, and line charging, respectively, of the line j - k
- $P_{e j}$ and $Q_{e j}$ are generator active and reactive electrical output power, respectively, if bus j is a generator bus
- G_{j} and B_{j} are the load conductance and susceptance at bus j Note that j denotes the imaginary number if it is not used as an index.$\hat{1}$

Electromechanical Model

$$
\begin{equation*}
M \ddot{\delta}=f(\delta, V), \quad 0=g(\delta, V) \tag{5}
\end{equation*}
$$

- $M=$ diagonal machine inertia matrix
- $f=$ vector of acceleration torques
- $g=$ power flow equation

Linearized Model

Linearize (5) about a nominal power flow equilibrium $\left(\delta_{o}, V_{o}\right)$ to obtain

$$
\begin{align*}
M \Delta \ddot{\delta} & =\left.\frac{\partial f(\delta, V)}{\partial \delta}\right|_{\delta_{o}, V_{o}}+\left.\frac{\partial f(\delta, V)}{\partial V}\right|_{\delta_{o}, V_{o}}=K_{1} \Delta \delta+K_{2} \Delta V \tag{6}\\
0 & =\left.\frac{\partial g(\delta, V)}{\partial \delta}\right|_{\delta_{o}, V_{o}}+\left.\frac{\partial g(\delta, V)}{\partial V}\right|_{\delta_{o}, V_{o}}=K_{3} \Delta \delta+K_{4} \Delta V \tag{7}
\end{align*}
$$

- $\Delta \delta=n$-vector of machine angle deviations from δ_{o}
- $\Delta V=2 N$-vector of the real and imaginary parts of the load bus voltage deviations from V_{o}
- K_{1}, K_{2}, and K_{3} are partial derivatives of the power transfer between machines and terminal buses, K_{1} is diagonal
- $K_{4}=$ network admittance matrix and nonsingular.
- the sensitivity matrices K_{i} can be derived analytically or from numerical perturbations using the Power System Toolbox

Linearized Model

Solve (6) for

$$
\begin{equation*}
\Delta V=-K_{4}^{-1} K_{3} \Delta \delta \tag{8}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
M \Delta \ddot{\delta}=K_{1}-K_{2} K_{4}^{-1} K_{3} \Delta \delta=K \Delta \delta \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{i j}=\left.E_{i} E_{j}\left(B_{i j} \cos \left(\delta_{i}-\delta_{j}\right)-G_{i j} \sin \left(\delta_{i}-\delta_{j}\right)\right)\right|_{\delta_{o}, V_{o}}, \quad i \neq j \tag{10}
\end{equation*}
$$

and $G_{i j}+j B_{i j}$ is the equivalent admittance between machines i and j. Furthermore,

$$
\begin{equation*}
K_{i i}=-\sum_{j=1, j \neq i}^{n} K_{i j} \tag{11}
\end{equation*}
$$

Thus the row sum of K equals to zero. The entries $K_{i j}$ are known as the synchronizing torque coefficients.

Slow Coherent Areas

Assume that a power system has r slow coherent areas of machines and the load buses that interconnect these machines

Define

- $\Delta \delta_{i}^{\alpha}=$ deviation of rotor angle of machine i in area α from its equilibrium value
- $m_{i}^{\alpha}=$ inertia of machine i in area α

Order the machines such that $\Delta \delta_{i}^{\alpha}$ from the same coherent areas appears consecutively in $\Delta \delta$.

Weakly Coupled Areas

We attribute the slow coherency phenomenon to be primarily due to the connections between the machines in the same coherent areas being stiffer than those between different areas, which can be due to two reasons:

- The admittances of the external connections $B_{i j}^{E}$ much smaller than the admittances of the internal connections $B_{p q}^{I}$

$$
\begin{equation*}
\varepsilon_{1}=\frac{B_{i j}^{E}}{B_{p q}^{I}} \tag{12}
\end{equation*}
$$

where E denotes external, I denotes internal, and i, j, p, q are bus indices. This situation also includes heavily loaded high-voltage, long transmission lines between two coherent areas.

- The number of external connections is much less than the number of internal connections

$$
\begin{equation*}
\varepsilon_{2}=\frac{\bar{\gamma}^{E}}{\underline{\gamma}^{I}} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\gamma}^{E}=\max _{\alpha}\left\{\gamma_{\alpha}^{E}\right\}, \quad \underline{\gamma}^{I}=\min _{\alpha}\left\{\gamma_{\alpha}^{I}\right\}, \quad \alpha=1, \ldots, r \tag{14}
\end{equation*}
$$

$\gamma_{\alpha}^{E}=($ the number of external connections of area $\alpha) / N^{\alpha}$ $\gamma_{\alpha}^{I}=($ the number of internal connections of area $\alpha) / N^{\alpha}$ where N^{α} is the number of buses in area α.

Internal and External Connections

For a large power system, the weak connections between coherent areas can be represented by the small parameter

$$
\begin{equation*}
\varepsilon=\varepsilon_{1} \varepsilon_{2} \tag{15}
\end{equation*}
$$

Separate the network admittance matrix into

$$
\begin{equation*}
K_{4}=K_{4}^{I}+\epsilon K_{4}^{E} \tag{16}
\end{equation*}
$$

where $K_{4}^{I}=$ internal connections and $K_{4}^{E}=$ external connections. The synchronizing torque or connection matrix K is

$$
\begin{align*}
K & =K_{1}-K_{2}\left(K_{4}^{I}+\varepsilon\left(K_{4}^{I}\right)\right)^{-1} K_{3} \\
& =K_{1}-K_{2}\left(K_{4}^{I}\left(I+\varepsilon\left(K_{4}^{I}\right)^{-1} K_{4}^{E}\right)\right)^{-1} K_{3}=K^{I}+\epsilon K^{E} \tag{17}
\end{align*}
$$

where

$$
\begin{equation*}
K^{I}=K_{1}-K_{2}\left(K_{4}^{I}\right)^{-1} K_{3}, \quad K^{E}=-K_{2} K_{4 \varepsilon}^{E} K_{3} \tag{18}
\end{equation*}
$$

In the separation (17), the property that each row of K^{I} sums to zerof is preserved.

Slow Variables

Define for each area an inertia weighted aggregate variable

$$
\begin{equation*}
y^{\alpha}=\sum_{i=1}^{n_{\alpha}} m_{i}^{\alpha} \Delta \delta_{i}^{\alpha} / m^{\alpha}, \quad \alpha=1,2, \ldots, r \tag{19}
\end{equation*}
$$

where $m_{i}^{\alpha}=$ inertia of machine i in area $\alpha, n_{\alpha}=$ number of machines in area α, and

$$
\begin{equation*}
m^{\alpha}=\sum_{i=1}^{n_{\alpha}} m_{i}^{\alpha}, \quad \alpha=1,2, \ldots, r \tag{20}
\end{equation*}
$$

is the aggregate inertia of area α.

Denote by $y=$ the r-vector whose α th entry is y^{α}. The matrix form of (19) is

$$
\begin{equation*}
y=C \Delta \delta=M_{a}^{-1} U^{T} M \Delta \delta \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\operatorname{blockdiag}\left(u_{1}, u_{2}, \ldots, u_{r}\right) \tag{22}
\end{equation*}
$$

is the grouping matrix with $n_{\alpha} \times 1$ column vectors

$$
\begin{gather*}
u_{\alpha}=\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right]^{T}, \quad \alpha=1,2, \ldots, r \tag{23}\\
M_{a}=\operatorname{diag}\left(m^{1}, m^{2}, \ldots, m^{r}\right)=U^{T} M U \tag{24}
\end{gather*}
$$

is the $r \times r$ diagonal aggregate inertia matrix.

Fast Variables

Select in each area a reference machine, say the first machine, and define the motions of the other machines in the same area relative to this reference machine by the local variables

$$
\begin{equation*}
z_{i-1}^{\alpha}=\Delta \delta_{i}^{\alpha}-\Delta \delta_{1}^{\alpha}, \quad i=2,3, \ldots, n_{\alpha}, \quad \alpha=1,2, \ldots, r \tag{25}
\end{equation*}
$$

Denote by z^{α} the $\left(n_{\alpha}-1\right)$-vector of z_{i}^{α} and conside z^{α} as the α th subvector of the $(n-r)$-vector z. Eqn. (25) in matrix form is

$$
\begin{equation*}
z=G \Delta \delta=\operatorname{blockdiag}\left(G_{1}, G_{2}, \ldots, G_{r}\right) \Delta \delta \tag{26}
\end{equation*}
$$

where G_{α} is the $\left(n_{\alpha}-1\right) \times n_{\alpha}$ matrix

$$
G_{\alpha}=\left[\begin{array}{ccccc}
-1 & 1 & 0 & . & 0 \tag{27}\\
-1 & 0 & 1 & . & 0 \\
\cdot & \cdot & . & . & \cdot \\
-1 & 0 & 0 & . & 1
\end{array}\right]
$$

Slow and Fast Variable Transformation

A transformation of the original state $\Delta \delta$ into the aggregate variable y and the local variable z

$$
\left[\begin{array}{l}
y \tag{28}\\
z
\end{array}\right]=\left[\begin{array}{l}
C \\
G
\end{array}\right] \Delta \delta
$$

The inverse of this transformation is

$$
\Delta \delta=\left(\begin{array}{ll}
U & G^{+}
\end{array}\right)\left[\begin{array}{l}
y \tag{29}\\
z
\end{array}\right]
$$

where

$$
\begin{equation*}
G^{+}=G^{T}\left(G G^{T}\right)^{-1} \tag{30}
\end{equation*}
$$

is block-diagonal.

Slow Subsystem

Apply the transformation (28) to the model (9), (17)

$$
\begin{align*}
M_{a} \ddot{y} & =\epsilon K_{a} y+\epsilon K_{a d} z \\
M_{d} \ddot{z} & =\epsilon K_{d a} y+\left(K_{d}+\epsilon K_{d d}\right) z \tag{31}
\end{align*}
$$

where

$$
\begin{align*}
M_{d} & =\left(G M^{-1} G^{T}\right)^{-1}, \quad K_{a}=U^{T} K^{E} U \\
K_{d a} & =U^{T} K^{E} M^{-1} G^{T} M_{d}, \quad K_{d a}=M_{d} G M^{-1} K^{E} U \\
K_{d} & =M_{d} G M^{-1} K^{I} M^{-1} G^{T} M_{d}, K_{d d}=M_{d} G M^{-1} K^{E} M^{-1} G^{T} M_{d} \tag{32}
\end{align*}
$$

- $K_{a}, K_{a d}$, and $K_{d a}$ are independent of K^{I}
- System (31) is in the standard singularly perturbed form
- ε is both the weak connection parameter and the singular perturbation parameter
Neglecting the fast dynamics, the slow subsystem is

$$
\begin{equation*}
M_{a} \ddot{y}=\varepsilon K_{a} y \tag{33}
\end{equation*}
$$

Formulation including Power Network

Apply (28) to the model (6)-(7)

$$
\begin{align*}
M_{a} \ddot{y} & =K_{11} y+K_{12} z+K_{13} \Delta V \\
M_{d} \ddot{z} & =K_{21} y+K_{22} z+K_{23} \Delta V \\
0 & =K_{31} y+K_{32} z+\left(K_{4}^{I}+\varepsilon K_{4}^{E}\right) \Delta V \tag{34}
\end{align*}
$$

where

$$
\begin{aligned}
& K_{11}=U^{T} K_{1} U, \quad K_{12}=U^{T} K_{1} G^{+}, \quad K_{13}=U^{T} K_{2}, \quad K_{21}=\left(G^{+}\right)^{T} K_{1} U \\
& K_{22}=\left(G^{+}\right)^{T} K_{1} G^{+}, \quad K_{23}=\left(G^{+}\right)^{T} K_{2}, \quad K_{31}=K_{3} U, \quad K_{32}=K_{3} G(35)
\end{aligned}
$$

Eliminating the fast variables, the slow subsystem is

$$
\begin{align*}
M_{a} \ddot{y} & =K_{11} y+K_{13} \Delta V \\
0 & =K_{31} y+K_{4} \Delta V \tag{36}
\end{align*}
$$

This is the inertial aggregate model which is equivalent to linking the internal nodes of the coherent machines by infinite admittances.

2-Area System Example

Connection matrix

$$
K=\left[\begin{array}{rrrr}
-9.4574 & 8.0159 & 0.5063 & 0.9351 \tag{37}\\
8.7238 & -11.3978 & 0.9268 & 1.7472 \\
0.6739 & 0.9520 & -9.6175 & 7.9917 \\
1.3644 & 1.9325 & 8.1747 & -11.4716
\end{array}\right]
$$

Decompose K into internal and external connections

$$
\begin{gather*}
K^{I}=\left[\begin{array}{rrrr}
-8.0159 & 8.0159 & 0 & 0 \\
8.7238 & -8.7238 & 0 & 0 \\
0 & 0 & -7.9917 & 7.9917 \\
0 & 0 & 8.1747 & -8.1747
\end{array}\right] \tag{38}\\
\varepsilon K^{E}=\left[\begin{array}{rrrr}
-1.4414 & 0 & 0.5063 & 0.9351 \\
0 & -2.6739 & 0.9268 & 1.7472 \\
0.6739 & 0.9520 & -1.6258 & 0 \\
1.3644 & 1.9325 & 0 & -3.2969
\end{array}\right] \tag{39}
\end{gather*}
$$

EM Modes in 2-Area System

$$
\begin{equation*}
\lambda\left(M^{-1} K\right)=0,-14.2787,-60.7554,-62.2531 \tag{40}
\end{equation*}
$$

with the corresponding eigenvector vectors
$v_{1}=\left[\begin{array}{l}0.5 \\ 0.5 \\ 0.5 \\ 0.5\end{array}\right], \quad v_{2}=\left[\begin{array}{r}0.4878 \\ 0.4031 \\ -0.5672 \\ -0.5271\end{array}\right], \quad v_{3}=\left[\begin{array}{r}0.6333 \\ -0.7446 \\ 0.1924 \\ -0.0863\end{array}\right], \quad v_{4}=\left[\begin{array}{r}0.1102 \\ -0.1494 \\ -0.8098 \\ 0.5566\end{array}\right]$

- Interarea mode: $\sqrt{-14.279}= \pm j 3.779 \mathrm{rad} / \mathrm{s}$
- Local modes: $\sqrt{-60.755}= \pm j 7.795 \mathrm{rad} / \mathrm{s}$ and $\sqrt{-62.253}= \pm j 7.890 \mathrm{rad} / \mathrm{s}$

Slow and Fast Subsystems of 2-Area System

Slow dynamics:

$$
M_{a}=\frac{1}{2 \pi \times 60}\left[\begin{array}{cc}
234 & 0 \tag{42}\\
0 & 234
\end{array}\right], \quad \varepsilon K_{a}=\left[\begin{array}{cc}
-4.1154 & 4.1154 \\
4.9227 & -4.9227
\end{array}\right]
$$

The eigenvalues of $M_{a}^{-1} K_{a}$ are 0 and $-14.561 \Rightarrow$ an interarea mode frequency of $\sqrt{-14.561}= \pm j 3.816 \mathrm{rad} / \mathrm{s}$.
Fast local dynamics:

$$
M_{d}=\frac{1}{2 \pi \times 60}\left[\begin{array}{cc}
58.500 & 0 \tag{43}\\
0 & 55.611
\end{array}\right], \quad K_{d}=\left[\begin{array}{cc}
-8.3699 & 0 \\
0 & -8.0628
\end{array}\right.
$$

The eigenvalues of $M_{d}^{-1} K_{d}$ are -53.939 and $-54.660 \Rightarrow$ local modes of $\pm j 7.3443$ and $\pm j 7.3932 \mathrm{rad} / \mathrm{s}$.

Finding Coherent Groups of Machines

(1) Compute the electromechanical modes of an N-machine power
(2) Select the (interarea) modes with frequencies less than 1 Hz
(3) Compute the eigenvectors (mode shapes) of these slower modes
(9) Group the machines with similar mode shapes into slow coherent groups
(0) These slow coherent groups have weak or sparse connections between them

Grouping Algorithm

Plot rows of the slow eigenvector V_{s} of the interarea modes

Use Gaussian elimination to select the r most separated rows as reference vectors and group them into $V_{s 1}$ and reorder V_{s} as

$$
V_{s}=\left[\begin{array}{c}
V_{s 1} \tag{44}\\
V_{s 2}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
V_{s 1} \\
V_{s 2}
\end{array}\right] V_{s 1}^{-1}=\left[\begin{array}{c}
I \\
L
\end{array}\right]=\left[\begin{array}{c}
I \\
L_{g}
\end{array}\right]+\left[\begin{array}{c}
0 \\
O(\varepsilon)
\end{array}\right]
$$

Use $V_{s 1}$ to form a new coordinate system

Coherent Groups in 2-Area System

$$
V_{s}=\left[\begin{array}{rr}
0.5 & 0.4878 \\
0.5 & 0.4031 \tag{45}\\
0.5 & -0.5672 \\
0.5 & -0.5271
\end{array}\right] \begin{aligned}
& \text { Gen 1 } \\
& \text { Gen 2 } \\
& \text { Gen 11 } \\
& \text { Gen 12 }
\end{aligned}, \quad V_{s 1}=\left[\begin{array}{rr}
0.5 & 0.4878 \\
0.5 & -0.5672
\end{array}\right] \begin{aligned}
& \text { Gen 1 } \\
& \text { Gen 11 }
\end{aligned}
$$

Then

$$
V_{s}^{\prime} V_{s 1}^{-1}=\left[\begin{array}{cc}
1 & 0 \tag{46}\\
0 & 1 \\
\underline{0.9198} & 0.0802 \\
0.0380 & \underline{0.9620}
\end{array}\right] \begin{aligned}
& \text { Gen 1 } \\
& \text { Gen 11 } \\
& \text { Gen } 2 \\
& \text { Gen 12 }
\end{aligned}
$$

Coherency for Load Buses

\(V_{\theta}=\left[\begin{array}{rr}0.5 \& 0.4283

0.5 \& 0.3535

0.5 \& 0.2556

0.5 \& 0.3844

0.5 \& -0.5018

0.5 \& -0.4667

0.5 \& -0.3556

0.5 \& 0.3128

0.5 \& -0.0523

0.5 \& -0.4671

0.5 \& -0.4125\end{array}\right]\)| Bus 1 |
| :--- |
| Bus 2 |
| Bus 3 |
| Bus 10 |
| Bus 11 |
| Bus 12 |
| Bus 13 |
| Bus 20 |
| Bus 101 |
| Bus 110 |
| Bus 120 |\(\quad V_{\theta} V_{s 1}^{-1}=\left[\begin{array}{ll}0.9436 \& 0.0564

0.8727 \& 0.1273

0.7800 \& 0.2200

0.9020 \& 0.0980

0.0620 \& 0.9380

0.0953 \& 0.9047

0.2006 \& 0.7994

0.8342 \& 0.1658

0.4880 \& 0.5120

0.0949 \& 0.9051

0.1466 \& 0.8534\end{array}\right]\)

- Bus 101

17-Area Partition of NPCC 48-Machine System

EQUIV and AGGREG Functions for Power System Toolbox

- L_group: grouping algorithm
- coh-map, ex_group: tolerance-based grouping algorithm
- Podmore: R. Pormore's algorithm of aggregating generators at terminal buses
- i_agg: inertial aggregation at generator internal buses
- slow_coh: slow-coherency aggregation, with additional impedance corrections

These functions use the same power system loadflow input data files as the Power System Toolbox.

