Math 241: Multivariable calculus, Lecture 29 Curl and Div, Section 16.5

go.illinois.edu/math241fa17

wednesday, November 8th, 2017

Review Green's Theorem

Green's Theorem. Suppose D is a region bounded by a simple closed curve and $\mathbf{F}=\langle P, Q\rangle$ is a vector field with continuous second order partial derivatives. Then integral over the boundary is related to double integral over the interior:

$$
\int_{\partial D} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}\left(Q_{x}-P_{y}\right) d A
$$

Green's Theorem: General form

Green's Theorem: General form

If D is bounded by several curve C_{1}, \ldots, C_{n}, we write ∂D for $C_{1} \cup \ldots \cup C_{n}$ where

Green's Theorem: General form

If D is bounded by several curve C_{1}, \ldots, C_{n}, we write ∂D for $C_{1} \cup \ldots \cup C_{n}$ where

- The "outer curve" is given the counterclockwise orientation

Green's Theorem: General form

If D is bounded by several curve C_{1}, \ldots, C_{n}, we write ∂D for $C_{1} \cup \ldots \cup C_{n}$ where

- The "outer curve" is given the counterclockwise orientation
- All others given clockwise orientation.

Green's Theorem: General form

If D is bounded by several curve C_{1}, \ldots, C_{n}, we write ∂D for $C_{1} \cup \ldots \cup C_{n}$ where

- The "outer curve" is given the counterclockwise orientation
- All others given clockwise orientation.

Green's Theorem. Suppose D is a region bounded by a finite set of simple closed curves and $\mathbf{F}=\langle P, Q\rangle$ is a vector field with continuous second order partial derivatives. Then

$$
\int_{\partial D} \mathbf{F} \cdot d \mathbf{r}=\iint_{D}\left(Q_{x}-P_{y}\right) d A
$$

Review Conservative Vector Fields

Theorem 0.1
A vector field is conservative $(\mathbf{F}=\nabla(f))$ if and only if $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any simple closed loop.

Review Conservative Vector Fields

Theorem 0.1

A vector field is conservative $(\mathbf{F}=\nabla(f))$ if and only if
$\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any simple closed loop.

Theorem 0.2

$\mathbf{F}=\langle P, Q\rangle: U \rightarrow \mathbb{R}^{2}$ is a vector field defined on a connected, simply connected (no holes) open set U, and suppose P and Q have continuous partial derivatives. If $P_{y}=Q_{x}$, then \mathbf{F} is conservative and so $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any simple closed loop C in U.

Review Conservative Vector Fields

Theorem 0.1

A vector field is conservative $(\mathbf{F}=\nabla(f))$ if and only if
$\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any simple closed loop.

Theorem 0.2

$\mathbf{F}=\langle P, Q\rangle: U \rightarrow \mathbb{R}^{2}$ is a vector field defined on a connected, simply connected (no holes) open set U, and suppose P and Q have continuous partial derivatives. If $P_{y}=Q_{x}$, then \mathbf{F} is conservative and so $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any simple closed loop C in U.

Review Conservative Vector Fields

Theorem 0.1

A vector field is conservative $(\mathbf{F}=\nabla(f))$ if and only if
$\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any simple closed loop.

Theorem 0.2

$\mathbf{F}=\langle P, Q\rangle: U \rightarrow \mathbb{R}^{2}$ is a vector field defined on a connected, simply connected (no holes) open set U, and suppose P and Q have continuous partial derivatives. If $P_{y}=Q_{x}$, then \mathbf{F} is conservative and so $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any simple closed loop C in U.

Proof: Use Green's thm!

Math 241: Problem of the day

Problem: Let C be the oriented closed curve parameterized by $\mathbf{r}(t)=\langle(2+\cos (4 t)) \cos (t),(2+\sin (4 t)) \sin (t)\rangle$ for $t \in[0,2 \pi]$, and let

$$
\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle
$$

Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

Solution Hints Problem of the day.

$$
\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle=\langle P, Q\rangle .
$$

Solution Hints Problem of the day.

$\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle=\langle P, Q\rangle$.

- Is $Q_{x}=P_{y}$?

Solution Hints Problem of the day.

$\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle=\langle P, Q\rangle$.

- Is $Q_{x}=P_{y}$?
- Is \mathbf{F} conservative?

Solution Hints Problem of the day.

$\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle=\langle P, Q\rangle$.

- Is $Q_{x}=P_{y}$?
- Is \mathbf{F} conservative?
- Is $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$?

Solution Hints Problem of the day.

$\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle=\langle P, Q\rangle$.

- Is $Q_{x}=P_{y}$?
- Is \mathbf{F} conservative?
- Is $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$?
- Let C be the flower loop in the problem, and let \tilde{C} be the unit circle, and R the region between C and \tilde{C}. What is $\iint_{R}\left(Q_{x}-P_{y}\right) d A$?

Solution Hints Problem of the day.

$\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle=\langle P, Q\rangle$.

- Is $Q_{x}=P_{y}$?
- Is \mathbf{F} conservative?
- Is $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$?
- Let C be the flower loop in the problem, and let \tilde{C} be the unit circle, and R the region between C and \tilde{C}. What is $\iint_{R}\left(Q_{x}-P_{y}\right) d A$?
- What is the relation between $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ and $\oint_{\tilde{C}} \mathbf{F} \cdot d \mathbf{r}$?

Solution Hints Problem of the day.

$\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle=\langle P, Q\rangle$.

- Is $Q_{x}=P_{y}$?
- Is \mathbf{F} conservative?
- Is $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$?
- Let C be the flower loop in the problem, and let \tilde{C} be the unit circle, and R the region between C and \tilde{C}. What is $\iint_{R}\left(Q_{x}-P_{y}\right) d A$?
- What is the relation between $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ and $\oint_{\tilde{C}} \mathbf{F} \cdot d \mathbf{r}$?
- Calculate $\oint_{\tilde{C}} \mathbf{F} \cdot d \mathbf{r}$.

A second problem...

Calculate the integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is the arc of the parabola $y=1-x^{2}$ from $(-1,0)$ to $(1,0)$ and

$$
\mathbf{F}=\left\langle e^{x}+y, e^{y}-x\right\rangle
$$

Solution Hints Second Problem

$$
\mathbf{F}=\left\langle e^{x}+y, e^{y}-x\right\rangle
$$

Solution Hints Second Problem

$\mathbf{F}=\left\langle e^{x}+y, e^{y}-x\right\rangle$. Idea: Close the loop!

Solution Hints Second Problem

$\mathbf{F}=\left\langle e^{x}+y, e^{y}-x\right\rangle$. Idea: Close the loop!

- Let \tilde{C} be the curve along the x-axis from $(1,0)$ to $(-1,0)$. What is $\int_{\tilde{C}} \mathbf{F} \cdot d \mathbf{r}$?

Solution Hints Second Problem

$\mathbf{F}=\left\langle e^{x}+y, e^{y}-x\right\rangle$. Idea: Close the loop!

- Let \tilde{C} be the curve along the x-axis from $(1,0)$ to $(-1,0)$. What is $\int_{\tilde{C}} \mathbf{F} \cdot d \mathbf{r}$?
- Let R be the region bounded by C and \tilde{C}. What is $\iint_{R}\left(Q_{x}-P_{y}\right) d A ?$

Solution Hints Second Problem

$\mathbf{F}=\left\langle e^{x}+y, e^{y}-x\right\rangle$. Idea: Close the loop!

- Let \tilde{C} be the curve along the x-axis from $(1,0)$ to $(-1,0)$. What is $\int_{\tilde{C}} \mathbf{F} \cdot d \mathbf{r}$?
- Let R be the region bounded by C and \tilde{C}. What is $\iint_{R}\left(Q_{x}-P_{y}\right) d A$?
- What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$?

Operations on a vector field in \mathbb{R}^{3} : curl

Question: Where does in Green's Thm the funny $Q_{x}-P_{y}$ come from?

Operations on a vector field in \mathbb{R}^{3} : curl

Question: Where does in Green's Thm the funny $Q_{x}-P_{y}$ come from?
Question: What about conservative vector fields in \mathbb{R}^{3} ?

Operations on a vector field in \mathbb{R}^{3} : curl

Question: Where does in Green's Thm the funny $Q_{x}-P_{y}$ come from?
Question: What about conservative vector fields in \mathbb{R}^{3} ?
Suppose $\mathbf{F}=\langle P, Q, R\rangle$.

Operations on a vector field in \mathbb{R}^{3} : curl

Question: Where does in Green's Thm the funny $Q_{x}-P_{y}$ come from?
Question: What about conservative vector fields in \mathbb{R}^{3} ?
Suppose $\mathbf{F}=\langle P, Q, R\rangle$. Define the curl of \mathbf{F} by

$$
\operatorname{curl}(\mathbf{F})=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle .
$$

Operations on a vector field in \mathbb{R}^{3} : curl

Question: Where does in Green's Thm the funny $Q_{x}-P_{y}$ come from?
Question: What about conservative vector fields in \mathbb{R}^{3} ?
Suppose $\mathbf{F}=\langle P, Q, R\rangle$. Define the curl of \mathbf{F} by

$$
\operatorname{curl}(\mathbf{F})=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle .
$$

Write "curl $=\nabla \times$ ":

Operations on a vector field in \mathbb{R}^{3} : curl

Question: Where does in Green's Thm the funny $Q_{x}-P_{y}$ come from?
Question: What about conservative vector fields in \mathbb{R}^{3} ?
Suppose $\mathbf{F}=\langle P, Q, R\rangle$. Define the curl of \mathbf{F} by

$$
\operatorname{curl}(\mathbf{F})=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle .
$$

Write "curl $=\nabla \times$ ":

$$
\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|
$$

Operations on a vector field in \mathbb{R}^{3} : curl

Question: Where does in Green's Thm the funny $Q_{x}-P_{y}$ come from?
Question: What about conservative vector fields in \mathbb{R}^{3} ?
Suppose $\mathbf{F}=\langle P, Q, R\rangle$. Define the curl of \mathbf{F} by

$$
\operatorname{curl}(\mathbf{F})=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle
$$

Write "curl $=\nabla \times$ ":

$$
\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|
$$

Geometric meaning, later: Infinitesimal rotation,

Operations on a vector field in \mathbb{R}^{3} : curl

Operations on a vector field in \mathbb{R}^{3} : curl

Example. For $\mathbf{F}=\langle P(x, y), Q(x, y), 0\rangle$, what is $\operatorname{curl}(\mathbf{F}) ?$

Operations on a vector field in \mathbb{R}^{3} : curl

Example. For $\mathbf{F}=\langle P(x, y), Q(x, y), 0\rangle$, what is $\operatorname{curl}(\mathbf{F}) ?$
Example. For a function f, what is $\operatorname{curl}(\nabla f)$?

Operations on a vector field in \mathbb{R}^{3} : curl

Example. For $\mathbf{F}=\langle P(x, y), Q(x, y), 0\rangle$, what is $\operatorname{curl}(\mathbf{F}) ?$
Example. For a function f, what is $\operatorname{curl}(\nabla f)$?

Theorem. Given a vector field \mathbf{F} on \mathbb{R}^{3} with continuous partial derivatives, \mathbf{F} is conservative if and only if $\operatorname{curl}(\mathbf{F})=\mathbf{0}$.

Operations on a vector field in \mathbb{R}^{3} : curl

Example. For $\mathbf{F}=\langle P(x, y), Q(x, y), 0\rangle$, what is $\operatorname{curl}(\mathbf{F}) ?$
Example. For a function f, what is $\operatorname{curl}(\nabla f)$?

Theorem. Given a vector field \mathbf{F} on \mathbb{R}^{3} with continuous partial derivatives, \mathbf{F} is conservative if and only if $\operatorname{curl}(\mathbf{F})=\mathbf{0}$.

Also true for \mathbf{F} on a "simply connected" open subsets $U \subset \mathbb{R}^{3} \ldots$ won't discuss this as it is more complicated here.

Operations on a vector field in \mathbb{R}^{3} : divergence

Suppose $\mathbf{F}=\langle P, Q, R\rangle$.

Operations on a vector field in \mathbb{R}^{3} : divergence

Suppose $\mathbf{F}=\langle P, Q, R\rangle$. Define the divergence of \mathbf{F} by

$$
\operatorname{div}(\mathbf{F})=P_{x}+Q_{y}+R_{z}
$$

Note: this is a function.

Operations on a vector field in \mathbb{R}^{3} : divergence

Suppose $\mathbf{F}=\langle P, Q, R\rangle$. Define the divergence of \mathbf{F} by

$$
\operatorname{div}(\mathbf{F})=P_{x}+Q_{y}+R_{z}
$$

Note: this is a function.
Write "div $=\nabla \cdot ":$

Operations on a vector field in \mathbb{R}^{3} : divergence

Suppose $\mathbf{F}=\langle P, Q, R\rangle$. Define the divergence of \mathbf{F} by

$$
\operatorname{div}(\mathbf{F})=P_{x}+Q_{y}+R_{z}
$$

Note: this is a function.
Write "div $=\nabla \cdot ":$

$$
\operatorname{div}(\mathbf{F})=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\langle P, Q, R\rangle=P_{x}+Q_{y}+R_{z}
$$

Operations on a vector field in \mathbb{R}^{3} : divergence

Suppose $\mathbf{F}=\langle P, Q, R\rangle$. Define the divergence of \mathbf{F} by

$$
\operatorname{div}(\mathbf{F})=P_{x}+Q_{y}+R_{z}
$$

Note: this is a function.
Write "div $=\nabla \cdot ":$

$$
\operatorname{div}(\mathbf{F})=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\langle P, Q, R\rangle=P_{x}+Q_{y}+R_{z}
$$

Geometric meaning, later: Expansion of volume.

Operations on a vector field in \mathbb{R}^{3} : divergence

Operations on a vector field in \mathbb{R}^{3} : divergence

Example. For a vector field \mathbf{F}, what is $\operatorname{div}(\operatorname{curl}(\mathbf{F}))$?

Operations on a vector field in \mathbb{R}^{3} : divergence

Example. For a vector field \mathbf{F}, what is $\operatorname{div}(\operatorname{curl}(\mathbf{F}))$?

Theorem. For any vector field on \mathbb{R}^{3} with continuous derivatives, \mathbf{F} is the curl of some vector field if and only if $\operatorname{div}(\mathbf{F})=0$.

Operations on a vector field in \mathbb{R}^{3} : divergence

Example. For a vector field \mathbf{F}, what is $\operatorname{div}(\operatorname{curl}(\mathbf{F}))$?

Theorem. For any vector field on \mathbb{R}^{3} with continuous derivatives, \mathbf{F} is the curl of some vector field if and only if $\operatorname{div}(\mathbf{F})=0$.

Another important operator on functions:

$$
\nabla^{2} f=\nabla \cdot \nabla f=f_{x x}+f_{y y}+f_{z z}
$$

This is called the Laplacian, and is often also denoted Δf.

