Math 241: Multivariable calculus, Lecture 29 Curl and Div, Section 16.5

go.illinois.edu/math241fa17

wednesday, November 8th, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Review Green's Theorem

Green's Theorem. Suppose *D* is a region bounded by a simple closed curve and $\mathbf{F} = \langle P, Q \rangle$ is a vector field with continuous second order partial derivatives. Then integral over the boundary is related to double integral over the interior:

$$\int_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} (Q_x - P_y) \, dA$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If *D* is bounded by several curve C_1, \ldots, C_n , we write ∂D for $C_1 \cup \ldots \cup C_n$ where

If *D* is bounded by several curve C_1, \ldots, C_n , we write ∂D for $C_1 \cup \ldots \cup C_n$ where

• The "outer curve" is given the counterclockwise orientation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If D is bounded by several curve C_1, \ldots, C_n , we write ∂D for $C_1 \cup \ldots \cup C_n$ where

• The "outer curve" is given the counterclockwise orientation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

• All others given clockwise orientation.

If *D* is bounded by several curve C_1, \ldots, C_n , we write ∂D for $C_1 \cup \ldots \cup C_n$ where

- The "outer curve" is given the counterclockwise orientation
- All others given clockwise orientation.

<u>Green's Theorem.</u> Suppose *D* is a region bounded by a finite set of simple closed curves and $\mathbf{F} = \langle P, Q \rangle$ is a vector field with continuous second order partial derivatives. Then

$$\int_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} (Q_{x} - P_{y}) \, dA$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem 0.1

A vector field is conservative ($\mathbf{F} = \nabla(f)$) if and only if $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any simple closed loop.

Theorem 0.1

A vector field is conservative ($\mathbf{F} = \nabla(f)$) if and only if $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any simple closed loop.

Theorem 0.2

 $\mathbf{F} = \langle P, Q \rangle \colon U \to \mathbb{R}^2$ is a vector field defined on a connected, simply connected (no holes) open set U, and suppose P and Q have continuous partial derivatives. If $P_y = Q_x$, then \mathbf{F} is conservative and so $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any simple closed loop C in U.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem 0.1

A vector field is conservative ($\mathbf{F} = \nabla(f)$) if and only if $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any simple closed loop.

Theorem 0.2

 $\mathbf{F} = \langle P, Q \rangle \colon U \to \mathbb{R}^2$ is a vector field defined on a connected, simply connected (no holes) open set U, and suppose P and Q have continuous partial derivatives. If $P_y = Q_x$, then \mathbf{F} is conservative and so $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any simple closed loop C in U.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem 0.1

A vector field is conservative ($\mathbf{F} = \nabla(f)$) if and only if $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any simple closed loop.

Theorem 0.2

 $\mathbf{F} = \langle P, Q \rangle \colon U \to \mathbb{R}^2$ is a vector field defined on a connected, simply connected (no holes) open set U, and suppose P and Q have continuous partial derivatives. If $P_y = Q_x$, then \mathbf{F} is conservative and so $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any simple closed loop C in U.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof: Use Green's thm!

Math 241: Problem of the day

Problem: Let *C* be the oriented closed curve parameterized by $\mathbf{r}(t) = \langle (2 + \cos(4t)) \cos(t), (2 + \sin(4t)) \sin(t) \rangle$ for $t \in [0, 2\pi]$, and let

◆□ → <圖 → < Ξ → < Ξ → < Ξ → のへで</p>

$$\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle = \langle P, Q \rangle.$$

$$\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle = \langle P, Q \rangle.$$

• Is $Q_x = P_y$?

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

$$\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle = \langle P, Q \rangle.$$

• Is
$$Q_x = P_y$$
?

• Is F conservative?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle = \langle P, Q \rangle.$$

- Is $Q_x = P_y$?
- Is F conservative?
- Is $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$?

$$\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle = \langle P, Q \rangle.$$

- Is $Q_x = P_y$?
- Is F conservative?
- Is $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$?
- Let C be the flower loop in the problem, and let \tilde{C} be the unit circle, and R the region between C and \tilde{C} . What is $\iint_{R} (Q_{x} P_{y}) dA?$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle = \langle P, Q \rangle.$$

- Is $Q_x = P_y$?
- Is F conservative?
- Is $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$?
- Let C be the flower loop in the problem, and let C̃ be the unit circle, and R the region between C and C̃. What is ∫∫_R(Q_x − P_y) dA?

• What is the relation between $\oint_C \mathbf{F} \cdot d\mathbf{r}$ and $\oint_{\tilde{C}} \mathbf{F} \cdot d\mathbf{r}$?

$$\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle = \langle P, Q \rangle.$$

- Is $Q_x = P_y$?
- Is F conservative?
- Is $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$?
- Let C be the flower loop in the problem, and let C̃ be the unit circle, and R the region between C and C̃. What is ∫∫_R(Q_x − P_y) dA?

- What is the relation between $\oint_C \mathbf{F} \cdot d\mathbf{r}$ and $\oint_{\tilde{C}} \mathbf{F} \cdot d\mathbf{r}$?
- Calculate ∮_{C̃} F · dr.

A second problem...

Calculate the integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

where C is the arc of the parabola $y = 1 - x^2$ from (-1, 0) to (1, 0) and

$$\mathbf{F} = \langle \mathbf{e}^{\mathbf{x}} + \mathbf{y}, \mathbf{e}^{\mathbf{y}} - \mathbf{x} \rangle.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathbf{F} = \langle e^x + y, e^y - x \rangle.$$

・ロト・日本・モン・モン ヨー うへで

 $\mathbf{F} = \langle e^x + y, e^y - x \rangle$. Idea: Close the loop!

- $\mathbf{F} = \langle e^x + y, e^y x \rangle$. Idea: Close the loop!
 - Let \tilde{C} be the curve along the x-axis from (1,0) to (-1,0). What is $\int_{\tilde{C}} \mathbf{F} \cdot d\mathbf{r}$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- $\mathbf{F} = \langle e^x + y, e^y x \rangle$. Idea: Close the loop!
 - Let C̃ be the curve along the x-axis from (1,0) to (-1,0).
 What is ∫_{C̃} F · dr?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Let *R* be the region bounded by *C* and \tilde{C} . What is $\iint_{R} (Q_{x} - P_{y}) dA?$

- $\mathbf{F} = \langle e^x + y, e^y x \rangle$. Idea: Close the loop!
 - Let \tilde{C} be the curve along the x-axis from (1,0) to (-1,0). What is $\int_{\tilde{C}} \mathbf{F} \cdot d\mathbf{r}$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Let *R* be the region bounded by *C* and \tilde{C} . What is $\iint_R (Q_x P_y) dA$?
- What is $\int_C \mathbf{F} \cdot d\mathbf{r}$?

Question: Where does in Green's Thm the funny $Q_x - P_y$ come from?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • ○へ⊙

Question: Where does in Green's Thm the funny $Q_x - P_y$ come from?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question: What about conservative vector fields in \mathbb{R}^3 ?

Question: Where does in Green's Thm the funny $Q_x - P_y$ come from?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Question: What about conservative vector fields in \mathbb{R}^3 ? Suppose $\mathbf{F} = \langle P, Q, R \rangle$.

Question: Where does in Green's Thm the funny $Q_x - P_y$ come from?

Question: What about conservative vector fields in \mathbb{R}^3 ? Suppose $\mathbf{F} = \langle P, Q, R \rangle$. Define the *curl* of **F** by

$$\operatorname{curl}(\mathbf{F}) = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle.$$

Question: Where does in Green's Thm the funny $Q_x - P_y$ come from?

Question: What about conservative vector fields in \mathbb{R}^3 ? Suppose $\mathbf{F} = \langle P, Q, R \rangle$. Define the *curl* of **F** by

$$\operatorname{curl}(\mathbf{F}) = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle.$$

Write "curl = $\nabla \times$ ":

Question: Where does in Green's Thm the funny $Q_x - P_y$ come from?

Question: What about conservative vector fields in \mathbb{R}^3 ? Suppose $\mathbf{F} = \langle P, Q, R \rangle$. Define the *curl* of **F** by

$$\operatorname{curl}(\mathbf{F}) = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle.$$

Write "curl = $\nabla \times$ ":

$$\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

Question: Where does in Green's Thm the funny $Q_x - P_y$ come from?

Question: What about conservative vector fields in \mathbb{R}^3 ? Suppose $\mathbf{F} = \langle P, Q, R \rangle$. Define the *curl* of **F** by

$$\operatorname{curl}(\mathbf{F}) = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle.$$

Write "curl = $\nabla \times$ ":

$$\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

Geometric meaning, later: Infinitesimal rotation,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • ○へ⊙

Example. For $\mathbf{F} = \langle P(x, y), Q(x, y), 0 \rangle$, what is curl(\mathbf{F})?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • ○へ⊙

Example. For $\mathbf{F} = \langle P(x, y), Q(x, y), 0 \rangle$, what is $\operatorname{curl}(\mathbf{F})$?

Example. For a function f, what is $\operatorname{curl}(\nabla f)$?

Example. For $\mathbf{F} = \langle P(x, y), Q(x, y), 0 \rangle$, what is $\operatorname{curl}(\mathbf{F})$?

Example. For a function f, what is $\operatorname{curl}(\nabla f)$?

<u>Theorem.</u> Given a vector field \mathbf{F} on \mathbb{R}^3 with continuous partial derivatives, \mathbf{F} is conservative if and only if $\operatorname{curl}(\mathbf{F}) = \mathbf{0}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Example. For $\mathbf{F} = \langle P(x, y), Q(x, y), 0 \rangle$, what is $\operatorname{curl}(\mathbf{F})$?

Example. For a function f, what is $\operatorname{curl}(\nabla f)$?

<u>Theorem.</u> Given a vector field \mathbf{F} on \mathbb{R}^3 with continuous partial derivatives, \mathbf{F} is conservative if and only if $\operatorname{curl}(\mathbf{F}) = \mathbf{0}$.

Also true for **F** on a "simply connected" open subsets $U \subset \mathbb{R}^3$... won't discuss this as it is more complicated here.

Suppose $\mathbf{F} = \langle P, Q, R \rangle$.

Suppose $\mathbf{F} = \langle P, Q, R \rangle$. Define the *divergence* of \mathbf{F} by

$$\operatorname{div}(\mathbf{F}) = P_x + Q_y + R_z.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Note: this is a function.

Suppose $\mathbf{F} = \langle P, Q, R \rangle$. Define the *divergence* of \mathbf{F} by

$$\operatorname{div}(\mathbf{F}) = P_x + Q_y + R_z.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Note: this is a function.

Write "div = $\nabla \cdot$ ":

Suppose $\mathbf{F} = \langle P, Q, R \rangle$. Define the *divergence* of \mathbf{F} by

$$\operatorname{div}(\mathbf{F}) = P_x + Q_y + R_z.$$

Note: this is a function.

Write "div = $\nabla \cdot$ ":

$$\operatorname{div}(\mathbf{F}) = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \cdot \left\langle P, Q, R \right\rangle = P_x + Q_y + R_z$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Suppose $\mathbf{F} = \langle P, Q, R \rangle$. Define the *divergence* of \mathbf{F} by

$$\operatorname{div}(\mathbf{F}) = P_x + Q_y + R_z.$$

Note: this is a function.

Write "div = $\nabla \cdot$ ":

$$\operatorname{div}(\mathbf{F}) = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \cdot \left\langle P, Q, R \right\rangle = P_x + Q_y + R_z$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Geometric meaning, later: Expansion of volume.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • ○へ⊙

Example. For a vector field \mathbf{F} , what is $\operatorname{div}(\operatorname{curl}(\mathbf{F}))$?

Example. For a vector field \mathbf{F} , what is $\operatorname{div}(\operatorname{curl}(\mathbf{F}))$?

<u>Theorem.</u> For any vector field on \mathbb{R}^3 with continuous derivatives, **F** is the curl of some vector field if and only if $\operatorname{div}(\mathbf{F}) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example. For a vector field \mathbf{F} , what is $\operatorname{div}(\operatorname{curl}(\mathbf{F}))$?

<u>Theorem.</u> For any vector field on \mathbb{R}^3 with continuous derivatives, **F** is the curl of some vector field if and only if $\operatorname{div}(\mathbf{F}) = 0$.

Another important operator on functions:

$$\nabla^2 f = \nabla \cdot \nabla f = f_{xx} + f_{yy} + f_{zz}.$$

This is called the *Laplacian*, and is often also denoted Δf .