
Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

Overview

Chapter 9

Currency Options (2):
Hedging and Valuation



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

Overview

Overview

The Binomial Logic: One-period pricing
The Replication Approach
The Hedging Approach
The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
Notation
Assumptions
Discussion

Stepwise Multiperiod Binomial Option Pricing
Backward Pricing, Dynamic Hedging
What can go wrong?
American-style Options

Towards Black-Merton-Scholes
STP-ing of European Options
Towards the Black-Merton-Scholes Equation
The Delta of an Option



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

Overview

Overview

The Binomial Logic: One-period pricing
The Replication Approach
The Hedging Approach
The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
Notation
Assumptions
Discussion

Stepwise Multiperiod Binomial Option Pricing
Backward Pricing, Dynamic Hedging
What can go wrong?
American-style Options

Towards Black-Merton-Scholes
STP-ing of European Options
Towards the Black-Merton-Scholes Equation
The Delta of an Option



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

Overview

Overview

The Binomial Logic: One-period pricing
The Replication Approach
The Hedging Approach
The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
Notation
Assumptions
Discussion

Stepwise Multiperiod Binomial Option Pricing
Backward Pricing, Dynamic Hedging
What can go wrong?
American-style Options

Towards Black-Merton-Scholes
STP-ing of European Options
Towards the Black-Merton-Scholes Equation
The Delta of an Option



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

Overview

Overview

The Binomial Logic: One-period pricing
The Replication Approach
The Hedging Approach
The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
Notation
Assumptions
Discussion

Stepwise Multiperiod Binomial Option Pricing
Backward Pricing, Dynamic Hedging
What can go wrong?
American-style Options

Towards Black-Merton-Scholes
STP-ing of European Options
Towards the Black-Merton-Scholes Equation
The Delta of an Option



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

The Binomial Logic:
One-period pricing

Multiperiod Pricing:
Assumptions

Stepwise Multiperiod
Binomial Pricing

Towards
BlackMertonScholes

Binomial Models—What & Why?

� Binomial Model

B given St, there only two possible values for St+1, called “up” and
“down”.

� Restrictive?—Yes, but ...

B the distribution of the total return, after many of these binomial
price changes, becomes bell-shaped

B the binomial option price converges to the BMS price
B the binomial math is much more accessible than the BMS math
B BinMod can be used to value more complex derivatives that

have no closed-form Black-Scholes type solution.

� Ways to explain the model—all very similar:

via hedging via replication
in spot market (not here) (not here)

forward yes yes
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Our Example

� Data

B S0 = INR/MTL 100, r = 5%p.p.; r∗ = 3.9604%. Hence:

F0,1 = S0
1 + r0,1

1 + r∗0,1
= 100

1.05
1.039604

= 101.

B S1 is either S1,u = 110 (“up”) or S1,d = 95 (“down”).
B 1-period European-style call with X=INR/MTL 105

100

95        0

110       5    �

S        C

O                 95                110    

S

5

C1

11

1

exposure

line

S

S  =S u

S  =S d

S  =S uu

S  =S dd

S  =S ud

S  =S uuu

S  =S ddd

S  =S udd

S  =S uud

0

1,1

1,0

2,2

2,1

2,0

3,3

3,2

3,1

3.0

0

0

0

0

0

0

0

0

0

B slope of exposure line (exposure):

exposure =
C1,u − C1,d

S1,i − S1,d
=

5− 0
110− 95

= 1/3
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The Replication Approach

� Step 1 Replicate the payoff from the call—[5 if u] and
[0 if d ]:

(a) = forward contract (b) = deposit,
(buy MTL 1/3 at 101) V1=20 (a)+(b)

S1 = 95 1/3× ( 95− 101) = −2 +2 0
S1 = 110 1/3× (110− 101) = +3 +2 5

� Step 2 Time-0 cost of the replicating portfolio:

B forward contract is free
B deposit will cost INR 2/1.05 = INR 1.905

� Step 3 Law of One Price: option price = value
portfolio

C0 = INR 1.905
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The Hedging Approach

Replication: call = forward position + riskfree deposit
Hedging: call – forward position = riskfree deposit

� Step 1 Hedge the call
(a) = forward hdege
(sell MTL 1/3 at 101) (b) = call (a)+(b)

S1 = 95 1/3× (101− 95) = 2 0 2
S1 = 110 1/3× (101− 110) = −3 5 2

� Step 2 time-0 value of the riskfree portfolio

value = INR 2/1.05 = INR 1.905

� Step 3 Law of one price: option price = value
portfolio

C0 + [time-0 value of hedge] = INR 1.905⇒ C0 = INR 1.905

... otherwise there are arbitrage possibilities.
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The Risk-adjusted Probabilities

� Overview: Implicitly, the replication/hedging story ...

B extracts a risk-adjusted probability “up” from the forward
market,

B uses this probability to compute the call’s risk-adjusted
expected payoff, CEQ0(C̃1); and

B discounts this risk-adjusted expectation at the riskfree rate.
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The Risk-adjusted Probabilities

� Step 1 Extract risk-adjusted probability from F:

B Ordinary expectation: E0(S̃1) = p× 110 + (1− p)× 95

B Risk-adjusted expectation: CEQ0(S̃1) = q× 110 + (1− q)× 95

B We do not know how/why the market selects q, but q is
revealed by F0,1 (= 101):

101 = 95 + q× (110− 95)⇒ q =
101− 95
110− 95

=
6

15
= 0.4

� Step 2 CEQ of the call’s payoff:

CEQ0(C̃1) = (0.4× 5) + (1− 0.4)× 0 = 2

� Step 3 Discount at r:

C0 =
CEQ0(C̃1)

1 + r0,1
=

2
1.05

= 1.905



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

The Binomial Logic:
One-period pricing
The Replication Approach

The Hedging Approach

The Risk-adjusted Probabilities

Multiperiod Pricing:
Assumptions

Stepwise Multiperiod
Binomial Pricing

Towards
BlackMertonScholes

The Risk-adjusted Probabilities

� Step 1 Extract risk-adjusted probability from F:

B Ordinary expectation: E0(S̃1) = p× 110 + (1− p)× 95

B Risk-adjusted expectation: CEQ0(S̃1) = q× 110 + (1− q)× 95

B We do not know how/why the market selects q, but q is
revealed by F0,1 (= 101):

101 = 95 + q× (110− 95)⇒ q =
101− 95
110− 95

=
6

15
= 0.4

� Step 2 CEQ of the call’s payoff:

CEQ0(C̃1) = (0.4× 5) + (1− 0.4)× 0 = 2

� Step 3 Discount at r:

C0 =
CEQ0(C̃1)

1 + r0,1
=

2
1.05

= 1.905



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

The Binomial Logic:
One-period pricing
The Replication Approach

The Hedging Approach

The Risk-adjusted Probabilities

Multiperiod Pricing:
Assumptions

Stepwise Multiperiod
Binomial Pricing

Towards
BlackMertonScholes

The Risk-adjusted Probabilities

� Step 1 Extract risk-adjusted probability from F:

B Ordinary expectation: E0(S̃1) = p× 110 + (1− p)× 95

B Risk-adjusted expectation: CEQ0(S̃1) = q× 110 + (1− q)× 95

B We do not know how/why the market selects q, but q is
revealed by F0,1 (= 101):

101 = 95 + q× (110− 95)⇒ q =
101− 95
110− 95

=
6

15
= 0.4

� Step 2 CEQ of the call’s payoff:

CEQ0(C̃1) = (0.4× 5) + (1− 0.4)× 0 = 2

� Step 3 Discount at r:

C0 =
CEQ0(C̃1)

1 + r0,1
=

2
1.05

= 1.905



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

The Binomial Logic:
One-period pricing
The Replication Approach

The Hedging Approach

The Risk-adjusted Probabilities

Multiperiod Pricing:
Assumptions

Stepwise Multiperiod
Binomial Pricing

Towards
BlackMertonScholes

The Risk-adjusted Probabilities

� Step 1 Extract risk-adjusted probability from F:

B Ordinary expectation: E0(S̃1) = p× 110 + (1− p)× 95

B Risk-adjusted expectation: CEQ0(S̃1) = q× 110 + (1− q)× 95

B We do not know how/why the market selects q, but q is
revealed by F0,1 (= 101):

101 = 95 + q× (110− 95)⇒ q =
101− 95
110− 95

=
6

15
= 0.4

� Step 2 CEQ of the call’s payoff:

CEQ0(C̃1) = (0.4× 5) + (1− 0.4)× 0 = 2

� Step 3 Discount at r:

C0 =
CEQ0(C̃1)

1 + r0,1
=

2
1.05

= 1.905



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

The Binomial Logic:
One-period pricing
The Replication Approach

The Hedging Approach

The Risk-adjusted Probabilities

Multiperiod Pricing:
Assumptions

Stepwise Multiperiod
Binomial Pricing

Towards
BlackMertonScholes

The Risk-adjusted Probabilities

� Step 1 Extract risk-adjusted probability from F:

B Ordinary expectation: E0(S̃1) = p× 110 + (1− p)× 95

B Risk-adjusted expectation: CEQ0(S̃1) = q× 110 + (1− q)× 95

B We do not know how/why the market selects q, but q is
revealed by F0,1 (= 101):

101 = 95 + q× (110− 95)⇒ q =
101− 95
110− 95

=
6

15
= 0.4

� Step 2 CEQ of the call’s payoff:

CEQ0(C̃1) = (0.4× 5) + (1− 0.4)× 0 = 2

� Step 3 Discount at r:

C0 =
CEQ0(C̃1)

1 + r0,1
=

2
1.05

= 1.905



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

The Binomial Logic:
One-period pricing

Multiperiod Pricing:
Assumptions
Notation

Assumptions

Discussion

Stepwise Multiperiod
Binomial Pricing

Towards
BlackMertonScholes

Outline

The Binomial Logic: One-period pricing
The Replication Approach
The Hedging Approach
The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions
Notation
Assumptions
Discussion

Stepwise Multiperiod Binomial Option Pricing
Backward Pricing, Dynamic Hedging
What can go wrong?
American-style Options

Towards Black-Merton-Scholes
STP-ing of European Options
Towards the Black-Merton-Scholes Equation
The Delta of an Option



Currency Options
(2): Hedging and

Valuation

P. Sercu,
International

Finance: Theory into
Practice

The Binomial Logic:
One-period pricing

Multiperiod Pricing:
Assumptions
Notation

Assumptions

Discussion

Stepwise Multiperiod
Binomial Pricing

Towards
BlackMertonScholes

Multiperiod Pricing: Notation

� Subscripts: n,j where

B n says how many jumps have been made since time 0
B j says how many of these jumps were up

� General pricing equation:

Ct,j =
Ct+1,u × qt + Ct+1,d × (1− qt)

1 + rt,1period
,

where qt =
Ft,t+1 − St+1,d

St+1,u − St+1,d
,

=
St

1+rt,t+1
1+r∗t,t+1

− Stdt

Stut − Stdt
,

=

1+rt,t+1
1+r∗t,t+1

− dt

ut − dt
,

dt =
St+1,d

St
, ut =

St+1,u

St
. (1)
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Assumptions

� A1 (r and r∗) : The risk-free one-period rates of return
on both currencies are constant
B denoted by unsubscripted r and r∗

B Also assumed in Black-Scholes.

� A2 (u and d) : The multiplicative change factors, u
and d, are constant.
Also assumed in Black-Scholes:

B no jumps (sudden de/revaluations) in the exchange rate process, and
B a constant variance of the period-by-period percentage changes in S.

� Implication of A1-A2: qt is a constant.

� A2.01 (no free lunch in F):

d <
1 + r
1 + r∗

< u⇔ St+1,d < Ft < St+1,u ⇔ 0 < q < 1

Q: what would you do if S1=[95 or 110] while F=90? 115?
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B a constant variance of the period-by-period percentage changes in S.

� Implication of A1-A2: qt is a constant.

� A2.01 (no free lunch in F):

d <
1 + r
1 + r∗

< u⇔ St+1,d < Ft < St+1,u ⇔ 0 < q < 1

Q: what would you do if S1=[95 or 110] while F=90? 115?
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4.4 How to model (near-)impredictable spot rates (1)
4. Time-series properties of S
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4.4 How to model (near-)impredictable spot rates (2)
4. Time-series properties of S

• Assumption: the tree is multiplicative with constant u and d

additive
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SN = S0 + 

n
!
i=0

   "i ; "i = +10 or –10

! SN becomes approx. normal
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108.9

89.1

72.9

SN = S0

n

"

i=0
  (1+#i) ;  #i = 0.1 or -0.1

! lnSN = lnS0 + 

n
!
i=0

   ln(1+#i)

! lnSN is normal ($S lognormal)

• Why multiplicative? • cents vs percents • no zero, negative S • inverse of S

• Constant u and d: corresponds to constant % in BMS

additive multiplicative
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– cents v percent: we prefer a constant distribution of percentage price changes over a
constant distribution of dollar price changes.

– non-negative prices: with a multiplicative, the exchange rate can never quite reach zero
even if it happens to go down all the time.

– invertible: we get a similar multiplicative process for the exchange rate as viewed abroad,
S∗ = 1/S (with d∗ = 1/u, u∗ = 1/d).

� Corresponding Limiting Distributions:
– additive: S̃n = S0 +

Pn
t=1 ∆̃t where ∆̃ = {+10,−10}

⇔ S̃n is normal if n is large (CLT)

– multiplicative: S̃n = S0 ×
Qn

t=1(1 + r̃t) where r̃ = {+10%, -10%}
⇔ ln S̃n = ln S0 +

Pn
t=1 ρ̃t where ρ̃ = ln(1 + r̃) = {+0.095,−0.095}

⇔ ln S̃n is normal if n is large⇔ S̃n is lognormal.
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3.2. binomial pricing of European Options
3. pricing European options

S

S

S
S

= 110

= 100

= 90

= 81

u = 1.1; d = .9; 1+r = 1.05; 1+r* = 1.0294118; 

forward factor        = 1.02
1+r

1+r*

0

payoff

q = 1.02 – 0.9
1.1 – 0.9

= 0.60

1,0

1,1

2,2

2,0

0

S = 121 26

S = 99 4
2,1

Call: C0 = 

n

!
j=0

 
[cashflow"at"T"if"j""up"s]"! "[risk-adj"prob"of"j""up"s]

(1+r)n
   

= 
26"! "(0.62)"+"4"! "(2"! "0.6"! "0.4)"+"0"! "(0.42)

1.052    

� A4. At any discrete moment in the model, investors
can trade and adjust their portfolios of HC-FC loans.
Black-Scholes: trading is continuous
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(1+r)n
   

= 
26"! "(0.62)"+"4"! "(2"! "0.6"! "0.4)"+"0"! "(0.42)

1.052    

� if we land in node (1,1):

b1,1 =
26− 4

121− 99
= 1

C1,1 =
(26× 0.6) + (4× 0.4)

1.05
= 16.38

� if we land in node (1,0):

b1,0 =
4− 0

99− 81
= .222

C1,0 =
(4× 0.6) + (0× 0.4)

1.05
= 2.29
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3.2. binomial pricing of European Options
3. pricing European options
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⇒ C1 =


16.38 if S1 = 110

2.29 if S1 = 90

� at time 0 we do have a two-point problem:

⇒ b0 =
16.38− 2.29

110− 90
= 0.704

C1,1 =
(16.38× 0.6) + (2.29× 0.4)

1.05
= 10.23

Summary:

B we hedge dynamically:

− start the hedge at time 0 with 0.704 units sold forward.
− The time-1 hedge will be to sell forward 1 or 0.222 units of foreign

currency, depending on whether the rate moves up of down.

B we price backward, step by step
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5. Delta hedging

Example  

S

S

S
S

= 110

= 100

= 90

= 81

u = 1.1; d = .9; 1+r = 1.05; 1+r* = 1.0294118; 

forward factor        = 1.02
1+r

1+r*

0

payoff

q = 1.02 – 0.9
1.1 – 0.9

= 0.60

1,0

1,1

2,2

2,0

0

S = 121 26

S = 99 4
2,1

102
112.2

91.8�

one-period forward rates added above spot rates

b1,1 = 
26!–!4

121!–!99     = 1, V1,1 =   
(26! 0.6)!+!(4! 0.4)

1.05      = 16.38095

b1,0 = 
4!–!0

99!–!81     = .222222, V1,0 =  
4! 0.6!+!0!0.4

1.05      = 2.28571

B at time 0: invest 10.23 129 at 5%, buy fwd MTL 0.704 762 at 100× 1.02 = 102

− value if up: 10.23 129× 1.05 + 0.704 762× (110− 102) = 16.380 95

− value if down: 10.23 129× 1.05 + 0.704 762× ( 90− 102) = 2.295 71

B if in node (1,1): invest 16.380 95 at 5%, buy fwd MTL 1 at 100× 1.02 = 112.2

− value if up: 16.380 95× 1.05 + 1.000 000× (121− 112.2) = 26.000 00

− value if down: 16.380 95× 1.05 + 1.000 000× ( 99− 112.2) = 4.000 00

B if in node (1,0): invest 2.295 71 at 5%, buy fwd MTL 0.222 222 at 90× 1.02 = 91.8

− value if up: 2.295 71× 1.05 + 0.222 222× ( 99− 91.8) = 4.000 00

− value if down: 2.295 71× 1.05 + 0.222 222× ( 81− 91.8) = 0.000 00
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4.4 Note: what could go wrong?
4. Multiperiod binomial

Suppose that, unexpectedly,
the risk changes

• in (1,1): u = 1.20, d = 0.80

• in (1,0): u = 1.05, d = 0.95 100

110

132

88
94.5

85.5

90

37

0
0

0

V1,1 = 37 × 0.55 + 0
1.05   = 19.36, not 16.38;

and V1,0 = 0 + 0
1.05   = 0, not 2.29

⇒ to hedge/replicate, we should have used 19.36 – 0
110 – 90  = 0.97?!

Change of risk: ±20% if up, ±5% if down, instead of the current ±10%:

C1,1 =
37× 0.55 + 0

1.05
= 19.36, not 16.38,

C1,0 =
0 + 0
1.05

= 0.00, not 2.29,

You would have mishedged:

– You would lose, as a writer, in the upstate (risk up)

– You would gain, as a writer, in the downstate (risk down)
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4. American Options

u=1.1, d=0.9, r=5%, (1+r)/(1+r*) = 1.02, q=0.60

100

110

90

121

99

81

Exchange rate

3.193

.381

7.81

0

1

19

European Put with 

X=100

(0)

(10)
(0)

.381

7.81

0

1

19

American Put with 

X=100

(0)

(0)
4.03

(10)

• European: P1,1 = 
(0.6!0)!+!(0.4!1)

1.05    = 0.38 , P1,0 = 
(0.6!1)!+!(0.4!19)

1.05    = 7.81

P0  =  
(0.6!0.381)!+!(0.4!7.81)

1.05    =  3.193

• American: In every node (except the last period, but including time 0): chose between

exercising (" value dead) or postponing (" Value alive). The value is given by the larger
of the two.

� Node (1,1) In this node the choices are
B PV of later exercise (0 or 1): 0.381
B Value of immediate exercise: 0 — so we wait; V1,1 = .381

� Node (1,0) Now the choices are
B PV of later exercise (0 or 19): 7.81
B Value of immediate exercse: 10 — so we exercise; V1,0 = 10 not 7.81

� Node (0) We now choose between
B PV of later exercise (0 or 1 at time 2, or 10 at time 1):

Palive
0 =

0.381× 0.60 + 10× 0.40
1.05

= 4.03

B Value of immediate exercise: 0 — so we wait; V0 = 4.03
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Straight-Through-Pricing a 3-period Put

100

110

121

99
90

81

133.1

108.9

89.1

72.9      

!

  

4.21
1.58

0.00

4,15
6.68

16,6

0.00

0.00

10.9

27.1

The long way:

C2,2 =
0.00× 0.6 + 0.00× 0.4

1.05
= 0.00,

C2,1 =
0.00× 0.6 + 10.9× 0.4

1.05
= 4.152,

C2,0 =
10.0× 0.6 + 27.1× 0.4

1.05
= 16.55,

C1,1 =
0.000× 0.6 + 4.152× 0.4

1.05
= 1.582,

C1,0 =
4.152× 0.6 + 16.55× 0.4

1.05
= 8, 678,

C0 =
1.582× 0.6 + 8, 678× 0.4

1.05
= 4.210.
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The fast way:
B pr3 = ...

B pr2 = ...

B pr1 = ...

B pr0 = ...

B The (risk-adjusted) chance of ending in the money is ...

B C0 = × + × + × + × = 4.21.
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Straight-Through-Pricing: 2-period Math

C1,1 =
q C2,2 + (1− q)C2,1

1 + r
,

C1,0 =
q C2,1 + (1− q)C2,0

1 + r
,

C0 =
q C1,1 + (1− q)C1,0

1 + r
,

=
q
h

q C2,2+(1−q)C2,1
1+r

i
+ (1− q)

h
q C2,1+(1−q)C2,0

1+r

i
1 + r

,

=
q2 C2,2 + 2q (1− q)C2,1 + (1− q)2 C2,0

(1 + r)2
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Straight-Through-Pricing: 3-period Math

C1,1 =
q2 C3,3 + 2q (1− q)C3,2 + (1− q)2 C3,1

(1 + r)2

C1,0 =
q2 C3,2 + 2q (1− q)C3,1 + (1− q)2 C3,0

(1 + r)2
,

C0 =
q C1,1 + (1− q)C1,0

1 + r
,

=

q
ˆ
q2 C3,3 + 2q (1− q) C3,2 + (1− q)2 C3,1

˜
+ (1− q)

ˆ
q2 C3,2 + 2q (1− q)C3,1 + (1− q)2 C3,0

˜
(1 + r)3

,

=
q3C3,3 + 3q2(1− q)C3,2 + 3q(1− q)2C3,1 + (1− q)3C3,0

(1 + r)3
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Toward BMS 1: two terms

Let pr(Q)
n,j = risk-adjusted chance of having j ups in n jumps

=
n!

j! (n− j)!| {z }
# of paths with
j ups

× qj(1− q)N−j

| {z }
prob of such a
path

=
“N

j

”
qj(1− q)N−j

and let a : {j ≥ a} ⇔ {Sn,j ≥ X};

then C0 =

PN
j=0 pr(Q)

n,j Cn,j

(1 + r)N
=

CEQ0(C̃N)

discounted
,

=

PN
j=0 pr(Q)

n,j (Sn,j − X)+

(1 + r)N
,

=

PN
j=a pr(Q)

n,j (Sn,j − X)

(1 + r)N
,

=

PN
j=a pr(Q)

n,j Sn,j

(1 + r)N
−

X
(1 + r)N

NX
j=a

pr(Q)
n,j . (2)
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Recall: C0 =

PN
j=a pr(Q)
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(1 + r)N
−

X

(1 + r)N

NX
j=a

pr(Q)
n,j .

We can factor out S0, in the first term, by using

Sn,j = S0ujdN−j.

We also use

1
(1 + r)N

=
1

(1 + r∗)N

„
1 + r∗

1 + r

«j „ 1 + r∗

1 + r

«N−j

PN
j=a pr(Q)

n,j Sn,j

(1 + r)N
=

S0

(1 + r∗)N

NX
j=a

“N
j

”„
q

1 + r∗

1 + r

«j „
(1− q)

1 + r∗

1 + r

«N−j

=
S0

(1 + r∗)N

NX
j=a

“N
j

”
πj (1− π)N−j

where π := q
1 + r∗

1 + r
⇒ 1− π = (1− q)

1 + r∗

1 + r
.
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Towards BMS 3: the limit

C0 =
S0

(1 + r∗)N| {z }
price of the
underlying FC PN

a “j ≥ a” probability-like
expressionz }| {

NX
j=a

 
N
j

!
πj (1− π)N−j− X

(1 + r)N| {z }
discounted
strike

prob(Q) of
j ≥ az }| {

NX
j=a

pr(Q)
n,j . (3)

� Special case a = 0:

B “a = 0” means that ...
B so both probabilities become ...
B and we recognize the value of ...

� In the limit for N →∞ (and suitably adjusting u, d, r, r∗)

B j/N becomes Gaussian, so we get Gaussian probabilities

B first prob typically denoted N(d1), d1 =
ln(Ft,T/X)+(1/2)σ2

t,T
σt,T

, with σt,T
the effective stdev of ln S̃T as seen at time t

B second prob typically denoted N(d2), d2 =
ln(Ft,T/X)−(1/2)σ2

t,T
σt,T
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The Delta of an Option

� Replication: in BMS the option formula is still based
on a portfolio that replicates the option (over the short
time period dt):
B a fraction

Pn
j=a πj or N(d1) of a FC PN with face value unity, and

B a fraction
Pn

j=a prj or N(d2) of a HC PN with face value X.

� Hedge: since hedging is just replication reversed,
you can use the formula to hedge:

version of formula hedge instrument unit price size of position

C0 =
S0

1+r∗0,T
N(d1)− ... FC PN expiring at T

S0
1+r∗0,T

N(d1)

C0 = S0
N(d1)

1+r∗0,T
− ... FC spot deposit S0

N(d1)
1+r∗0,T

C0 = F0,T
N(d1)

1+r0,T
− ... Forward expiring at T F0,T

N(d1)
1+r0,T
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What have we learned in this chapter?

� Why binomial?
B does basically the same as the BMS pde, but ...
B is much simpler

� One-period problems
B hedging/replication gets us the price without knowing the true p and

the required risk correction in the discount rate
B but that’s because we implicitly use q instead:
B the price is the discounted risk-adjusted expectation

� Multiperiod models
B basic model assumes constant u, d, r, r∗

B we can hedge dynamically and price backward
B for American-style options, we also compare to the value dead

� Black-Merton-Scholes
B For European-style options, you can Straight-Through-Price the option
B This gets us a BMS-like model
B BMS itself is a limit case
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