

P. Sercu, International Finance: Theory into Practice

Overview

# Chapter 9

# **Currency Options (2):** Hedging and Valuation



## Overview

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

Overview

### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

### **Jultiperiod Pricing: Assumptions**

Notation Assumptions Discussion

### Stepwise Multiperiod Binomial Option Pricing

Backward Pricing, Dynamic Hedging What can go wrong? American-style Options

### **Towards Black-Merton-Scholes**

STP-ing of European Options Towards the Black-Merton-Scholes Equation The Delta of an Option



# Overview

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

Overview

### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

### Multiperiod Pricing: Assumptions Notation Assumptions Discussion

Stepwise Multiperiod Binomial Option Pricing Backward Pricing, Dynamic Hedging What can go wrong? American-style Options

## Towards Black-Merton-Scholes

STP-ing of European Options Towards the Black-Merton-Scholes Equation The Delta of an Option



## Overview

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

Overview

### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

### Multiperiod Pricing: Assumptions

Notation Assumptions Discussion

### Stepwise Multiperiod Binomial Option Pricing

Backward Pricing, Dynamic Hedging What can go wrong? American-style Options

#### Towards Black-Merton-Scholes

STP-ing of European Options Towards the Black-Merton-Scholes Equation The Delta of an Option



# 🍯 Overview

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

Overview

### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

### Multiperiod Pricing: Assumptions

Notation Assumptions Discussion

### Stepwise Multiperiod Binomial Option Pricing

Backward Pricing, Dynamic Hedging What can go wrong? American-style Options

### **Towards Black-Merton-Scholes**

STP-ing of European Options Towards the Black-Merton-Scholes Equation The Delta of an Option



# Binomial Models—What & Why?

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

## ◊ Binomial Model

▷ given  $S_t$ , there only two possible values for  $S_{t+1}$ , called "up" and "down".

## Restrictive?—Yes, but ...

- the distribution of the total return, after many of these binomial price changes, becomes bell-shaped
- > the binomial option price converges to the BMS price
- ▶ the binomial math is much more accessible than the BMS math
- ▷ BinMod can be used to value more complex derivatives that have no closed-form Black-Scholes type solution.

## Ways to explain the model—all very similar:

(日)

ъ



Currency Options (2): Hedging and

P. Sercu, International Finance: Theory into Practice

Valuation

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

# Binomial Models—What & Why?

## o Binomial Model

▷ given  $S_t$ , there only two possible values for  $S_{t+1}$ , called "up" and "down".

## ◊ Restrictive?—Yes, but ...

- the distribution of the total return, after many of these binomial price changes, becomes bell-shaped
- the binomial option price converges to the BMS price
- ▶ the binomial math is much more accessible than the BMS math
- BinMod can be used to value more complex derivatives that have no closed-form Black-Scholes type solution.

### Ways to explain the model—all very similar:



P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

# Binomial Models—What & Why?

### o Binomial Model

▷ given  $S_t$ , there only two possible values for  $S_{t+1}$ , called "up" and "down".

### ◊ Restrictive?—Yes, but ...

- the distribution of the total return, after many of these binomial price changes, becomes bell-shaped
- the binomial option price converges to the BMS price
- ▷ the binomial math is much more accessible than the BMS math
- BinMod can be used to value more complex derivatives that have no closed-form Black-Scholes type solution.

## o Ways to explain the model—all very similar:

|                | via hedging | via replication |
|----------------|-------------|-----------------|
| in spot market | (not here)  | (not here)      |
| forward        | yes         | yes             |



# Outline

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

#### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

### **Jultiperiod Pricing: Assumptions**

Notation Assumptions Discussion

### Stepwise Multiperiod Binomial Option Pricing

Backward Pricing, Dynamic Hedging What can go wrong? American-style Options

#### **Towards Black-Merton-Scholes**

STP-ing of European Options Towards the Black-Merton-Scholes Equation The Delta of an Option

・ロット (雪) (日) (日) (日)



# Our Example

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

#### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

### ◊ Data

▷  $S_0 = INR/MTL \ 100, r = 5\% p.p.; r^* = 3.9604\%$ . Hence:

$$F_{0,1} = S_0 \frac{1 + r_{0,1}}{1 + r_{0,1}^*} = 100 \frac{1.05}{1.039604} = 101.$$

▷  $S_1$  is either  $S_{1,u} = 110$  ("up") or  $S_{1,d} = 95$  ("down").

1-period European-style call with X=INR/MTL 105



slope of exposure line (*exposure*):

exposure 
$$= \frac{C_{1,u} - C_{1,d}}{S_{1,i} - S_{1,d}} = \frac{5 - 0}{110 - 95} = 1/2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



# Our Example

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

#### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

### ◊ Data

▷  $S_0 = INR/MTL \ 100, r = 5\% p.p.; r^* = 3.9604\%$ . Hence:

$$F_{0,1} = S_0 \frac{1 + r_{0,1}}{1 + r_{0,1}^*} = 100 \frac{1.05}{1.039604} = 101.$$

▷  $S_1$  is either  $S_{1,u} = 110$  ("up") or  $S_{1,d} = 95$  ("down").

I-period European-style call with X=INR/MTL 105



slope of exposure line (*exposure*):

exposure =  $\frac{C_{1,u} - C_{1,d}}{S_{1,i} - S_{1,d}} = \frac{5 - 0}{110 - 95} = 1/3$ 

・ロト・四ト・モート 中一 シック



# The Replication Approach

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes Step 1 Replicate the payoff from the call—[5 if *u*] and [0 if *d*]:

|             | (a) = forward contract<br>(buy MTL 1/3 at 101) | (b) = deposit,<br>V1=20 | (a)+(b) |
|-------------|------------------------------------------------|-------------------------|---------|
| $S_1 = 95$  | $1/3 \times (95 - 101) = -2$                   | +2                      | 0       |
| $S_1 = 110$ | $1/3 \times (110 - 101) = +3$                  | +2                      | 5       |

Step 2 Time-0 cost of the replicating portfolio:

> forward contract is free

deposit will cost INR 2/1.05 = INR 1.905

 Step 3 Law of One Price: option price = value portfolio

 $C_0 = INR 1.905$ 



# The Replication Approach

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes Step 1 Replicate the payoff from the call—[5 if *u*] and [0 if *d*]:

|             | (a) = forward contract<br>(buy MTL 1/3 at 101) | (b) = deposit,<br>V1=20 | (a)+(b) |
|-------------|------------------------------------------------|-------------------------|---------|
| $S_1 = 95$  | $1/3 \times (95 - 101) = -2$                   | +2                      | 0       |
| $S_1 = 110$ | $1/3 \times (110 - 101) = +3$                  | +2                      | 5       |

Step 2 Time-0 cost of the replicating portfolio:

- forward contract is free
- deposit will cost INR 2/1.05 = INR 1.905

 Step 3 Law of One Price: option price = value portfolio

 $C_0 = INR \ 1.905$ 



# The Replication Approach

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes Step 1 Replicate the payoff from the call—[5 if *u*] and [0 if *d*]:

|             | (a) = forward contract<br>(buy MTL 1/3 at 101) | (b) = deposit,<br>V1=20 | (a)+(b) |
|-------------|------------------------------------------------|-------------------------|---------|
| $S_1 = 95$  | $1/3 \times (95 - 101) = -2$                   | +2                      | 0       |
| $S_1 = 110$ | $1/3 \times (110 - 101) = +3$                  | +2                      | 5       |

Step 2 Time-0 cost of the replicating portfolio:

- forward contract is free
- deposit will cost INR 2/1.05 = INR 1.905
- Step 3 Law of One Price: option price = value portfolio

 $C_0 = \mathsf{INR} \ 1.905$ 



P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

# The Hedging Approach

Replication:call = forward position + riskfree depositHedging:call - forward position = riskfree deposit

Step 1 Hedge the call

|             | (a) = forward hdege           |            |         |
|-------------|-------------------------------|------------|---------|
|             | (sell MTL 1/3 at 101)         | (b) = call | (a)+(b) |
| $S_1 = 95$  | $1/3 \times (101 - 95) = 2$   | 0          | 2       |
| $S_1 = 110$ | $1/3 \times (101 - 110) = -3$ | 5          | 2       |

Step 2 time-0 value of the riskfree portfolio

value = INR 2/1.05 = INR 1.905

Step 3 Law of one price: option price = value portfolio

 $C_0$  + [time-0 value of hedge] = INR 1.905  $\Rightarrow$   $C_0$  = INR 1.905

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

= 900

... otherwise there are arbitrage possibilities.



P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

# The Hedging Approach

Replication:call = forward position + riskfree depositHedging:call - forward position = riskfree deposit

Step 1 Hedge the call

|             | (a) = forward hdege<br>(sell MTL 1/3 at 101) | (b) = call | (a)+(b) |
|-------------|----------------------------------------------|------------|---------|
| $S_1 = 95$  | $1/3 \times (101 - 95) = 2$                  | 0          | 2       |
| $S_1 = 110$ | $1/3 \times (101 - 110) = -3$                | 5          | 2       |

## Step 2 time-0 value of the riskfree portfolio

value = INR 2/1.05 = INR 1.905

Step 3 Law of one price: option price = value portfolio

 $C_0$  + [time-0 value of hedge] = INR 1.905  $\Rightarrow$   $C_0$  = INR 1.905

... otherwise there are arbitrage possibilities.



P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

# The Hedging Approach

Replication:call = forward position + riskfree depositHedging:call - forward position = riskfree deposit

Step 1 Hedge the call

|             | (a) = forward hdege<br>(sell M⊺L 1/3 at 101) | (b) = call | (a)+(b) |
|-------------|----------------------------------------------|------------|---------|
| $S_1 = 95$  | $1/3 \times (101 - 95) = 2$                  | 0          | 2       |
| $S_1 = 110$ | $1/3 \times (101 - 110) = -3$                | 5          | 2       |

Step 2 time-0 value of the riskfree portfolio

value = INR 2/1.05 = INR 1.905

 Step 3 Law of one price: option price = value portfolio

 $C_0 + [time-0 \text{ value of hedge}] = INR 1.905 \Rightarrow C_0 = INR 1.905$ 

... otherwise there are arbitrage possibilities.



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

## • **Overview:** Implicitly, the replication/hedging story ...

 extracts a risk-adjusted probability "up" from the forward market,

- uses this probability to compute the call's risk-adjusted expected payoff, CEQ<sub>0</sub>(*C*<sub>1</sub>); and
- ▷ discounts this risk-adjusted expectation at the riskfree rate.



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

## • **Overview:** Implicitly, the replication/hedging story ...

- extracts a risk-adjusted probability "up" from the forward market,
- ▷ uses this probability to compute the call's risk-adjusted expected payoff, CEQ<sub>0</sub>(*C̃*<sub>1</sub>); and
- discounts this risk-adjusted expectation at the riskfree rate.



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

## • **Overview:** Implicitly, the replication/hedging story ...

- extracts a risk-adjusted probability "up" from the forward market,
- ▷ uses this probability to compute the call's risk-adjusted expected payoff,  $CEQ_0(\tilde{C}_1)$ ; and
- ▷ discounts this risk-adjusted expectation at the riskfree rate.



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

## • **Step 1** Extract risk-adjusted probability from *F*:

- ▷ Ordinary expectation:  $E_0(\tilde{S}_1) = p \times 110 + (1-p) \times 95$ 
  - Risk-adjusted expectation:  $\text{CEQ}_0(\tilde{S}_1) = q \times 110 + (1 q) \times 95$
- We do not know how/why the market selects q, but q is revealed by F<sub>0,1</sub> (= 101):

 $101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4$ 

**Step 2** CEQ of the call's payoff:  $CEQ_0(\tilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2$ 

Step 3 Discount at r:

$$C_0 = rac{CEQ_0( ilde{C}_1)}{1+r_{0,1}} = rac{2}{1.05} = 1.905$$

・ロット (雪) (日) (日) (日)



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes • **Step 1** Extract risk-adjusted probability from *F*:

- > Ordinary expectation:  $E_0(\tilde{S}_1) = p \times 110 + (1-p) \times 95$
- ▷ Risk-adjusted expectation:  $CEQ_0(\tilde{S}_1) = q \times 110 + (1 q) \times 95$

We do not know how/why the market selects q, but q is revealed by  $F_{0,1}$  (= 101):

 $101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4$ 

**Step 2** CEQ of the call's payoff:  $CEQ_0(\tilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2$ 

Step 3 Discount at r:

$$C_0 = rac{CEQ_0( ilde{C}_1)}{1+r_{0,1}} = rac{2}{1.05} = 1.905$$



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes • **Step 1** Extract risk-adjusted probability from *F*:

- > Ordinary expectation:  $E_0(\tilde{S}_1) = p \times 110 + (1-p) \times 95$
- ▷ Risk-adjusted expectation:  $\text{CEQ}_0(\tilde{S}_1) = q \times 110 + (1 q) \times 95$
- ▷ We do not know how/why the market selects q, but q is revealed by  $F_{0,1}$  (= 101):

 $101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4$ 

**Step 2** CEQ of the call's payoff:  $CEQ_0(\tilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2$ 

Step 3 Discount at r:

$$C_0 = \frac{CEQ_0(\tilde{C}_1)}{1+r_{0,1}} = \frac{2}{1.05} = 1.905$$

(日) (日) (日) (日) (日) (日) (日)



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes • **Step 1** Extract risk-adjusted probability from *F*:

- ▷ Ordinary expectation:  $E_0(\tilde{S}_1) = p \times 110 + (1-p) \times 95$
- Risk-adjusted expectation:  $CEQ_0(\tilde{S}_1) = q \times 110 + (1 q) \times 95$
- ▷ We do not know how/why the market selects q, but q is revealed by  $F_{0,1}$  (= 101):

 $101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4$ 

♦ Step 2 CEQ of the call's payoff:  $CEQ_0(\tilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2$ 

Step 3 Discount at r:

$$C_0 = \frac{CEQ_0(\tilde{C}_1)}{1+r_{0,1}} = \frac{2}{1.05} = 1.905$$



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes • **Step 1** Extract risk-adjusted probability from *F*:

- ▷ Ordinary expectation:  $E_0(\tilde{S}_1) = p \times 110 + (1-p) \times 95$
- ▷ Risk-adjusted expectation:  $\text{CEQ}_0(\tilde{S}_1) = q \times 110 + (1 q) \times 95$
- ▷ We do not know how/why the market selects q, but q is revealed by  $F_{0,1}$  (= 101):

 $101 = 95 + q \times (110 - 95) \Rightarrow q = \frac{101 - 95}{110 - 95} = \frac{6}{15} = 0.4$ 

♦ Step 2 CEQ of the call's payoff:  $CEQ_0(\tilde{C}_1) = (0.4 \times 5) + (1 - 0.4) \times 0 = 2$ 

◊ Step 3 Discount at r:

$$C_0 = \frac{CEQ_0(\tilde{C}_1)}{1+r_{0,1}} = \frac{2}{1.05} = 1.905$$



# Outline

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

### Multiperiod Pricing: Assumptions Notation Assumptions Discussion

### Stepwise Multiperiod Binomial Option Pricing

Backward Pricing, Dynamic Hedging What can go wrong? American-style Options

#### **Towards Black-Merton-Scholes**

STP-ing of European Options Towards the Black-Merton-Scholes Equation The Delta of an Option

・ロット (雪) (日) (日) (日)



## Multiperiod Pricing: Notation

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

## Subscripts: n,j where

*n* says how many jumps have been made since time 0
 *j* says how many of these jumps were *up*

## General pricing equation:



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三回 のへの



# Multiperiod Pricing: Notation

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

## ◊ Subscripts: n,j where

*n* says how many jumps have been made since time 0
 *j* says how many of these jumps were *up*

## o General pricing equation:

 $C_{t,j} = \frac{C_{t+1,u} \times q_t + C_{t+1,d} \times (1 - q_t)}{1 + r_{t,1\text{period}}},$ where  $q_t = \frac{F_{t,t+1} - S_{t+1,d}}{S_{t+1,u} - S_{t+1,d}},$  $= \frac{S_t \frac{1 + r_{t,t+1}}{1 + r_{t,t+1}^*} - S_t d_t}{S_t u_t - S_t d_t},$  $= \frac{\frac{1 + r_{t,t+1}}{1 + r_{t,t+1}^*} - d_t}{u_t - d_t},$  $d_t = \frac{S_{t+1,d}}{S_t}, \quad u_t = \frac{S_{t+1,u}}{S_t}.$  (1)

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes  A1 (r and r\*): The risk-free one-period rates of return on both currencies are constant

 $\triangleright$  denoted by unsubscripted *r* and *r*\*

▷ Also assumed in Black-Scholes.

**A2** (*u* and *d*) : The multiplicative change factors, *u* and *d*, are constant.

Also assumed in Black-Scholes:

> no jumps (sudden de/revaluations) in the exchange rate process, and

 $\triangleright$  a constant variance of the period-by-period percentage changes in *S*.

**Implication of A1-A2:**  $q_t$  is a constant.

A2.01 (no free lunch in F):

 $d < \frac{1+r}{1+r^*} < u \Leftrightarrow S_{t+1,d} < F_t < S_{t+1,u} \Leftrightarrow 0 < q < 1$ 



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes  A1 (r and r\*): The risk-free one-period rates of return on both currencies are constant

 $\triangleright$  denoted by unsubscripted *r* and *r*\*

▷ Also assumed in Black-Scholes.

A2 (*u* and *d*): The multiplicative change factors, *u* and *d*, are constant.

Also assumed in Black-Scholes:

> no jumps (sudden de/revaluations) in the exchange rate process, and

 $\triangleright$  a constant variance of the period-by-period percentage changes in *S*.

**Implication of A1-A2:**  $q_t$  is a constant.

A2.01 (no free lunch in F):

 $d < \frac{1+r}{1+r^*} < u \Leftrightarrow S_{t+1,d} < F_t < S_{t+1,u} \Leftrightarrow 0 < q < 1$ 



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes  A1 (r and r\*): The risk-free one-period rates of return on both currencies are constant

 $\triangleright$  denoted by unsubscripted *r* and *r*\*

▷ Also assumed in Black-Scholes.

A2 (*u* and *d*): The multiplicative change factors, *u* and *d*, are constant.

Also assumed in Black-Scholes:

> no jumps (sudden de/revaluations) in the exchange rate process, and

▷ a constant variance of the period-by-period percentage changes in S.

• **Implication of A1-A2:**  $q_t$  is a constant.

A2.01 (no free lunch in F):

 $d < \frac{1+r}{1+r^*} < u \Leftrightarrow S_{t+1,d} < F_t < S_{t+1,u} \Leftrightarrow 0 < q < 1$ 



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes  A1 (r and r\*): The risk-free one-period rates of return on both currencies are constant

 $\triangleright$  denoted by unsubscripted *r* and *r*\*

▷ Also assumed in Black-Scholes.

A2 (*u* and *d*): The multiplicative change factors, *u* and *d*, are constant.

Also assumed in Black-Scholes:

> no jumps (sudden de/revaluations) in the exchange rate process, and

 $\triangleright$  a constant variance of the period-by-period percentage changes in *S*.

• **Implication of A1-A2:**  $q_t$  is a constant.

◊ A2.01 (no free lunch in F):

 $d < \frac{1+r}{1+r^*} < u \Leftrightarrow S_{t+1,d} < F_t < S_{t+1,u} \Leftrightarrow 0 < q < 1$ 



## How such a tree works

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions Notation Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes





# The Emerging Bellshape

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes



・ロット (雪) (日) (日)



# What Emerging Bellshape?

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

## Chosing between two oversimplifications:



 Cents v percent: we prefer a constant distribution of percentage price changes over a constant distribution of dollar price changes.

- non-negative prices: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.
- **invertible**: we get a similar multiplicative process for the exchange rate as viewed abroad,  $S^* = 1/S$  (with  $d^* = 1/u$ ,  $u^* = 1/d$ ).

**Corresponding Limiting Distributions:** 

- additive:  $\tilde{S}_n = S_0 + \sum_{t=1}^n \tilde{\Delta}_t$  where  $\tilde{\Delta} = \{+10, -10\}$  $\Leftrightarrow \tilde{S}_n$  is normal if *n* is large (CLT)

- multiplicative:  $\tilde{S}_n = S_0 \times \prod_{t=1}^n (1 + \tilde{r}_t)$  where  $\tilde{r} = \{+10\%, -10\%\}$   $\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^n \tilde{\rho}_t$  where  $\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\}$  $\Leftrightarrow \ln \tilde{S}_n$  is normal if *n* is large  $\Leftrightarrow \tilde{S}_n$  is lognormal.

(日)



# What Emerging Bellshape?

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

## Chosing between two oversimplifications:



 Cents v percent: we prefer a constant distribution of percentage price changes over a constant distribution of dollar price changes.

- non-negative prices: with a multiplicative, the exchange rate can never quite reach zero
  even if it happens to go down all the time.
- invertible: we get a similar multiplicative process for the exchange rate as viewed abroad,  $S^* = 1/S$  (with  $d^* = 1/u$ ,  $u^* = 1/d$ ).

**Corresponding Limiting Distributions:** 

- additive:  $\tilde{S}_n = S_0 + \sum_{t=1}^n \tilde{\Delta}_t$  where  $\tilde{\Delta} = \{+10, -10\}$  $\Leftrightarrow \tilde{S}_n$  is normal if *n* is large (CLT)

- multiplicative:  $\tilde{S}_n = S_0 \times \prod_{t=1}^n (1 + \tilde{r}_t)$  where  $\tilde{r} = \{+10\%, -10\%\}$   $\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^n \tilde{\rho}_t$  where  $\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\}$  $\Leftrightarrow \ln \tilde{S}_n$  is normal if *n* is large  $\Leftrightarrow \tilde{S}_n$  is lognormal.

(日)


Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

### Chosing between two oversimplifications:



- Cents v percent: we prefer a constant distribution of percentage price changes over a constant distribution of dollar price changes.
- non-negative prices: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.
- **invertible**: we get a similar multiplicative process for the exchange rate as viewed abroad,  $S^* = 1/S$  (with  $d^* = 1/u$ ,  $u^* = 1/d$ ).

#### **Corresponding Limiting Distributions:**

- additive:  $\tilde{S}_n = S_0 + \sum_{t=1}^n \tilde{\Delta}_t$  where  $\tilde{\Delta} = \{+10, -10\}$  $\Leftrightarrow \tilde{S}_n$  is normal if *n* is large (CLT)
- multiplicative:  $\tilde{S}_n = S_0 \times \prod_{t=1}^n (1 + \tilde{r}_t)$  where  $\tilde{r} = \{+10\%, -10\%\}$   $\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^n \tilde{\rho}_t$  where  $\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\}$  $\Leftrightarrow \ln \tilde{S}_n$  is normal if *n* is large  $\Leftrightarrow \tilde{S}_n$  is lognormal.



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions

Notation

Assumptions

Discussion

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

### > Chosing between two oversimplifications:



- Cents v percent: we prefer a constant distribution of percentage price changes over a constant distribution of dollar price changes.
- non-negative prices: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.
- invertible: we get a similar multiplicative process for the exchange rate as viewed abroad,  $S^* = 1/S$  (with  $d^* = 1/u$ ,  $u^* = 1/d$ ).

#### **Corresponding Limiting Distributions:**

- additive:  $\tilde{S}_n = S_0 + \sum_{t=1}^n \tilde{\Delta}_t$  where  $\tilde{\Delta} = \{+10, -10\}$  $\Leftrightarrow \tilde{S}_n$  is normal if *n* is large (CLT)
- multiplicative:  $\tilde{S}_n = S_0 \times \prod_{t=1}^n (1 + \tilde{r}_t)$  where  $\tilde{r} = \{+10\%, -10\%\}$   $\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^n \tilde{\rho}_t$  where  $\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\}$  $\Leftrightarrow \ln \tilde{S}_n$  is normal if *n* is large  $\Leftrightarrow \tilde{S}_n$  is lognormal.



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions
- Notation
- Assumptions
- Discussion
- Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes

### > Chosing between two oversimplifications:



- Cents v percent: we prefer a constant distribution of percentage price changes over a constant distribution of dollar price changes.
- non-negative prices: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.
- invertible: we get a similar multiplicative process for the exchange rate as viewed abroad,  $S^* = 1/S$  (with  $d^* = 1/u$ ,  $u^* = 1/d$ ).

#### o Corresponding Limiting Distributions:

- additive:  $\tilde{S}_n = S_0 + \sum_{t=1}^n \tilde{\Delta}_t$  where  $\tilde{\Delta} = \{+10, -10\}$  $\Leftrightarrow \tilde{S}_n$  is normal if *n* is large (CLT)
- multiplicative:  $\tilde{S}_n = S_0 \times \prod_{t=1}^n (1 + \tilde{r}_t)$  where  $\tilde{r} = \{+10\%, -10\%\}$   $\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^n \tilde{\rho}_t$  where  $\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\}$  $\Leftrightarrow \ln \tilde{S}_n$  is normal if *n* is large  $\Leftrightarrow \tilde{S}_n$  is lognormal.



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions
- Notation
- Assumptions
- Discussion
- Stepwise Multiperiod Binomial Pricing
- Towards BlackMertonScholes

### Chosing between two oversimplifications:



- Cents v percent: we prefer a constant distribution of percentage price changes over a constant distribution of dollar price changes.
- non-negative prices: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.
- invertible: we get a similar multiplicative process for the exchange rate as viewed abroad,  $S^* = 1/S$  (with  $d^* = 1/u$ ,  $u^* = 1/d$ ).

#### o Corresponding Limiting Distributions:

- additive:  $\tilde{S}_n = S_0 + \sum_{t=1}^n \tilde{\Delta}_t$  where  $\tilde{\Delta} = \{+10, -10\}$  $\Leftrightarrow \tilde{S}_n$  is normal if *n* is large (CLT)
- multiplicative:  $\tilde{S}_n = S_0 \times \prod_{t=1}^n (1 + \tilde{r}_t)$  where  $\tilde{r} = \{+10\%, -10\%\}$  $\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^n \tilde{\rho}_t$  where  $\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.09\}$



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions
- Notation
- Assumptions
- Discussion
- Stepwise Multiperiod Binomial Pricing
- Towards BlackMertonScholes

### > Chosing between two oversimplifications:



- Cents v percent: we prefer a constant distribution of percentage price changes over a constant distribution of dollar price changes.
- non-negative prices: with a multiplicative, the exchange rate can never quite reach zero even if it happens to go down all the time.
- invertible: we get a similar multiplicative process for the exchange rate as viewed abroad,  $S^* = 1/S$  (with  $d^* = 1/u$ ,  $u^* = 1/d$ ).

#### o Corresponding Limiting Distributions:

- additive:  $\tilde{S}_n = S_0 + \sum_{t=1}^n \tilde{\Delta}_t$  where  $\tilde{\Delta} = \{+10, -10\}$  $\Leftrightarrow \tilde{S}_n$  is normal if *n* is large (CLT)
- multiplicative:  $\tilde{S}_n = S_0 \times \prod_{t=1}^n (1 + \tilde{r}_t)$  where  $\tilde{r} = \{+10\%, -10\%\}$   $\Leftrightarrow \ln \tilde{S}_n = \ln S_0 + \sum_{t=1}^n \tilde{\rho}_t$  where  $\tilde{\rho} = \ln(1 + \tilde{r}) = \{+0.095, -0.095\}$  $\Leftrightarrow \ln \tilde{S}_n$  is normal if *n* is large  $\Leftrightarrow \tilde{S}_n$  is lognormal.



## Outline

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

#### Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging What can go wrong? American-style Options

Towards BlackMertonScholes

#### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

#### **Multiperiod Pricing: Assumptions**

Notation Assumptions Discussion

#### Stepwise Multiperiod Binomial Option Pricing

Backward Pricing, Dynamic Hedging What can go wrong? American-style Options

#### **Towards Black-Merton-Scholes**

STP-ing of European Options Towards the Black-Merton-Scholes Equation The Delta of an Option

・ロット (雪) (日) (日) (日)



## An N-period European Call: The Problem



**Currency Options** 

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging

What can go wrong?

American-style Options

Towards BlackMertonScholes



 A4. At any discrete moment in the model, investors can trade and adjust their portfolios of HC-FC loans.
 Black-Scholes: trading is continuous



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging What can go wrong?

American-style Options

Towards BlackMertonScholes



### ◊ if we land in node (1,1):

$$b_{1,1} = \frac{26-4}{121-99} = 1$$
  
 $C_{1,1} = \frac{(26 \times 0.6) + (4 \times 0.4)}{1.05} = 16.38$ 

if we land in node (1,0):

$$b_{1,0} = \frac{4-0}{99-81} = .222$$
  
$$C_{1,0} = \frac{(4 \times 0.6) + (0 \times 0.4)}{1.05} = 2.29$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging

What can go wrong? American-style Options

Towards

BlackMertonScholes



### ◊ if we land in node (1,1):

$$b_{1,1} = \frac{26-4}{121-99} = 1$$
  
 $C_{1,1} = \frac{(26 \times 0.6) + (4 \times 0.4)}{1.05} = 16.38$ 

### ◊ if we land in node (1,0):

$$b_{1,0} = \frac{4-0}{99-81} = .222$$
  
$$C_{1,0} = \frac{(4 \times 0.6) + (0 \times 0.4)}{1.05} = 2.29$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging

What can go wrong?

American-style Options

Towards BlackMertonScholes  $\Rightarrow C_1 = \begin{cases} 16.38 & \text{if } S_1 = 110 \\ 2.29 & \text{if } S_1 = 90 \end{cases}$ 

#### at time 0 we do have a two-point problem:

$$\Rightarrow b_0 = \frac{16.38 - 2.29}{110 - 90} = 0.704$$
$$C_{1,1} = \frac{(16.38 \times 0.6) + (2.29 \times 0.4)}{1.05} = 10.23$$

#### Summary:

we hedge dynamically:

start the hedge at time 0 with 0.704 units sold forward.

The time-1 hedge will be to sell forward 1 or 0.222 units of foreign currency, depending on whether the rate moves up of down.

▷ we price backward, step by step



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging

What can go wrong?

American-style Options

Towards BlackMertonScholes

$$\Rightarrow C_1 = \begin{cases} 16.38 & \text{if } S_1 = 110 \\ 2.29 & \text{if } S_1 = 90 \end{cases}$$

### o at time 0 we do have a two-point problem:

$$\Rightarrow b_0 = \frac{16.38 - 2.29}{110 - 90} = 0.704$$
$$C_{1,1} = \frac{(16.38 \times 0.6) + (2.29 \times 0.4)}{1.05} = 10.23$$

#### Summary:

we hedge dynamically:

start the hedge at time 0 with 0.704 units sold forward.

 The time-1 hedge will be to sell forward 1 or 0.222 units of foreign currency, depending on whether the rate moves up of down.

▷ we price backward, step by step



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

#### Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging

What can go wrong?

American-style Options

Towards BlackMertonScholes

$$\Rightarrow C_1 = \begin{cases} 16.38 & \text{if } S_1 = 110 \\ 2.29 & \text{if } S_1 = 90 \end{cases}$$

### o at time 0 we do have a two-point problem:

$$\Rightarrow b_0 = \frac{16.38 - 2.29}{110 - 90} = 0.704$$
$$C_{1,1} = \frac{(16.38 \times 0.6) + (2.29 \times 0.4)}{1.05} = 10.23$$

#### Summary:

- ▷ we hedge dynamically:
  - start the hedge at time 0 with 0.704 units sold forward.
  - The time-1 hedge will be to sell forward 1 or 0.222 units of foreign currency, depending on whether the rate moves up of down.
- ▷ we price backward, step by step



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

#### Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging

What can go wrong?

American-style Options

Towards BlackMertonScholes

$$\Rightarrow C_1 = \begin{cases} 16.38 & \text{if } S_1 = 110 \\ 2.29 & \text{if } S_1 = 90 \end{cases}$$

### o at time 0 we do have a two-point problem:

$$\Rightarrow b_0 = \frac{16.38 - 2.29}{110 - 90} = 0.704$$
$$C_{1,1} = \frac{(16.38 \times 0.6) + (2.29 \times 0.4)}{1.05} = 10.23$$

#### Summary:

- ▷ we hedge dynamically:
  - start the hedge at time 0 with 0.704 units sold forward.
  - The time-1 hedge will be to sell forward 1 or 0.222 units of foreign currency, depending on whether the rate moves up of down.
- ▷ we price backward, step by step

# Hedging Verified



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging

What can go wrong?

American-style Options

Towards BlackMertonScholes



| ⊳ | at time 0:        | invest 10.23 129 at 5%, buy fwd <code>MTL 0.704762</code> at $100 \times 1.02 = 102$ |
|---|-------------------|--------------------------------------------------------------------------------------|
|   | - value if up:    | $10.23\ 129 \times 1.05 + 0.704\ 762 \times (110 - 102) =$ 16.380 95                 |
|   | — value if down:  | $10.23\ 129 \times 1.05 + 0.704\ 762 \times (90 - 102) = 2.295\ 71$                  |
| ⊳ | if in node (1,1): | invest 16.380 95 at 5%, buy fwd <code>MTL</code> 1 at $100 \times 1.02 = 112.2$      |
|   | - value if up:    | $16.38095 \times 1.05 + 1.000000 \times (121 - 112.2) = 26.00000$                    |
|   | - value if down:  | $16.38095 \times 1.05 + 1.000000 \times (99 - 112.2) = 4.00000$                      |
| ⊳ | if in node (1,0): | invest 2.29571 at 5%, buy fwd MTL 0.222222 at $90  \times  1.02 = 91.8$              |
|   | - value if up:    | $2.29571 \times 1.05 + 0.222222 \times (99 - 91.8) = 4.00000$                        |
|   | - value if down:  | $2.29571 \times 1.05 + 0.222222 \times (81 - 91.8) = 0.00000$                        |

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ 三 のへで



# What can go wrong?

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging

What can go wrong?

American-style Options

Towards BlackMertonScholes Everything can and will go wrong:



Change of risk:  $\pm 20\%$  if up,  $\pm 5\%$  if down, instead of the current  $\pm 10\%$ :

 $C_{1,1} = \frac{37 \times 0.55 + 0}{1.05} = 19.36, \text{ not } 16.38,$  $C_{1,0} = \frac{0+0}{1.05} = 0.00, \text{ not } 2.29,$ 

э.

You would have mishedged:

- You would lose, as a writer, in the upstate (risk up)

You would gain, as a writer, in the downstate (risk down)



# What can go wrong?

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Backward Pricing, Dynamic Hedging

What can go wrong?

American-style Options

Towards BlackMertonScholes Everything can and will go wrong:



Change of risk:  $\pm 20\%$  if up,  $\pm 5\%$  if down, instead of the current  $\pm 10\%$ :

 $C_{1,1} = \frac{37 \times 0.55 + 0}{1.05} = 19.36$ , not 16.38,  $C_{1,0} = \frac{0+0}{1.05} = 0.00$ , not 2.29,

э

#### You would have mishedged:

- You would lose, as a writer, in the upstate (risk up)
- You would gain, as a writer, in the downstate (risk down)



# American-style Options

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions

#### Stepwise Multiperiod Binomial Pricing

- Backward Pricing, Dynamic Hedging
- What can go wrong?
- American-style Options

Towards BlackMertonScholes



- Node (1,1) In this node the choices are
   ▷ PV of later exercise (0 or 1): 0.381
   ▷ Value of immediate exercise: 0 so we wait; V<sub>1,1</sub> = .381
  - Node (1,0) Now the choices are
     PV of later exercise (0 or 19): 7.81
     Value of immediate exercise: 10 9
    - $\triangleright$  Value of immediate exercise: 10 so we exercise;  $V_{1,0} = 10$  not 7.8
- Node (0) We now choose between
   PV of later exercise (0 or 1 at time 2, or 10 at time 1):

$$P_0^{alive} = \frac{0.381 \times 0.60 + 10 \times 0.40}{1.05} = 4.03$$

▷ Value of immediate exercise: 0 — so we wait;  $V_0 = 4.03$ 



# American-style Options

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions

#### Stepwise Multiperiod Binomial Pricing

- Backward Pricing, Dynamic Hedging
- What can go wrong?
- American-style Options

Towards BlackMertonScholes



- ◊ Node (1,1) In this node the choices are ▷ PV of later exercise (0 or 1): 0.381
  - ▷ Value of immediate exercise: 0 so we wait;  $V_{1,1} = .381$
- Node (1,0) Now the choices are
   PV of later exercise (0 or 19): 7.81
   Value of immediate exercse: 10 so we exercise; V<sub>1,0</sub> = 10 not 7.81
- Node (0) We now choose between
   PV of later exercise (0 or 1 at time 2, or 10 at time 1):

$$P_0^{alive} = \frac{0.381 \times 0.60 + 10 \times 0.40}{1.05} = 4.03$$

▷ Value of immediate exercise: 0 — so we wait;  $V_0 = 4.03$ 



# American-style Options

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions

#### Stepwise Multiperiod Binomial Pricing

- Backward Pricing, Dynamic Hedging
- What can go wrong?
- American-style Options

Towards BlackMertonScholes



- ◇ Node (1,1) In this node the choices are
   ▷ PV of later exercise (0 or 1): 0.381
   ▷ Value of immediate exercise: 0 so we wait; V<sub>1,1</sub> = .381
- Node (1,0) Now the choices are
   ▷ PV of later exercise (0 or 19): 7.81
  - ▷ Value of immediate exercse: 10 so we exercise;  $V_{1,0} = 10$  not 7.81
- Node (0) We now choose between
   PV of later exercise (0 or 1 at time 2, or 10 at time 1):

$$P_0^{alive} = \frac{0.381 \times 0.60 + 10 \times 0.40}{1.05} = 4.03$$

▷ Value of immediate exercise: 0 — so we wait;  $V_0 = 4.03$ 



## Outline

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta

#### The Binomial Logic: One-period pricing

The Replication Approach The Hedging Approach The Risk-adjusted Probabilities

#### **Multiperiod Pricing: Assumptions**

Notation Assumptions Discussion

#### Stepwise Multiperiod Binomial Option Pricing

Backward Pricing, Dynamic Hedging What can go wrong? American-style Options

#### Towards Black-Merton-Scholes

STP-ing of European Options Towards the Black-Merton-Scholes Equation The Delta of an Option



# Straight-Through-Pricing a 3-period Put

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta





#### The long way:

 $\begin{array}{rcl} ,2 & = & \displaystyle \frac{0.00 \times 0.6 + 0.00 \times 0.4}{1.05} = 0.00, \\ ,1 & = & \displaystyle \frac{0.00 \times 0.6 + 10.9 \times 0.4}{1.05} = 4.152, \\ ,0 & = & \displaystyle \frac{10.0 \times 0.6 + 27.1 \times 0.4}{1.05} = 16.55, \\ ,1 & = & \displaystyle \frac{0.000 \times 0.6 + 4.152 \times 0.4}{1.05} = 1.582, \\ ,0 & = & \displaystyle \frac{4.152 \times 0.6 + 16.55 \times 0.4}{1.05} = 8,678, \\ C_0 & = & \displaystyle \frac{1.582 \times 0.6 + 8,678 \times 0.4}{1.05} = 4.210. \end{array}$ 

|▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●



# Straight-Through-Pricing a 3-period Put

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta





#### The long way:

$$\begin{array}{rcl} C_{2,2} & = & \displaystyle \frac{0.00 \times 0.6 + 0.00 \times 0.4}{1.05} = 0.00, \\ C_{2,1} & = & \displaystyle \frac{0.00 \times 0.6 + 10.9 \times 0.4}{1.05} = 4.152, \\ C_{2,0} & = & \displaystyle \frac{10.0 \times 0.6 + 27.1 \times 0.4}{1.05} = 16.55, \\ C_{1,1} & = & \displaystyle \frac{0.000 \times 0.6 + 4.152 \times 0.4}{1.05} = 1.582, \\ C_{1,0} & = & \displaystyle \frac{4.152 \times 0.6 + 16.55 \times 0.4}{1.05} = 8,678, \\ C_{0} & = & \displaystyle \frac{1.582 \times 0.6 + 8,678 \times 0.4}{1.05} = 4.210. \end{array}$$



# Straight-Through-Pricing a 3-period Put

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta





・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

#### The fast way:

 $\triangleright pr_3 = \dots$  $\triangleright pr_2 = \dots$  $\triangleright pr_1 = \dots$  $\triangleright pr_0 = \dots$ 

▷ The (risk-adjusted) chance of ending in the money is ...

 $\triangleright C_0 = \underbrace{\times + \times + \times + \times}_{= 4.21.} = 4.21.$ 



# Straight-Through-Pricing: 2-period Math

(1)

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

С

C

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta

$$\begin{array}{rcl} 1,1 & = & \displaystyle \frac{q \, C_{2,2} + (1-q) C_{2,1}}{1+r}, \\ 1,0 & = & \displaystyle \frac{q \, C_{2,1} + (1-q) C_{2,0}}{1+r}, \\ C_0 & = & \displaystyle \frac{q \, C_{1,1} + (1-q) C_{1,0}}{1+r}, \\ & = & \displaystyle \frac{q \, \left[\frac{q \, C_{2,2} + (1-q) C_{2,1}}{1+r}\right] + (1-q) \left[\frac{q \, C_{2,1} + (1-q) C_{2,0}}{1+r}\right]}{1+r} \\ & = & \displaystyle \frac{q^2 \, C_{2,2} + 2q \, (1-q) C_{2,1} + (1-q)^2 \, C_{2,0}}{1+r} \\ \end{array}$$

 $= \frac{q^2 C_{2,2} + 2q (1-q) C_{2,1} + (1-q)^2 C_{2,0}}{(1+r)^2}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



# Straight-Through-Pricing: 3-period Math

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta

=

 $C_{1,1} = \frac{q^2 C_{3,3} + 2q (1-q) C_{3,2} + (1-q)^2 C_{3,1}}{(1+r)^2}$   $C_{1,0} = \frac{q^2 C_{3,2} + 2q (1-q) C_{3,1} + (1-q)^2 C_{3,0}}{(1+r)^2},$   $C_0 = \frac{q C_{1,1} + (1-q) C_{1,0}}{1+r},$ 

$$\frac{q \left[q^2 C_{3,3} + 2q \left(1 - q\right) C_{3,2} + (1 - q)^2 C_{3,1}\right]}{+ (1 - q) \left[q^2 C_{3,2} + 2q \left(1 - q\right) C_{3,1} + (1 - q)^2 C_{3,0}\right]}{(1 + r)^3}$$

$$\frac{q^3 C_{3,3} + 3q^2 (1 - q) C_{3,2} + 3q (1 - q)^2 C_{3,1} + (1 - q)^3 C_{3,0}}{(1 + r)^3}$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@



## Toward BMS 1: two terms

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta Let  $pr_{n,i}^{(Q)} =$  risk-adjusted chance of having *j* ups in *n* jumps  $= \underbrace{\frac{n!}{j! (n-j)!}}_{j! (n-j)!} \times q^{j} (1-q)^{N-j} = \binom{N}{j} q^{j} (1-q)^{N-j}$ # of paths with prob of such a . path i ups and let  $a : \{i > a\} \Leftrightarrow \{S_{n,i} > X\};$ then  $C_0 = \frac{\sum_{j=0}^N pr_{n,j}^{(Q)} C_{n,j}}{(1+r)^N} = \frac{\mathsf{CEQ}_0(\tilde{C}_N)}{\mathsf{discounted}},$  $= \frac{\sum_{j=0}^{N} pr_{n,j}^{(Q)}(S_{n,j}-X)_{+}}{(1+r)^{N}},$  $= \frac{\sum_{j=a}^{N} pr_{n,j}^{(Q)}(S_{n,j}-X)}{(1+r)^{N}},$  $= \frac{\sum_{j=a}^{N} pr_{n,j}^{(Q)} S_{n,j}}{(1+r)^N} - \frac{X}{(1+r)^N} \sum_{i=a}^{N} pr_{n,j}^{(Q)}.$ (2)



## Toward BMS 2: two probabilities

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta We can factor out  $S_0$ , in the first term, by using

 $S_{n,j} = S_0 u^j d^{N-j}.$ 

Recall:  $C_0 = \frac{\sum_{j=a}^{N} pr_{n,j}^{(Q)} S_{n,j}}{(1+r)^N} - \frac{X}{(1+r)^N} \sum_{i=a}^{N} pr_{n,j}^{(Q)}$ .

#### We also use

$$\frac{1}{(1+r)^N} = \frac{1}{(1+r^*)^N} \left(\frac{1+r^*}{1+r}\right)^j \left(\frac{1+r^*}{1+r}\right)^{N-1}$$

$$\begin{split} \frac{\sum_{j=a}^{N} pr_{n,j}^{(Q)} S_{n,j}}{(1+r)^{N}} &= \frac{S_{0}}{(1+r^{*})^{N}} \sum_{j=a}^{N} {N \choose j} \left(q \, \frac{1+r^{*}}{1+r}\right)^{j} \left((1-q) \, \frac{1+r^{*}}{1+r}\right)^{N-j} \\ &= \frac{S_{0}}{(1+r^{*})^{N}} \sum_{j=a}^{N} {N \choose j} \pi^{j} \, (1-\pi)^{N-j} \\ &\text{where } \pi &:= q \, \frac{1+r^{*}}{1+r} \Rightarrow 1-\pi = (1-q) \, \frac{1+r^{*}}{1+r}. \end{split}$$

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ● ● ● ●



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta



price of the underlying FC PN

strike

(日)

Special case a = 0:

- "a = 0" means that ..
- > so both probabilities become ...
- ▷ and we recognize the value of ...

- $\triangleright j/N$  becomes Gaussian, so we get Gaussian probabilities
- ▷ first prob typically denoted N(*d*<sub>1</sub>),  $d_1 = \frac{m(r_{t,T}/\lambda) + (t/2)\sigma_{t,T}}{\sigma_{t,T}}$ , with  $\sigma_{t,T}$  the effective stdev of ln  $\bar{S}_T$  as seen at time t
- ▷ second prob typically denoted N( $d_2$ ),  $d_2 = \frac{\ln(F_{t,T}/X) (1/2)\sigma_{t,T}^2}{\sigma_{t,T}}$



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta



price of the underlying FC PN

discounte strike

(日)

#### ♦ Special case a = 0:

#### $\triangleright$ "a = 0" means that ...

- so both probabilities become ...
- ▷ and we recognize the value of ...

- $\triangleright j/N$  becomes Gaussian, so we get Gaussian probabilities
- ▷ first prob typically denoted N(*d*<sub>1</sub>),  $d_1 = \frac{m(r_{t,T}/\lambda) + c(t/2)\sigma_{t,T}}{\sigma_{t,T}}$ , with  $\sigma_{t,T}$  the effective stdev of ln  $\bar{S}_T$  as seen at time t
- ▷ second prob typically denoted N( $d_2$ ),  $d_2 = \frac{\ln(F_{t_1T}/X) (1/2)\sigma_{t_1T}^2}{\sigma_{t_1T}}$



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta



strike

price of the underlying FC PN

• Special case a = 0:

- $\triangleright$  "a = 0" means that ...
- ▷ so both probabilities become ...

▷ and we recognize the value of ...

- $\triangleright j/N$  becomes Gaussian, so we get Gaussian probabilities
- ▷ first prob typically denoted N(*d*<sub>1</sub>),  $d_1 = \frac{m(r_{t,T}/\lambda) + (1/2)\sigma_{t,T}}{\sigma_{t,T}}$ , with  $\sigma_{t,T}$  the effective stdev of ln  $\tilde{S}_T$  as seen at time *t*
- ▷ second prob typically denoted N( $d_2$ ),  $d_2 = \frac{\ln(F_{t,T}/X) (1/2)\sigma_{t,T}^2}{\sigma_{t,T}}$



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta



strike

price of the underlying FC PN

- ♦ Special case a = 0:
  - $\triangleright$  "a = 0" means that ...
  - ▷ so both probabilities become ...
  - ▷ and we recognize the value of ...

- $\triangleright j/N$  becomes Gaussian, so we get Gaussian probabilities
- ▷ first prob typically denoted N(*d*<sub>1</sub>),  $d_1 = \frac{m(r_{t,T}/\lambda) + (1/2)\sigma_{t,T}}{\sigma_{t,T}}$ , with  $\sigma_{t,T}$  the effective stdev of ln  $\bar{S}_T$  as seen at time *t*
- ▷ second prob typically denoted N( $d_2$ ),  $d_2 = \frac{\ln(F_{t,T}/X) (1/2)\sigma_{t,T}^2}{\sigma_{t,T}}$



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta



price of the underlying FC PN discount strike

< ロ > < 同 > < 回 > < 回 >

#### ♦ Special case a = 0:

- $\triangleright$  "a = 0" means that ...
- ▷ so both probabilities become ...
- ▷ and we recognize the value of ...

- $\triangleright$  *j*/*N* becomes Gaussian, so we get Gaussian probabilities
- ▷ first prob typically denoted N( $d_1$ ),  $d_1 = \frac{\ln(F_{t,T}/X) + (1/2)\sigma_{t,T}^2}{\sigma_{t,T}}$ , with  $\sigma_{t,T}$  the effective stdev of ln  $\tilde{S}_T$  as seen at time t
- ▷ second prob typically denoted N( $d_2$ ),  $d_2 = \frac{\ln(F_{t,T}/X) (1/2)\sigma_{t,T}^2}{\sigma_{t,T}}$



# The Delta of an Option

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta

- Replication: in BMS the option formula is still based on a portfolio that replicates the option (over the short time period dt):
  - ▶ a fraction  $\sum_{j=a}^{n} \pi_j$  or  $N(d_1)$  of a FC PN with face value unity, and ▶ a fraction  $\sum_{i=a}^{n} pr_j$  or  $N(d_2)$  of a HC PN with face value X.

> **Hedge:** since hedging is just replication reversed, you can use the formula to hedge:

・ロット (雪) (日) (日) (日)



# The Delta of an Option

Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

The Binomial Logic: One-period pricing

Multiperiod Pricing: Assumptions

Stepwise Multiperiod Binomial Pricing

Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta

- Replication: in BMS the option formula is still based on a portfolio that replicates the option (over the short time period dt):
  - ▷ a fraction  $\sum_{j=a}^{n} \pi_j$  or  $N(d_1)$  of a FC PN with face value unity, and ▷ a fraction  $\sum_{i=a}^{n} pr_j$  or  $N(d_2)$  of a HC PN with face value X.

 Hedge: since hedging is just replication reversed, you can use the formula to hedge:

| version of formula                               | hedge instrument      | unit price                | size of position             |
|--------------------------------------------------|-----------------------|---------------------------|------------------------------|
| $C_0 = \frac{S_0}{1 + r_{0,T}^*} N(d_1) - \dots$ | FC PN expiring at T   | $\frac{S_0}{1+r_{0,T}^*}$ | $N(d_1)$                     |
| $C_0 = S_0 \frac{N(d_1)}{1 + r_{0,T}^*} - \dots$ | FC spot deposit       | <i>S</i> <sub>0</sub>     | $\frac{N(d_1)}{1+r_{0,T}^*}$ |
| $C_0 = F_{0,T} \frac{N(d_1)}{1+r_{0,T}} - \dots$ | Forward expiring at T | $F_{0,T}$                 | $\frac{N(d_1)}{1+r_{0,T}}$   |



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions
- Stepwise Multiperiod Binomial Pricing
- Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta

# What have we learned in this chapter?

### o Why binomial?

- does basically the same as the BMS pde, but ...
- ▷ is much simpler

### **One-period problems**

- $\triangleright$  hedging/replication gets us the price without knowing the true *p* and the required risk correction in the discount rate
- > but that's because we implicitly use q instead:
- > the price is the discounted risk-adjusted expectation

### Multiperiod models

- ▷ basic model assumes constant u, d, r,  $r^*$
- we can hedge dynamically and price backward
- for American-style options, we also compare to the value dead

### Black-Merton-Scholes

▷ For European-style options, you can Straight-Through-Price the option

- > This gets us a BMS-like mode
- BMS itself is a limit case



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions
- Stepwise Multiperiod Binomial Pricing
- Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta

# What have we learned in this chapter?

### o Why binomial?

- > does basically the same as the BMS pde, but ...
- ▷ is much simpler

### One-period problems

- ▷ hedging/replication gets us the price without knowing the true p and the required risk correction in the discount rate
- $\triangleright$  but that's because we implicitly use *q* instead:
- > the price is the discounted risk-adjusted expectation

### Multiperiod models

- ▷ basic model assumes constant  $u, d, r, r^*$
- we can hedge dynamically and price backward
- for American-style options, we also compare to the value dead

### Black-Merton-Scholes

▷ For European-style options, you can Straight-Through-Price the option

- ▷ This gets us a BMS-like model
- BMS itself is a limit case


Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions
- Stepwise Multiperiod Binomial Pricing
- Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta

# What have we learned in this chapter?

### Why binomial?

- > does basically the same as the BMS pde, but ...
- ▷ is much simpler

### One-period problems

- ▷ hedging/replication gets us the price without knowing the true *p* and the required risk correction in the discount rate
- $\triangleright$  but that's because we implicitly use *q* instead:
- > the price is the discounted risk-adjusted expectation

### Multiperiod models

- ▷ basic model assumes constant u, d, r, r\*
- ▷ we can hedge dynamically and price backward
- ▷ for American-style options, we also compare to the value dead

#### Black-Merton-Scholes

▷ For European-style options, you can Straight-Through-Price the option

- ▷ This gets us a BMS-like model
- BMS itself is a limit case



Currency Options (2): Hedging and Valuation

P. Sercu, International Finance: Theory into Practice

- The Binomial Logic: One-period pricing
- Multiperiod Pricing: Assumptions
- Stepwise Multiperiod Binomial Pricing
- Towards BlackMertonScholes STP-ing of European Options Towards BlackMertonScholes Option's Delta

# What have we learned in this chapter?

### Why binomial?

- > does basically the same as the BMS pde, but ...
- ▷ is much simpler

### ◊ One-period problems

- ▷ hedging/replication gets us the price without knowing the true p and the required risk correction in the discount rate
- $\triangleright$  but that's because we implicitly use *q* instead:
- > the price is the discounted risk-adjusted expectation

### Multiperiod models

- ▷ basic model assumes constant u, d, r, r\*
- ▷ we can hedge dynamically and price backward
- ▷ for American-style options, we also compare to the value dead

### ◊ Black-Merton-Scholes

- ▷ For European-style options, you can Straight-Through-Price the option
- ▷ This gets us a BMS-like model
- BMS itself is a limit case