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Abstract: Additive manufacturing (AM) has emerged over the past four decades as a cost-effective,
on-demand modality for fabrication of geometrically complex objects. The ability to design and print
virtually any object shape using a diverse array of materials, such as metals, polymers, ceramics and
bioinks, has allowed for the adoption of this technology for biomedical applications in both research
and clinical settings. Current advancements in tissue engineering and regeneration, therapeutic
delivery, medical device fabrication and operative management planning ensure that AM will
continue to play an increasingly important role in the future of healthcare. In this review, we outline
current biomedical applications of common AM techniques and materials.

Keywords: 3D printing; additive manufacturing; rapid prototyping; tissue engineering; bioprinting;
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1. Introduction

Conventional manufacturing consists of formative (molds) or subtractive (machining) techniques
that require multiple steps and costly infrastructure, which limits capability for timely implementation
of modifications to the final product [1]. Furthermore, these conventional techniques do not allow for
intricate and complex geometries that are often required in biomedical engineering applications [1].
3D printing, or additive manufacturing (AM), however, has emerged over the past four decades as a
robust tool for fabricating geometrically complex objects in a cost-effective and timely manner [1–3].
Developed in the 1980s, the core concept of 3D printing involves layered deposition of material in
three-dimensional space guided by a computer-generated model [4]. This allows for the creation
of very complex designs that would be extremely difficult or even impossible to produce using
conventional manufacturing techniques, which has resulted in its increased adoption by various
industries [1]. Its role in healthcare is becoming increasingly important through its utilization in
therapeutic delivery [5–7], surgical planning [8], implant design [9] and tissue engineering [10–12].
A unique but rapidly growing application of AM is bioprinting, which allows for the seeding of
cells in a spatially defined manner in 3D space [13]. This enables the production of in vitro models
for drug screening and disease modeling as well as biofabrication of implantable tissues such as
skin [14], cartilage [15] or bone [16]. In this review, we will outline common AM fabrication methods,
biomedically relevant printing materials and their use in healthcare applications.
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2. Types of 3D Printing for Biomedical Applications

Since the 1980s, diverse techniques for AM have been developed for layered printing of different
materials. There are currently seven different established techniques for AM as outlined by the
ISO/ASTM 52900 standard [17], and summarized comparisons of the techniques are outlined in Figure 1
and Table 1. Below, we briefly describe each process.

2.1. Powder-Based Printing

The two techniques below share the use of a powder bed as the base material for their constructs.
However, they modify the powder in different ways to achieve a cohesive structure.

• Binder Jetting—This technique involves the jetting of binding material droplets over a powder
bed. Once the binder has been sprayed over the powder bed, a fresh layer of powder is spread
onto the bed and the next layer of binder is applied [17,18].

• Powder Bed Fusion—In this technique, the powder is a material that can be melted using lasers.
Once a layer of powder is molten, a new layer of powder is deposited on top and the process
repeats [17,19].

2.2. Material Deposition

These techniques utilize nozzles to deposit the printing material in layers.

• Direct Energy Deposition—In this technique, a nozzle deposits a continuous stream of metal onto
the print surface, and a thermal energy source, such as laser, melts it continuously, layer by layer [17,20].

• Material Extrusion—The printing material for this technique is thermoplastics, which are melted
to a semi-liquid state and deposited continuously on the printing bed in layers. Binding of
the layers is achieved due to the semi-liquid consistency of the plastic layers, causing them to
fuse before curing in ambient temperature [17,21]. This technique can be used with pastes and
hydrogels for co-printing with living cells.

• Material Jetting (MJ)—This technique utilizes jets to spray a layer of liquid resin while
simultaneously curing the layer with UV light before printing the next layer [17,22].

• Bioprinting—This term encompasses the utilization of different AM technologies to 3D print
living cells, and is not considered a specific AM technique on its own. The basic principle consists
of the deposition of cells suspended in bioink by nozzle-based techniques, such as material
extrusion or jetting, as outlined above, or laser-assisted nozzle-free techniques. Laser-assisted
bioprinting involves forward transfer of droplets of cells suspended in bioink, focusing a laser on
a membrane that is coated with cell-containing bioink on the side of the membrane facing the
printing surface [23]. The advantage of this technique is the decreased shear stress on cells due to
an absence of an orifice, and the microscopic resolution it achieves [24]. A further technique is
inkjet or drop-on-demand (DOD) printing, where picolitre-volume droplets of cell-containing
bioink are deposited with very high precision to coalesce into fibers. These are then crosslinked
before subsequent layers are deposited, to produce a 3D structure [25,26]. Due to the very small
volume of the droplets, sub-100 µm resolution can be achieved [27].

2.3. Liquid Reservoir

• Stereolithography (SLA)—The print bed is lowered into a vat containing a liquid photopolymer
resin, and either UV or visible light is concentrated on the resin-bed interface to solidify the
resin [4]. With every exposure to light, the bed containing the polymerized layer is lifted out of
the resin and dipped back in to repeat the process [4,17].
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2.4. Sheets of Material

• Sheet Lamination—In this process, sheets of material (paper, plastic, metal) are cut either with a
laser or a blade, with each sheet representing a slice of the computer-aided design (CAD) model.
After all sheets are cut, they are stacked and bound using a binder, and the cut sections are
removed, revealing the three-dimensional inner design [17,28].

2.5. Nanofabrication

Nanofabrication is the process of constructing structures less than 100 nm in size, making the
suitable for use in a variety of fields including electronics and medicine. Despite not being recognized
as a conventional AM technique, nanofabrication methods can employ many of the same principles.
The manufacturing process for nanofabrication can be divided into two categories [29]. A “top-down”
approach revolves around deconstructing a larger material to form the desired nanostructure, akin to
carving a statue out of a block of stone and other traditional machining methods [29]. This principle
requires complicated and expensive steps, offering little flexibility for modification. There is limited
reproducibility of the nanostructures created through the “top-down” approach due to uncontrollable
variability in the manufacturing process [29]. The second category of nanofabrication involves a
“bottom-up” approach, where building blocks such as atoms or molecules either self-assemble or are
“printed” to create a nanostructure [29]. This in turn can lead to structures with atomic resolution.
The “bottom-up” approach is additive in nature, similar to most other AM techniques. There are
endless applications of nanofabrication in biomedicine and tissue engineering, including (but not
limited to): preserving immunogenicity of compounds in vaccines; minimizing transplant rejection
through immuno-isolation; creation of biomaterials with unique mechanical and biological properties;
drug sequestration and delivery; and circulating toxin and waste binders [30].
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Figure 1. Types of additive manufacturing (AM). (A) Binder jetting—a liquid binder is jetted over a
precise region of powder, additional powder is placed on top and the process repeats. (B) Directed energy
deposition—a laser is used to melt metal as it is extruded from a nozzle. (C) Material extrusion—molten
thermoplastics are dispended through a nozzle and cooled quickly on the print bed. (D) Sheet lamination—a
sheet of material is cut to size with a blade or laser, the next sheet with adhesive is then added and
heat is applied to adhere the layers before the second layer is cut to shape (E) Material jetting (MJ)—a
layer of liquid resin is sprayed and then cured (often with UV light) before proceeding to the next layer.
(F) Stereolithography—the print bed is lowered by a one-layer distance into a vat of liquid resin, which is
then UV-cured; the print bed continues to move through the resin one layer at a time. (G) Powder bed
fusion—a layer of powder (often metal) is spread over the print bed before being molten using a laser and
formed into a layer. The print bed moves down, the next layer of powder is spread over the solidified layer
and the process repeats. (H) Extrusion bioprinting (left)—similar to material extrusion, a bioink (mixture of
cells and carrier material) is extruded from a nozzle or needle layer-by-layer before crosslinking or curing.
Inkjet bioprinting (center)—picoliter-sized droplets of bioink are deposited onto the print bed and allowed to
coalesce into fibers. Laser-assisted bioprinting (right)—a laser pulse causes small droplets of bioink to be
dropped from a surface into defined geometries. *All figures are designed and created by the authors.
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Table 1. Types of Additive Manufacturing.

Printing Technique Material Resolution Biomedical Applications Advantage Disadvantage

Binder Jetting Sand
Metal powder 50–400 µm

Degradable (Fe-based alloys)
metallic implants [31]. Generally

used for hard, mineralized tissues

Low cost, fast, color printing, no
support structure needed, large

objects

Low strength, requires post-processing,
powders pose a respiratory hazard

Directed Energy
Deposition

Metal
Nylon 250–500 µm Limited use in medical applications Fast, composite materials, can

patch defects on existing objects
Expensive, slow, low resolution, requires

post-process machining

Material Extrusion
(FDM1)

Hydrogels
Thermoplastics

Ceramics
Bioinks

100–200 µm

Bioprinting of scaffolds for cell
culture, tissue and organ

development (soft tissues) [32]
Production of rigid and soft

anatomical models for surgical
planning

Color, low cost, accessible,
composite materials, open source

designs

Slow, anisotropy, lower resolution,
nozzles impart high shear forces on cells

Material Jetting/Inkjet
(MJ2, DOD3)

Photopolymer
Bioinks 20–100 µm

Bioprinting of scaffolds for cell
culture, tissue and organ

development (soft tissues) [33]
Good resolution and cell viability Slow, material waste

Powder Bed
Fusion

(SLS4, DMLS5/SLM6,
EBM7)

Thermoplastics
Metal Powder

Ceramics
100–200 µm

Metallic implants; dental,
craniofacial and orthopedic [34]
Temporary and degradable rigid

implants [35]

Strong, fast, no solvents required Most expensive, medium resolution,
post-processing required

Sheet Lamination
Paper

Ceramics
Metal

~1 mm Macroscopic anatomical models Low cost, composite materials, no
support structure needed

Slow, lots of material wasted,
delamination

Stereolithography
(SLA8, DLP9)

Photopolymer
Bio-resin 1.2–200 µm

Bioprinting of scaffolds for cell
culture, tissue and organ

development, can be used for both
soft and hard tissues [36]

High resolution, fast, very good cell
viability, nozzle free

Raw material toxicity, limited material
selection, possible harm to DNA by UV

Spheroid assembly Bioink
Organoids 100–200 µm Tissue and organ development, soft

tissues [37]
Biologically active models, scaffold

free, freeform fabrication
Fragile raw material, requires subsequent

spheroid fusion
1Fused deposition modelling; 2Material jetting; 3Drop-on-demand; 4Selective laser sintering; 5Direct metal laser sintering; 6Selective laser melting; 7Electron beam melting; 8Stereolithography;
9Digital light processing.
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3. Biocompatible 3D Printing Materials

In the field of biofabrication, there is clear distinction between direct printing of a cell-seeded
material, termed a “bioink”, and the printing of a cell-free scaffold from a “biomaterial ink”, which can
subsequently be seeded with cells or directly implanted [38,39]. Ink selection is driven by both the
final function of the part and the printing technique to be used. Biomaterial inks are generally used to
produce a rigid scaffold for the permanent or slow-degrading stabilization of a structure, while bioinks
produce a softer scaffold that can be more rapidly replaced by the deposition of a new extracellular
matrix (ECM) by the embedded cell population [32,39].

3.1. Bioinks

Many bioinks have been developed from hydrogels, which are very well established as suitable
materials for 3D cell cultures [40–42]; they have very good biocompatibility and are highly tunable
regarding their physical, mechanical and biological properties [42–44]. Hydrogels commonly show
non-Newtonian, shear thinning behavior, which makes them suitable for extrusion bioprinting.
Unmodified, however, they often have limitations regarding their print characteristics, which were
described by Malda et al. [32]. Hydrogels, which make the best cell culture scaffolds, often have low
viscosities prior to crosslinking, resulting in poor shape fidelity following extrusion-based printing,
and limiting their capacity to form larger structures without features collapsing [32,45,46]. This has
encouraged the development of both novel bioinks and new techniques for cell-seeded biofabrication
in recent years [47]. Table 2 summarizes frequently used bioinks and their applications, while a number
of specific recent examples are further detailed.

Table 2. Commonly used bioinks and their recent tissue engineering applications (PEG: polyethylene
glycol; ECM: extracellular matrix; hMSCs: human mesenchymal stem cells; hMPCs: human muscle
progenitor cells; HUVECs: human umbilical vein endothelial cells; PAVICs: porcine aortic valve
interstitial cells; SCAP: stem cells from the apical papilla).

Bioink Cell Type/Tissue Reference

Alginate Chondrocytes/Cartilage [48,49]

Agarose hMSCs
Chondrocytes [50,51]

Collagen Hepatocytes/Liver [52]
Fibrin hMPCs/Skeletal Muscle [53]

Gelatin
HUVECs/Vascular structures

hMSCs/Bone
hMSCs/Cartilage

[36,54,55]

Gellan gum Chondrocytes/Cartilage
Osteoblasts/Bone [47]

Hyaluronic
acid Fibroblasts [56]

PEG hMSCs
Fibroblasts [57,58]

Tissue-derived
ECM

SCAP/Dentin
Kidney [59–61]

Biopolymer hydrogels that have been used for bioprinting include, but are not limited to, alginate,
agarose, cellulose, collagen, fibrin, gelatin, gellan gum and hyaluronic acid. Alginate is a negatively
charged polysaccharide derived from brown algae, and is one of the most commonly used hydrogels
in both tissue engineering and bioprinting [62,63]. It crosslinks upon the addition of divalent cations,
and can be functionalized by the addition of arginine–glycine–aspartate (RGD) moieties, which are
responsible for cells binding to the extracellular matrix [64], facilitating interaction with the scaffold.
Alginate is also frequently blended with other biopolymers to modify both its printing and biological
properties. A recent study incorporated hydroxyapatite (HAp) into alginate to produce a bioink for
production of a calcified cartilage matrix [49]. The addition of HAp into alginate caused a reduction in
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glucosaminoglycan (GAG) secretion of chondrocytes, an increase in production of Col II and an increase
in calcified cartilage markers Col-X, ALP and Alizarin red staining [49]. The addition of sodium
citrate allowed for a more-homogenous distribution of Hap, and also improved print characteristics by
preventing clogging of the needle [49].

Gelatin is another natural biopolymer that has long been used in cell culture. Unmodified,
it undergoes a thermoreversible sol-gel transition, but the speed of gelation is generally considered too
slow to ensure shape fidelity. To overcome this, many groups have used gelatin methacrylate (GelMA)
to enable UV crosslinking [65]. This has shown very good biocompatibility, degradability and is also
a relatively inexpensive bioink [66,67]. A study by Byambaa et al. used GelMA functionalized with
vascular endothelial growth factor (VEGF) moieties to bioprint spatially defined vascular structures
(with HUVECs) within a bone-like (GelMA with silicate nanoparticles and hMSCs) construct [54].

GelMA has also been combined with methacrylated polyvinyl alcohol (PVA-MA) and a visible
light photoinitatior to produce a bio-resin for digital light processing (DLP) lithography. This approach
allows for freeform fabrication, without the constraints of producing lattices, and with resolution down
to 25–50 µm. Human bone marrow derived MSCs was seeded into the bio-resin prior to printing and
showed >85% viability 24 h after UV polymerization. GelMA was shown to be an essential addition to
PVA-MA for long-term (28 days) cell survival [36].

Components of ECM such as collagen, fibrin and gelatin have been used to recapitulate the ECM
for cell culture scaffolds for decades, but many of the chemical and biological signals from whole ECM
are missing. Tissue-derived decellularized ECM (dECM) has the potential to be a very functional bioink;
however, the decellularization process often renders it very mechanically soft, so it requires blending
with synthetic or natural materials to increase its integrity following printing [59]. In a recent study,
decellularized dentin was prepared by first removing the pulp and enamel from molars, followed
by grinding and decalcification. It was then mixed with sodium alginate and SCAPs to produce a
printable bioink. Increasing the concentration of dentin matrix molecules caused a significant increase
in the upregulation of dentin markers ALP and RUNX2 [60].

3.2. Biomaterial Inks

Biomaterial inks often require processing under conditions that are cytotoxic, such as extremes of
temperature or the use of solvents; however, they can be loaded with therapeutic molecules that can
withstand these processing conditions [6]. Thermoplastics, ceramics, composites and metals have all
been additively manufactured for use in biomedical applications [6,11,12].

3.2.1. Synthetic Hydrogels

Synthetic hydrogels are often not suitable for the direct seeding of cells, but have similar
non-Newtonian properties to biopolymeric hydrogels, allowing them to be printed by extrusion.
Pluronic is a commonly used synthetic ink that can be thermally crosslinked or functionalized with
chemical groups for UV crosslinking. It has been used as support material for structures with
overhangs, and also as a sacrificial ink to produce hollow structures [48,55,68,69]. Elastomers are also
an attractive material for bioprinting, as their mechanical properties mimic the viscoelasticity of native
tissues. Polydimethylsiloxane (PDMS) and silicon have been printed using embedded techniques
(freeform reversible embedding (FRE) and printing into microgels, respectively) to produce hollow
and bifurcating structures that mimic airways and large vessels [70,71]. These structures can then be
perfused to model flow in large vessels [71].

3.2.2. Thermoplastics and Resins

Thermoplastics are common materials for 3D printing across many technical industries, and
are also used by hobbyists. In bioprinting, the key advantage is that they can be processed and
undergo multiple thermal cycles for the incorporation of factors, and to form filaments for extrusion,
resins for photolithography or polymer melts for electrospinning. We have previously shown that



Appl. Sci. 2019, 9, 1713 8 of 23

off-the-shelf materials can be used in tissue engineering applications [11,12]. Thermoplastics such as
polycaprolactone (PCL), polyvinyl alcohol (PVA) and polylactic acid (PLA) have been bioprinted for
use as both supports for cell-seeded hydrogels that require mechanical reinforcement, and for direct
implantation in vivo [55,72]. They are printed using extrusion from filaments or polymer melts so they
can produce structures with high resolution and very good shape fidelity, giving excellent control over
porosity, which can in turn influence the mechanical properties of the scaffold [73].

PORO-LAY are a group of PVA–polyurethane–elastomer blends that can be extrusion printed
from filament before rinsing with water, to wash out the PVA component, leaving the nanoporous
elastomer. We have shown the entrapment and subsequent controlled release of doxorubicin (a common
anti-cancer drug) or zoledronate (anti-resorptive), over a period of seven days [6,7] in 3D-printed
scaffolds. Using different variations of PORO-LAY with increasing levels of porosity, the total release of
doxorubicin was also increased, inducing the largest decrease in metabolic activity in a prostate cancer
cell line [6]. Delivery of cancer drugs to specific tissues is often achieved intravenously, but there is
little currently done to prevent the venous spreading of excess drug to healthy tissues. A thermoplastic
mesh-like filter was printed using continuous liquid interface production (CLIP) before being coated
with a polystyrene–sulphonate absorber. The cylindrical filter device was printed and implanted
in the iliac vein of a swine. Doxorubicin was then injected up-stream of the device, and the levels
of doxorubicin in the blood were shown to be significantly lower after blood passed through the
coated filter compared with the uncoated control [74]. This offers a solution by which a device can be
implanted in large veins leading from diseased tissues to “mop-up” excess chemotherapeutics.

3.2.3. Ceramics

Ceramic materials are a mixture of inorganic salts, including calcium and phosphate, which
are used for bone and dental applications due to their osteoconductivity. On their own, ceramics
are very brittle, which makes them difficult to handle and implant; therefore, in biofabrication,
ceramics are combined with a polymeric binder for extrusion bioprinting or 3D powder printing [49,75].
Commonly printed ceramics include tricalcium phosphate (TCP), hydroxyapatite (HAp), bi-phasic
calcium phosphate (BCP), poly (methyl methacrylate) (PMMA) and bioglass. Tetracalcium phosphate
(TTCP) is a promising candidate for bone replacement and has been shown to be highly resorbable
at low pH. A study by Mandal et al. showed the use of TTCP with a phytic acid binder. Following
printing, and post-hardening with additional binder solution, TTCP was still the most abundant
ceramic phase, but an amorphous calcium phosphate phase was also present, indicating a reaction
between the ceramic powder and binder [76]. Ceramics have been used to functionalize PCL by mixing
the powdered ceramic and polymer, producing a liquid melt and then extruding filaments to produce
a multi-layered scaffold [77]. In this study, PCL blended with natural ceramics (decellularized bone
matrix and Bio-Oss, a bovine derived bone mineral) outperformed synthetic ceramics (HAp and TCP)
regarding osteoinductive capability [77].

3.3. Metal Implants

Metallic implants for orthopedic, dental and craniofacial applications have traditionally been
manufactured from stainless steel, cobalt chromium molybdenum and titanium alloys by methods such
as casting, forging and machining. Developments in AM technology have now enabled the production
of implants designed from reconstructed 3D imaging data to produce patient-specific implants. A key
area of recent research has been in adding functionality to these implants. A recent study showed
how an antibiotic-eluting cement could be loaded into a central cavity within metallic implants that
could not be manufactured by conventional methods [78]. Due to the high resolution achievable by
selective laser melting (SLM) of metallic powders, intricate lattices can be produced [9,34]. This has
been investigated to overcome issues surrounding stress shielding in hip implants. Finite element
analysis (FEA) was initially used to determine the theoretical mechanical performance, as well as



Appl. Sci. 2019, 9, 1713 9 of 23

theoretical reductions in bone loss, of porous implants. They were then produced using SLM and FEA
was confirmed by mechanical testing [9].

4. Healthcare Applications

4.1. Tissue Engineering

The field of tissue engineering plays a key role in fabrication of biocompatible implants to
replace damaged or non-functional tissues. The principle behind tissue engineering revolves around
combining biocompatible materials, live cells and growth factors to create implants that aid normal
tissue growth throughout the engineered construct [79,80]. Additive manufacturing has fit well into
tissue engineering, allowing for fabrication of 3D-printed models that mimic the microscopic network
of connective tissue [79]. From porous implants that promote bone regeneration [81], to complex
three-dimensional organoids composed of cells [82], the main advantage of 3D printing in tissue
engineering is the ability it provides to make geometrically complex (potentially composite) structures
by accurate placement of material or cells within a three-dimensional space.

4.1.1. 3D Models and Organoids

In vitro applications of tissue engineering have paved the way for the development of physiological
models representing tissue-like human and animal microenvironments for more clinically applicable
testing. Complex three-dimensional organizations of different cell types can allow for the creation
of organoids and functional units of different organ systems for studying disease processes and
treatment response. It has been shown that cells behave quite differently in terms of gene expression
and signaling within a 3D environment, as opposed to conventional 2D cultures [83,84]. A study by
Riedl et al. [83] comparing the response of 3D spheroids vs 2D cultures of human colon cancer cells lines
observed contradictory levels of AKT/mTOR/S6K signaling activity upon treatment with the mTOR
inhibitor rapamycin. They discovered that signaling was increased in 2D cultures, but decreased in 3D
spheroids [83]. A subsequent xenografted mouse tumor model demonstrated that the 3D spheroid
model was an accurate representation of the in vivo response to rapamycin treatment, showcasing
the increased efficacy of 3D spheroids as accurate preclinical drug screening models compared to
2D cultures [83]. Although tumor spheroid models are a relatively inexpensive and a fast way of
recreating in vivo-like environments [85], they are limited regarding their size and complexity [86].
Due to limitations concerning diffusion of nutrients, gases and wastes, spheroids can only grow to a
certain size before hypoxia and lack of nutrients deteriorates the spheroid viability [86]. Additionally,
fabrication methods for spheroid formation only allow for production of simple spheroids, without
any design complexity, and they are also very fragile during handling [86].

As an AM technique, bioprinting allows the creation of complex 3D hydrogel models with great
levels of control and reproducibility compared with conventional techniques such as molding and
spheroid formation. While production of functional organs may still be decades away, bioprinting can
already allow the creation of complex organ-on-a-chip models. With good anatomical, compositional
and functional similarity to the host tissue, bioprinted 3D models can be used to conduct experiments
in an in vivo-like physiological environment [87]. Organ development is a process that begins
during the embryonic period, and so recreating the architectural environment and correct signaling
patterns developed through this process is important for modeling both developmental and disease
processes [88]. Current research efforts have been successful in reproducing functions of many different
organs through differentiation and self-organization of stem cells into organoids [89,90]. Reliance on
the self-organizing capabilities of stem cells, however, provides limited control regarding the shape,
composition and final size of the organoid [91,92]. Through bioprinting, stem cells, cell lines and
patient derived cells can be deposited with good spatial control to achieve any desired structural
arrangement [82,88,91–93]. A study by Grix et al. [94] utilized stereolithography to produce 4 mm
3D liver lobule models. They comprised a hepatocyte-seeded GelMA (methacrylated gelatin) with
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degradable PEG (polyethylene glycol)-lined channels, mimicking the unique in vivo architecture of
the liver. They demonstrated increased hepatocyte-specific gene expression within the 3D model
as compared to 2D monolayer cultures [94]. Additionally, by embedding channels throughout the
model, they created a vascular network that could be used to perfuse the model [94]. The high
resolution that stereolithography technology enables allowed printing of microscopic details within
this model [94]. Another study by Bulanova et al. [95] used material extrusion bioprinting technology
and a collagen-based bioink to create a vascularized thyroid gland model. Through bioprinting, they
were able to create a model consisting of embryonic stem-cell-derived thyroid spheroids and epithelial
spheroids, in close proximity to each other, that allowed for invasion and vascularization of the thyroid
spheroids by the epithelial cells [95]. They also confirmed the functionality and neovascularization of
the organoid by achieving thyroid homeostasis after implanting the bioprinted organoid in hypothyroid
mice [95].

Bioprinting has emerged over the past few years as a capable method for creating highly
complex organoids and lab models. To date, many labs have utilized this technique for creating
biologically functioning models made up of a wide variety of tissues such as liver [87,94,96], mammary
epithelium [97], myocardium [98], skeletal muscle [53], kidney [61], skin [14,93], neurons [99] and
malignant tumors [100]. These models are becoming useful drug screening tools within both research
labs and the pharmaceutical industry [98,101–103]. There are, however, a few limitations associated
with bioprinting. The properties of currently used bioinks result in a trade-off between creating a viable
growth environment for cells, while providing structural support to the printed model. More elastic
biomaterials can allow for creation of complex models that can hold their shape but at the same time
limit cellular interactions and movement [104]. More viscous biomaterials create a fluid environment
for cells, while having less capability to create large models without collapsing under their own
weight [105]. As the field of bioprinting advances, so does the need for discovering new biomaterials
that provide structural support without hindering cell viability and extracellular matrix deposition.

4.1.2. Implants

The field of surgical implants and prostheses is continuously developing to allow for more
cohesive integration of these foreign objects within their surrounding tissue, as well as to increase their
functionality. Design of implants and prostheses requires a multidisciplinary approach that combines
principles of materials science, engineering, biomechanics, molecular biology, pharmaceuticals and
long-term clinical monitoring. AM can help bridge the gap between biology and engineering by creating
complex biocompatible and bioactive constructs that take advantage of unique material properties,
such as osteoconductivity and osteoinductivity, to promote tissue regeneration and integration of the
implant with the surrounding tissue. Current radiological imaging technology, such as computed
tomography (CT), can allow for creation of very accurate CAD models of a defect that can serve as
models for 3D printing to ensure a perfect fit into the desired tissue [106].

Tissue Regeneration

AM has been established as an effective tool for production of implants that promote bone
regeneration in vitro and in vivo [10,107–109]. Management of critical-size bone defects is highly
challenging, often resulting in significant morbidity [110]. Simply filling a large bone defect with bone
graft may not guarantee bone integration due to an absent coherent blood supply to the graft [110,111].
Current surgical management options include vascularizing a bone graft, which is difficult and highly
technical, or performing a Masquelet procedure, which is effective at restoring blood supply, but
requires multiple operations and therefore increases morbidity [110]. AM offers potential implant
solutions that could promote both vascularization and bone regeneration [109,112]. Porosity is an
important property for promotion of bone ingrowth. 3D printing provides the technical capability to
create high-resolution, porous scaffolds from a wide variety of materials including metals, ceramics and
biodegradable polymers [113]. Other regenerative capabilities of AM-fabricated scaffolds aside from
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bone have also been studied. A study by Lee et al. [114] demonstrated the printing and implantation
of an acellular hydroxyapatite/PCL scaffold doped with transforming growth factor β3 (TGFβ3)
into rabbits. It resulted in full regrowth of the articular surface of the proximal humeral joint, and
the regenerated cartilage had comparable histological, compressive and shear properties to that
of native rabbit articular cartilage [114]. Similar findings with hyaline cartilage were observed by
Chang et al. [115], where an FDM-printed PCL trachea, coated with MSCs and fibrin, demonstrated
production of neocartilage, as well as integration with native tracheal tissue. Tissue regeneration
using FDM-printed scaffolds have also been reported with hydroxyapatite–PCL scaffolds in the
periodontium [116].

Implant-Tissue Interface

The initial physical interaction of implants with surrounding tissue occurs on the implant surface.
This adds another dimension to factors that affect implant failure over time, such as stress shielding
due to differences in mechanical properties (compared with the surrounding tissue) and implant
wear-induced cell death from movement across the implant-tissue interface [117]. Therefore, it is
imperative to consider implant surface characteristics that aid in better integration and fixation to
the surrounding tissue. Surface roughness of metallic bone implants is an important factor that
inversely correlates with biological fixation to the surrounding bone. A study by MacBarb et al. [118]
demonstrated that 3D-printed titanium spinal implants using electron beam melting (EBM; a type
of powder bed fusion technique) were superior for inducing osteoblast proliferation and calcium
production on implant surface in vitro as opposed to the current standard of implant surface processing
(titanium plasma spraying). They achieved this through incorporating a cancellous bone-like trabecular
network on the implant surface 3D model, and subsequently achieving high-resolution fabrication
using AM [118]. Nanofabrication techniques have also been used to produce porous coatings for
3D-printed implants. A study by Garcia et al. [119] showcased how by coating titanium implants with
fibronectin nanoclusters resulted in a significant increase in integrin binding, resulting in improved
implant fixation in rats. Another study by Tran et al. [120] used selenium nanoclusters as a coating on
titanium implants in an in vitro model. Their results showed that selenium nanoclusters had enhanced
antitumor activity, while also promoting healthy bone formation on the bone surface compared to
untreated implants [120].

Dentistry

Patient anatomical variability in dentistry has driven the field to adopt a customized approach for
the management of each patient. Recent advancements in scanning and imaging technologies have
resulted in highly accurate 3D reconstructions of the oral cavity to serve as a template for designing
custom oral prostheses and implants [121,122]. In the field of prosthodontics (dentures), AM is
clinically established as a feasible and accurate approach for fabricating prostheses with comparable
durability to conventional manufacturing techniques and materials [123–125]. Stereolithography is a
commonly used technique in this field, with established commercial resin products available [126].
In orthodontics (retainers), CAD models of a patient’s oral cavity and teeth are used to simulate the final
teeth-alignment goal, and to print a corresponding mold for fabricating custom silicon prostheses [127].
In oral and maxillofacial surgery, a major role of AM is in 3D printing custom biocompatible and
osteoinductive implants to accurately fill bone defects and promote regeneration of the bone [128],
which will be further discussed below.

Orthopedics

Implants play a key role in the management of patients with orthopedic injuries in order to restore
alignment, structural integrity and motion. Most implants are available in standard sizes designed
to fit most patients. However, patients on the extreme ends of anatomical variability or deformity
might require specialized implants to ensure a proper fit [129]. Much like dentistry, CAD models of
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patient anatomy generated through radiological imaging allow for design and fabrication of custom-fit
implants using AM. Orthopedic implants also need to integrate (or even regenerate) with the patient’s
own bone, which creates tissue support and prevents implant failure. There are a few factors relating
to implant structure and composition that drive its ability to promote bone regeneration. Porosity
is an important property that makes an implant penetrable to tissue and vessel ingrowth [130].
High-resolution AM techniques are well suited for creating highly porous implants that allow for
an interwoven mesh of bone to secure the implant to the surrounding bony tissue [9]. Additionally,
3D printing of bioabsorbable and osteoinductive materials, such as calcium phosphate cement, has
been shown to be very effective at inducing bone growth [131,132]. Lastly, the ability of the implant
to concentrate the effect of drugs and growth factors (such as bone morphogenetic protein (BMP) or
VEGF) through local and sustained release at the site of implantation can allow for decreased systemic
exposure to these compounds. Furthermore, lower quantities of therapeutics would be required,
leading to increased cost-effectiveness [6,133]. It is also important to point out the feasibility for using
3D printing for orthosis generation, such as patient-specific casts for fractures [134].

4.2. Drug Delivery

The role of AM in the pharmaceutical industry is very diverse [135]. Developing new techniques
for controlled release of drugs from different routes of administration continues to be an area of interest
for research. Common routes of drug administration are ingestible tablets and implantable devices
that offer a predetermined rate of drug release. Here we describe some novel ways where AM is being
utilized for improving drug delivery.

4.2.1. Tablets

Solid-form tablets are manufactured using compression of a powder mixture containing the active
pharmaceutical ingredient (API) into molds [136]. This industrial process is efficient for producing
large quantities of simple tablets; however, it is not well suited for the creation of tablets with complex
structures and variable dosing. AM provides an opportunity in this field by allowing the fabrication
of specialized tablets that perform complex and unique functions customizable for different patients.
Fused deposition modeling (FDM) is a commonly used 3D printing technique due to its low cost and
speed for creating ready-to-use tablets [137,138]. Other printing techniques outlined in this review
are also utilized, however, mainly for research purposes [139,140]. A study by Sadia et al. [137]
showcased how 3D printing a tablet with holes >0.6 mm throughout allowed for release mechanics
that qualified for an “immediate release” designation as outlined by United States Pharmacopeia
(USP) as compared with same-dimension solid tablets that did not meet the designation. Their tablets
were printed from hydrochlorothiazide-impregnated thermoplastics and they attributed the improved
release characteristics to an increased surface-to-volume ratio achieved using a 3D-printed design [137].
Another study by Khaled et al. [141] utilized FDM and a hydroalcoholic gel-based paste to print
a three-compartment tablet capable of releasing three different therapeutics (captopril, nifedipine,
glipizide). Interestingly, through modification of the paste, they demonstrated that a single tablet was
able to release Captopril with zero-order kinetics while releasing the other two drugs with first-order
or other kinetics [141]. It is challenging for conventional tablet manufacturing techniques to offer a
wide range of tablet dosing; hence, only certain established doses of drugs exist. However, given
the vast variability in the physiology of every patient, a standard dose of a drug can have a variable
side-effect profile between different patients [142,143]. Therefore, AM provides an economic solution
for producing customizable tablets with functions tailored to each patient. Recent studies have also
shown the potential of AM for on-demand tablet printing for use in emergencies and for printing
tablets containing perishable APIs [5,144].
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4.2.2. Transdermal Delivery

Transdermal drug delivery takes advantage of skin circulation as a distribution network for the
sustained release of a multitude of drugs [145]. This is a non-invasive solution compared to ingestion,
injection or insertion drug delivery methods [146]. Current methods of transdermal drug delivery are
patches and microneedle arrays. Patches provide a continuous supply of a drug to the upper layers
of the epidermis, serving as a reservoir for drugs to passively release into deeper-layer vessels [146].
Microneedle arrays are composed of a patch with microscopic needle-like projections that penetrate
the upper layer of the skin. This allows for better penetration of a drug without disrupting skin
integrity, reducing the risk of infection or other complications associated with more invasive tools
such as hypodermic needle [146]. AM can offer an advantage in patch manufacturing by allowing the
fabrication of patches containing a mixture of drugs, or of patches with complex structures, allowing
for different rates of drug release from the same patch [146]. High-resolution AM techniques, such
as SLA, have been employed to fabricate microneedles with a high degree of precision and speed
using a diverse variety of materials [147]. Inkjet printing is another AM method used to coat these
microneedles with a uniform level of drug in a controlled and reproducible manner [148].

4.2.3. Drug-Releasing Implants

Implants play a wide variety of functions in medicine to restore anatomical integrity, conduct
procedures and aid normal physiological functions. Long-term implants such as plates, joints,
screws, stents or cement require the use of materials that do not interfere with normal functioning
of the surrounding tissue. Temporary implants, such as urinary or vascular access catheters, require
antibacterial coatings to prevent catheter-associated infections [149]. Aside from the great level of
control AM provides in fabricating complex implants, it also allows the incorporation of therapeutics
within an implant’s structure [150]. The use of composite biocompatible materials within implants can
allow for controlling the rate of release of drugs from these implants [150]. Studies have shown that
3D-printed antibiotic-infused PLA constructs are superior in prevention of bacterial biofilm formation
compared to constructs that are only coated with antibiotics [151]. In vitro studies on extrusion
3D-printed scaffolds in our lab have also shown equal efficacy in drug release as compared to direct
treatment with drugs, highlighting the potential for the use of 3D-printed scaffolds for sustained local
drug delivery within tissue [6,7].

4.3. Surgical Tools

Advancements in radiological imaging have allowed the creation of CAD reconstructions of
patient anatomy, providing potential for designing and fabricating patient-specific, customized surgical
instruments [152]. Most surgical tools are designed to work with most patients. However, unique
anatomical features or complex procedures could benefit from customized tools that allow for a
more-controlled and simplified operative experience, in turn decreasing risk of complications [153].
AM is a very effective tool in rapidly converting CAD designs into usable tools that could serve the
ongoing needs of high-output institutions such as hospital operating rooms. AM-fabricated tools
have been effectively sterilized and used for drill and cutting guides [154], retractors [155] and jigs.
One study showcased how a 3D-printed PLA-based retractor was able to perform as well as its stainless
counterpart, while costing 10 times less [155]. One can imagine the large savings for institutions if this
technology were implemented broadly. Interestingly, some studies have suggested the feasibility and
effectiveness of 3D printing surgical tools for emergencies on long-term space missions, such as a trip
to Mars [156,157]. More realistically, the cost-effectiveness of using 3D-printed surgical tools or casts in
low-income countries and institutions has high feasibility [155].
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4.4. Operative Planning

Perhaps one of the most established and publicized applications of AM in surgery is its use
in operative planning. Through imaging modalities such as CT, accurate CAD replicas of patient
anatomy can be generated using high-resolution AM techniques such as SLA [158]. These models
provide surgeons superior visual and tactile appreciation of complex injuries and deformities that
would otherwise be difficult to fully assess with 2D radiological imaging [8]. These models can be
used intraoperatively as well as after sterilization. Ultimately, these accurate 3D models have allowed
surgeons to better plan complicated operations, such as the surgical approach or requirement of specific
tools [8]. Some of the common applications for 3D models for operative planning are complex pelvic
trauma [159], pediatric deformities [8] and osteotomies [160].

5. Open-Source Tools for 3D Bioprinting

As 3D printing developed into a platform for hobbyists to design and produce parts, there was a
rapid increase in the availability of open source software and 3D designs for printing. Many of these
freely available tools are translatable alongside new ones that are directly applicable to the biomedical
field. A few examples are detailed here.

• 3D printers

# RepRap—an online resource for all things 3D printing, including how to build custom
3D printers [161]. As many bioprinters have unique applications and require specific
functions, many groups have modified low-cost FDM printers for affordable bioprinting
set-ups [162,163].

# Feinberg et al.—this group recently released a complete set of instructions along with
.stl files to print a "large volume syringe pump extruder for desktop 3D printers” [164].
This enables the user to convert a low-cost FDM filament printer into a bioprinter for the
extrusion of gel or paste-like bioinks.

• 3D CAD models

# NIH 3D Print Exchange—an online free database of scientifically accurate and medically
applicable models. Ranging from prosthetics to protein structures, the database has almost
7000 3D models that are free to download.

# Thingiverse (MakerBot)—a large online database of general 3D models. It includes a
selection of anatomical models and models for a range of medical tools and devices
uploaded by the printing community.

• Slicing software

# Slic3r, Cura (Ultimaker), Repetier-Host, etc.—there are many different open-source slicing
packages available that all have similar functions and can be adapted for use with most
3D printers.

# PetriPrinter—a G-code generator developed with bioprinting for cell culture in mind, this
software enables the user to design printing set-ups for multiple culture plates or petri
dishes [165].

• Resources

# Bioverse (Cellink)—an online community of researchers involved in bioprinting where
CAD models, protocols and other resources are shared for free.

# Embodi3D—an online biomedical 3D-printing community providing printable anatomic
body parts (.stl files) and tools for converting medical dicom image stacks into printable
files as a freeware service.
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6. Conclusions

This review focused on the current biomedical applications of AM and the advantages it provides
over conventional fabrication methods. As AM technology advances, not only can we expect the
cost of hardware to decrease, but we can also expect new and unique materials to develop that can
improve its biomedical and tissue engineering applications. Thermoplastics for low-cost 3D printing
have almost become mainstream, with their use evident in many hospitals and research institutes.
New and translational materials are being generated at a high rate, which may allow for clinical
use in tissue-repair applications in the very near future. Bioprinting has emerged as a very effective
tool for creating tissue-like 3D models representing physiological systems for drug screening and
disease modelling. Bioprinting has been successful in creating small functional units of organs called
organoids. However, the greatest opportunity for bioprinting lies in its potential for printing a fully
functioning organ that can be transplanted into a patient. This would eliminate the need for waitlists or
rigorous testing for histocompatibility, as the patient’s own cells can be used in the bioprinting process.
Bioprinting technology must overcome issues, such as microvascularization and bioink longevity,
before attempting to print a full organ. However, with the current rate of development it is very
exciting to see what the near future holds.
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