Quarter: 3
Grade: 4

Mathematics Grade 4- Year at a Glance
 2019-2020
 Q3

Q4

Module 1 Aug 19- Sept 10	Module 2 Sept 11-Sept 19	Module 3 Sept 23-Nov 18	Module 4 Nov 19- Dec 19	Module 5 Jan 6- Mar 9	Module 6 Mar 10-April 9	Module 7 Apr 13-Apri 16 (Lessons 1-8 only)		Module 7 April 27-May 22
Place Value, Rounding and Algorithms for Addition and Subtraction	Unit Conversion and Problem Solving with Metric Measurements	Multi-Digit Multiplication and Division	Angle Measure and Plane Figures	Fraction Equivalence, Order and Operations	Decimal Fractions	Exploring Measurement and Multiplication		Material cowered after April 12th is an extension of $4^{\text {th }}$ grade standards or review of previously taught \qquad
4.0A.A. 3	4.MD.A. 1	4.0A.A. 1	4.MD.C. 5	4.NF.A. 1	4.NF.C. 5	4.0A.A. 1		4.OA.A. 1
4.NBTA. 1	4.MD.A. 2	4.OA.A. 2	4.MD.C. 6	4.NFA. 2	4.NF.C. 6	4.0A.A. 2		4.0A.A. 2
4.NBTA 2		4.0A.A. 3	4.MD.C. 7	4.NF.B. 3	4. NF.C. 7	4.OA.A. 3		4.OA.A. 3
4.NBTA. 3		4.OA.B. 4	4.G.A. 1	4.NF.B. 4	4.MD.A. 2	4.MD.A. 1		
4.NBTB.4		4.OA.C. 5	4.G.A. 2	4.OA.C. 5		4.MD.A. 2		
		4.NBTB. 5	4.G.A. 3	4.MD.B. 4				
		4NBT.B. 6						
		4.MD.A. 3						

Key:
Major Content
Supporting Content

Note: Please use this suggested pacing as a guide. It is understood that teachers may be up to 1 week ahead or 1 week behind depending on the needs of their students.
Use the instructional map and Digital Suite resources as you prepare to teach a module for additional guidance in planning, pacing, and suggestions for omissions Pacing and Preparation Guide (Omissions)

Quarter: 3

Grade: 4

Introduction

Destination 2025, Shelby County Schools' 10-year strategic plan, is designed not only to improve the quality of public education, but also to create a more knowledgeable, productive workforce and ultimately benefit our entire community.

What will success look like?

```
80%
    of seniors will be
college-or career-ready
```


In order to achieve these ambitious goals, we must collectively work to provide our students with high quality, college and career ready aligned instruction. The Tennessee State Standards provide a common set of expectations for what students will know and be able to do at the end of a grade. The State of Tennessee provides two sets of standards, which include the Standards for Mathematical Content and The Standards for Mathematical Practice. The Content Standards set high expectations for all students to ensure that Tennessee graduates are prepared to meet the rigorous demands of mathematical understanding for college and career. The eight Standards for Mathematical Practice describe the varieties of expertise, habits of mind, and productive dispositions that educators seek to develop in all students. The Tennessee State Standards also represent three fundamental shifts in mathematics instruction: focus, coherence and rigor.

Instructional Shifts for Mathematics

Throughout this curriculum map, you will see resources as well as links to tasks that will support you in ensuring that students are able to reach the demands of the standards in your classroom. In addition to the resources embedded in the map, there are some high-leverage resources around the content standards and mathematical practice standards that teachers should consistently access. For a full description of each, click on the links below.

Standards for
 Mathematical Practice

Overview

An overview is provided for each quarter and includes the topics, focus standards, intended rigor of the standards and foundational skills needed for success of those standards.
Your curriculum map contains four columns that each highlight specific instructional components. Use the details below as a guide for information included in each column.

Tennessee State Standards

TN State Standards are located in the left column. Each content standard is identified as Major Content or Supporting Content. A key can be found at the bottom of the map.

Content

This section contains learning objectives based upon the TN State Standards. Best practices tell us that clearly communicating measurable objectives lead to greater student understanding. Additionally, essential questions are provided to guide student exploration and inquiry.

Instructional Support

District and web-based resources have been provided in the Instructional Support column. You will find a variety of instructional resources that align with the content standards. The additional resources provided should be used as needed for content support and scaffolding.

Vocabulary and Fluency

The inclusion of vocabulary serves as a resource for teacher planning and for building a common language across K - 12 mathematics. One of the goals for Tennessee State Standards is to create a common language, and the expectation is that teachers will embed this language throughout their daily lessons. In order to aid your planning, we have also included a list of fluency activities for each lesson. It is expected that fluency practice will be a part of your daily instruction. (Note: Fluency practice is not intended to be speed drills, but rather an intentional sequence to support student automaticity. Conceptual understanding must underpin the work of fluency.

Instructional Calendar

As a support to teachers and leaders, an instructional calendar is provided as a guide. Teachers should use this calendar for effective planning and pacing, and leaders should use this calendar to provide support for teachers. Due to variances in class schedules and differentiated support that may be needed for students' adjustment to the calendar may be required.

How to Use the Maps

Supporting Standards

Curriculum and Instruction - Mathematics

Quarter: 3
Quart

Grade 4 Quarter 3 Overview

Module 3: Multi-digit Multiplication and Division
Module 4: Angle Measures and Plane Figures
The chart below includes the standards that will be addressed in this quarter, the type of rigor the standards address, and foundational skills needed for mastery of these standards. Consider using these foundational standards to address student gaps during intervention time as appropriate for students.

Curriculum and Instruction - Mathematics
Quarter: 3
Grade: 4

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT \& RESOURCES	
Module 5: Fraction Equivalence, Order and Operations			
Domain: Number and Operations- Fractions Cluster: Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. 4.NF.B.3b Understand a fraction a / b with $\mathrm{a}>1$ as a sum of fractions $1 / b$. b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+$ $1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=$ $8 / 8+8 / 8+1 / 8$. 4.NF.B.4a Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. a. Understand a fraction a / b as a multiple of 1/b. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.	Module 5: Fraction Equivalence, Ordering and Operations Essential Questions 1. How can you show parts of a region? 2. How can you estimate parts? 3. How can you find 2 fractions that name the same part of a whole? 4. How do you write a fraction in simplest form? 5. How can you use benchmark fractions to compare fractions? 6. How do you write a good mathematical explanation? 7. How can you add and subtract fractions with like denominators? 8. What operation is needed to solve a problem with fractions? Topic A: Decomposition and Fraction Equivalence Lesson Objectives/Learning Targets: 1-2: I can decompose fractions as a sum of unit fractions using tape diagrams. (4.NF.B.3b) Lesson 3: I can decompose non-unit fractions and represent them as a whole number times a unit fraction using tape diagrams. (4.NF.B.4a) Lesson 4: I can decompose fractions into sums of smaller unit fractions using tape diagrams. (4.NF.B.3b 4.NF.B4a) (can be omitted)	Eureka Parent Newsletter- Topic A Optional Quiz-Topic A Pacing considerations: Combine lessons 1 and 2. Omit lesson 4. Suggestions for combining: Lesson 1 and 2 Fluency: Teacher choice Application Problem: Lesson 1 Concept Development - Teach Lesson 1 - Problems 1 and 3 - In Lesson 2, Problem 3 there is a fraction greater than one which extends the lesson - Teach Lesson 2, Problems 1,2,and 3 - The Exit ticket focuses on fractions less than one Problem Set Select Must Do problems that have fractions less than 1 for Lesson 1 and 2 Debrief/Exit Ticket Complete Lesson 1 and 2	Vocabulary $=,<$, or, >, compose, decompose, equivalent Fractions, fraction, fractional unit, multiple, Non-unit fractions, unit fractions, unit interval, Whole Terminology Benchmark, common denominator, Fraction Greater than 1, line plot, mixed number, Numerator Additional instructional resources for enrichment/remediation: Remediation Guide Ready teacher-toolbox aligned lessons - Understand Fraction Addition and Subtraction Ready teacher-toolbox aligned lessons - Understand Fraction Addition and Subtraction Zearn Lessons Lesson 1: Decompose. Compose. Repeat. Lesson 2: Decompose and Group Lesson 3: Decompose and Multiply Lesson 4: Different Decomposition Lesson 5: Same Share Lesson 6: Area Model- Breakdown!

Curriculum and Instruction - Mathematics
Quarter: 3
Grade: 4

Curriculum and Instruction - Mathematics

Quarter: 3
Grade: 4

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT \& RESOURCES	
	relate that to the use of multiplication and division. (4.NF.A.1)	Concept Development - Teach Lesson 7, Problem 1 with Lesson 8, Problem 1 - Teach Lesson 7, Problem 2 with Lesson 8, Problem 3 - Teach Lesson 7, Problem 3 with Lesson 8, Problem 2 Problem Set Lesson 7, Problem 3 Lesson 8, Problems 4 and 5 Debrief/Exit Ticket Lesson 7 and 8	Videos: - Making equivalent fractions using multiplication - Recognize equivalent fractions using area models I-Ready Lessons Equivalent Fractions Task Bank: Explaining Fraction Equivalence with Pictures Fractions and Rectangles
Domain: Number and Operations - Fractions Cluster: Extend understanding of fraction equivalence and ordering.	Topic C: Fraction Comparison Objectives/Learning Targets:	Eureka Parent Newsletter- Topic C Optional Quiz- Topic C Pacing Considerations: No pacing considerations at this time.	Additional instructional resources for enrichment/remediation: Remediation Guide
4.NF.A. 2 Compare two fractions with different numerators e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.	enchmarks to compare two fractions on the number line. (4.NF.A.2) Lesson 14-15: / can find common units or number of units to compare two fractions. (4.NF.A.2)		Ready teacher-toolbox aligned lessons - Compare Fractions Zearn Lessons -Mission 5 Lesson 12: benchmark Bonanza Lesson 13: Benchmark to Compare Lesson 14: Make the Same to Compare Lesson 15: United Units embarc.online- Module 5 Videos:
■Major Work Supporting Standards			$\begin{gathered} \text { SCS 2019-2020 } \\ \text { Revised 12/17/2019 } \\ 7 \text { of } 14 \end{gathered}$

Curriculum and Instruction - Mathematics
Quarter: 3
Grade: 4

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT \& RESOURCES	
			- Compare fractions to a benchmark of one half using number lines Task Bank: Listing fractions in increasing size Using Benchmarks to Compare Fractions
Domain: Number and Operations- Fractions Cluster: Build fractions from unit fractions by applying and extending previous understandings of whole numbers. Domain: Number and Operations - Fractions Cluster (4.NF.B): Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. 4.NF.B.3: Understand a fraction a / b with $\mathrm{a}>1$ as a sum of fractions $1 / \mathrm{b}$. 14.NF.B.3a: Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. 4.NF.B.3.d: Solve contextual word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem	Topic D: Fraction Addition and Subtraction Objectives/Learning Targets: Lesson 16: I can use visual models to add and subtract two fractions with the same units. (4.NF.B.3a) Lesson 17: I can use visual models to add and subtract two fractions with the same units, including subtracting from one whole. (4.NF.B.3a) Lesson 18: I can add and subtract two fractions with the same units. (4.NF.B.3a) Lesson 19: / can solve word problems involving addition and subtraction of fractions. (4.NF.B.3d) Mid Module Assessment Lesson 20-21: I can use visual models to add two fractions with related units using the denominators 2,3,4,5,6,8,10, and 12. (4.NF.A.1, 4.NF.B.3a, 5.NF.A.1) (can be omitted)	Eureka Parent Newsletter-Topic D Optional Quiz- Topic D Pacing Considerations: Omit lessons 20 and 21	Additional instructional resources for enrichment/remediation: Remediation Guide Ready teacher-toolbox aligned lessons - Lesson 17 - Add and Subtract Mixed Numbers Zearn Lessons -Mission 5 Lesson 16: Like Units Make It Work Lesson 17: Whole Use Lesson 18: Three's Company Lesson 19: Word Play Lesson 20: Like Units, Like Sum Lesson 21: Sum it Up embarc.online- Module 5 I-Ready Lessons - Add and Subtract Fractions - Understand Fraction Multiplication Videos: - Add fractions by joining parts - Decompose mixed numbers into a sum of fractions using tape diagrams - Add and subtract fractions and mixed
\square Major	m Supporting S	dards	SCS 2019-2020 Revised 12/17/2019 8 of 14

Curriculum and Instruction - Mathematics
Quarter: 3
Grade: 4

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT \& RESOURCES	
			numbers with like denominators using number lines Task Bank: - Plastic Building Blocks - Extending Multiplication From Whole Numbers to Fractions - Comparing Sums of Unit Fractions
Domain: Number and Operations - Fractions Cluster: Extend understanding of fraction equivalence and ordering 4.NF.A. 2 Compare two fractions with different numerators e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. Domain: Number and Operations - Fractions Cluster (4.NF.B): Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. 4.NF.B.3: Understand a fraction a / b with $\mathrm{a}>1$ as a sum of fractions $1 / b$. 4.NF.B.3a: Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. 4.NF.B.3b: Decompose a fraction into a sum of fractions with the same denominator in more	Topic E: Extending Fraction Equivalence to Fractions Greater Than 1 Objectives/Learning Targets: Lesson 22: I can add a fraction less than 1 to, or subtract a fraction less than 1 from, a whole number using decomposition and visual models. (4.NF.B.3a) Lesson 23: I can add and multiply unit fractions to build fractions greater than 1 using visual models. (4.NF.B.4b) Lesson 24-25: I can decompose and compose fractions greater than 1 to express them in various forms. (4.NF.B.3bc) Lesson 26: I can compare fractions greater than 1 by reasoning using benchmark fractions. (4.NF.A.2) Lesson 27: I can compare fractions greater than 1 by creating common numerators or denominators. (4.NF.A.2) Lesson 28: I can solve word problems with line plots. (4.MD.B.4, 4.NF.A.2, 4.NF.B.3d)	Eureka Parent Newsletter- Topic E Optional Quiz- Topic E Pacing Considerations: Combine Lessons 24 and 25 Suggestions for combining: Lessons 24 and 25 Fluency: Add and Subtract Fractions Count by Equivalent Fractions Application Problem Lesson 24 Concept Development - Teach Lesson 24, Problem 1 with Lesson 25, Problem 1 - Teach Lesson 24, Problem 2 with Lesson 25, Problem 2 Problem Set Lesson 24 \#2, \#3 Lesson 25 \#3 Additional problems can be completed if time allows	Additional instructional resources for enrichment/remediation: Remediation Guide Ready teacher-toolbox aligned lessons - Lesson17 - Add and Subtract Mixed Numbers Zearn Lessons -Mission 5 Lesson 22: Fraction To/Fraction From Lesson 23: Fraction Build Up Lesson 24: Beyond the Whole Lesson 25 Form Follows Function Lesson 26: Benchmark Boogie Lesson 27: We Like Units embarc.online- Module 5 Videos: - Compare fractions to a benchmark of one half using number lines - Add mixed numbers using an area model (Lesson 1 of 2) - Add and subtract fractions and mixed numbers with like denominators using
\square Major Work \sim Supporting S		SCS 2019-2020 Revised $12 / 17 / 2019$ 9 of 14	

Curriculum and Instruction - Mathematics

Quarter: 3
Grade: 4

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT \& RESOURCES	
than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: 3/8 = $1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+$ $1 / 8=8 / 8+8 / 8+1 / 8$. Justify decompositions by using a visual fraction model. 4.NF.B.3c Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction 4.NF.B.3.d: Solve contextual word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem Domain: Measurement and Data Cluster 4.MD.B Represent and interpret data. 4.MD.B.4_Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Solve problems involving addition and subtraction of fractions by using information presented in line plots.		Exit Ticket Lessons 24 and 25	number lines I-Ready Lessons - Add and Subtract Fractions - Understand Adding and Subtracting Fractions Task Bank - Cynthia's Perfect Punch - Comparing two different pizzas
Domain: Number and Operations - Fractions Cluster (4.NF.B): Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. 4.NF.B.3c Add and subtract mixed numbers	Topic F: Addition and Subtraction of Fractions by Decomposition Objectives/Learning Targets: Lesson 29: I can estimate sums and differences using benchmark numbers. (4.NF.B.3c. 5.NF.A.2) (can be omitted)	Eureka Parent Newsletter-Topic F Optional Quiz- Topic F Pacing Considerations: Omit lesson 29	Additional instructional resources for enrichment/remediation: Remediation Guide Ready teacher-toolbox aligned lessons - Lesson17 - Add and Subtract Mixed Numbers

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT \& RESOURCES	
with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction	Lesson 30 : I can I can add a mixed number and a fraction. (4.NF.B.3c) Lesson 31: I can add mixed numbers. (4.NF.B.3c) Lesson 32: I can subtract a fraction from a mixed number. (4.NF.B.3c) Lesson 33: I can subtract a mixed number from a mixed number. (4.NF.B.3c) Lesson 34: I can subtract mixed numbers. (4.NF.B.3c)		Zearn Lessons -Mission 5 Lesson 29: Estimation Station Lesson 30: Sum Mixed, Sum Not Lesson 31: Mixed Sums Lesson 32: Count Back to Subtract Lesson 33: Break Down to Subtract embarc.online- Module 5 Videos: - Add mixed numbers using an area model (Lesson 1 of 2) I-Ready Lessons: - Understanding Adding and Subtracting Fractions Task Bank: - Peaches - Plastic Building Blocks
Domain: Number and Operations - Fractions Cluster (4.NF.B): Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.	Topic G: Repeated Addition of Fractions as Multiplication Objectives/Learning Targets: Lesson 35-36: I can represent the multiplication	Eureka Parent Newsletter- Topic G Optional Quiz: Topic G Pacing Considerations:	Additional instructional resources for enrichment/remediation: Remediation Guide Ready teacher-toolbox aligned lessons
4.NF.B.4.a Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$. 4.NF.B.4.b Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For	of n times a / b as $(n \times a) / b$ using the associative property and visual models. (4.NF.B.4abc) Lesson 37-38: I can find the product of a whole number and a mixed number using the distributive property. (4.NF.B.4bc) Lesson 39: I can solve multiplicative comparison word problems involving fractions.	Omit lesson 41	- Lesson 18 - Understand Fraction - Multiplication - $\frac{\text { Lesson 1- Multiply Fractions }}{\text { Lesson } 27 \text { - Line Plots }}$ Zearn Lessons - -Mission 5 Lesson 35: Associate How You Like Lesson 36: Fast Times Lesson 37: Multiply Mix
			 \square Major Work Supporting Standards

TN STATE STANDARDS	CONTENT	INSTRUCTIONAL SUPPORT \& RESOURCES	
example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as $6 / 5$. (In general, $n \times(a / b)=(n \times$ a)/b.) 4.NF.B.4.c Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?	(4.NF.B.4c) Lesson 40: I can solve word problems involving the multiplication of a whole number and a fraction including those involving line plots. (4.NF.B.4c, 4.MD.A.2, 4.MD.B.4,)		Lesson 39: Prepare to Compare Lesson 40: Plotting Along embarc.online- Module 5 Videos: - Represent fractions as the sum of unit fractions using pictures - Multiply fractions by whole numbers: using models - Represent fractions as the sum of unit fractions using pictures Task Bank: Sugar in six cans of soda
Domain: Order and Operations Cluster: Generate and Analyze Patterns 4.OA.C.5: Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3 " and the starting number 1 , generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.	Topic H: Exploring a Fraction Pattern Objectives/Learning Targets: Lesson 41: I can find and use a pattern to calculate the sum of all fractional parts between 0 and 1. Share and critique peer strategies. (4.OA.C.5) End of Module Assessment	Eureka Parent Newsletter- Topic H No optional quiz available Pacing Considerations: No pacing considerations at this time	Additional instructional resources for enrichment/remediation: Remediation Guide Ready teacher-toolbox aligned lessons - Lesson 8 - Number and Shape Patterns embarc.online- Module 5 Videos: - Find the rule for a function machine using a vertical table I-Ready Lessons - Using a Function Table - Number and Shape Patterns - Applying a Function Rule to Complete a Table Task Bank:
			SCS 2019-2020 Revised 12/17/2019 12 of 14

Curriculum and Instruction - Mathematics

Quarter: 3
Grade: 4

Curriculum and Instruction - Mathematics

Quarter: 3
Grade: 4
TN STATE STANDARDS CONTENT

Shelby County Schools 2018-2019 Mathematics Instructional Calendar - Grade 4

RESOURCE TOOLKIT

The Resource Toolkit provides additional support for comprehension and mastery of grade-level skills and concepts. These resources were chosen as an accompaniment to modules taught within this quarter. Incorporated materials may assist educators with grouping, enrichment, remediation, and differentiation

January 2020						
Module	Monday	Tuesday	Wednesday	Thursday	Friday	Notes: Flex Day Options Include: Standard- Suggested standard(s) to review for the day (*-denotes a Power Standard) Pacing - Use this time to adjust instruction to stay on pace.
			Winter Break			
Module 5 Omit Lesson 4	6 Quarter 3 begins Topic A Combine lessons $\underline{1 \text { and 2 } 2}$	$\begin{array}{r} 7 \\ \text { Topic A } \\ \text { Lesson 3 } \end{array}$	$\begin{array}{r} 88 \\ \text { Topic A } \\ \text { Lesson } 5 \end{array}$	9 Topic A Lesson 6	Flex Day Options *4.NF.B.4a 4.NF.B3b Pacing Other	instruction to stay on pace. Other- This includes assessments, review, re-teaching, etc.
	13 Topic B Combine lessons 7 and 8			Topic B Lesson 11	$1 / 2$ day students Flex Day Options *4.NF.A. 1 4.NF.B.4a Pacing Other	Optional Quizzes- Module 5 Topic A Topic B Topic C Topic D
	Martin Luther King Jr. Day (Out)	Topic C Lesson 12	22 Topic C Lesson 13			(Optional quizzes should take no longer than 15 minutes)
		Topic D Lesson 17			Flex Day Options 4.NF.3ad Pacing Other	

[^0]| February 2020 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Module | Monday | Tuesday | Wednesday | Thursday | Friday | Notes: |
| $\begin{array}{r} \text { Module 5 } \\ \text { Omit lessons } \\ 20 \text { and } 21 \end{array}$ | $\begin{array}{r} 3 \\ \text { Topic D } \\ \text { Lesson } 19 \end{array}$ | 4
 Mid Module Assessment | $\begin{array}{r} \mathbf{5} \\ \begin{array}{r} \text { Topic } \\ \text { Lesson } 22 \end{array} \end{array}$ | | Flex Day Options
 4.NF.3ad
 Pacing
 Other | Flex Day Options Include:
 Standard- Suggested standard(s) to review for the day
 (*-denotes a Power Standard) |
| | $\begin{array}{r} 10 \\ \text { Topic } \mathrm{E} \\ \text { Combine lessons } \\ \hline 24 \text { and } 25 \end{array}$ | $\begin{array}{r} 11 \\ \text { Topic E } \\ \text { Lesson } 26 \end{array}$ | $\begin{array}{r} 12 \\ \text { Topic E } \\ \text { Lesson } 27 \end{array}$ | | | Pacing - Use this time to adjust instruction to stay on pace.
 Other- This includes assessments, review, re-teaching, etc. |
| Omit Lesson 29 | 17
 PD FLEX DAY
 President's Day | | $\begin{array}{r} 19 \\ \text { TopicF } \\ \text { Lesson } 31 \end{array}$ | | $\begin{array}{r} 21 \\ \text { Topic F } \\ \text { Lesson } 33 \end{array}$ | Optional Quizzes- Module 5
 Topic E
 Topic F
 (Optional quizzes should take no longer than 15 minutes) |
| | $\begin{array}{r} 24 \\ \text { Topic F} \\ \text { Lesson } 34 \end{array}$ | | $\begin{array}{r} 26 \\ \text { Topic } F \\ \text { Lesson } 36 \end{array}$ | $\begin{array}{r} 27 \\ \text { Topic } \\ \text { Lesson } 37 \end{array}$ | 28 $\substack{\text { Flex Day Options } \\ \text { 4.NF...3c } \\ \text { Pacing } \\ \text { Other }}$ | |

[^1]| March 2020 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Module | Monday | Tuesday | Wednesday | Thursday | Friday | Notes: |
| | | | | Topic H Lesson 41 | Flex Day Options 4.NF.B. 4
 *4.OA.C. 5 Pacing Other | Flex Day Options Include:
 Standard- Suggested standard(s) to review for the day
 (*-denotes a Power Standard)
 Pacing - Use this time to adjust instruction to stay on pace. |
| Module 6 | \qquad
 End of Module Assessment | | Topic A Lesson 2 | Topic A Lesson 3 | End of Quarter 3 ½ day Flex Day Options 4.NF.C. 6 Pacing Other | Other- This includes assessments, review, re-teaching, etc.
 Optional Quizzes- Module 5 Topic G |
| | 16 | 17 | 18 | 19 | 20 | Optional Quizzes- Module 6
 Topic A |
| Spring Break | | | | | | (Optional quizzes should take no longer than 15 minutes) |
| | | | | | | |
| | 23
 Quarter 4 begins | | 25 | 26 | 27 | |
| | 30 | 31 | 1 | 2 | 3 | |

[^2]

[^0]: Note: Please use this suggested pacing as a guide. It is understood that teachers may be up to 1 week ahead or 1 week behind depending on their individual class needs.

[^1]: Note: Please use this suggested pacing as a guide. It is understood that teachers may be up to 1 week ahead or 1 week behind depending on their individual class needs.

[^2]: Note: Please use this suggested pacing as a guide. It is understood that teachers may be up to 1 week ahead or 1 week behind depending on their individual class needs.

