
Curve fitting – Least squares
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Curve fitting
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Km = 100 µM
vmax = 1 ATP s-1



Excurse error of multiple measurements

Starting point: Measure N times the same parameter
Obtained values are Gaussian distributed around mean with 
standard deviation σ

What is the error of the mean of all measurements?

Sum = x1 + x2 + ... + xN

Variance of sum                    = N * σ2 (Central limit theorem)

Standard deviation of sum

Mean = (x1 + x2 + ... + xN)/N

Standard deviation of mean
(called standard error of mean) N
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Excurse error propagation

-> Individual variances add scaled by squared partial derivatives (if parameters are uncorrelated)

Examples :

What is error for f(x,y,z,…) if we know errors of x,y,z,… (σx, σy, σz, …) for purely 
statistical errors?

Addition/substraction:

Product:
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squared errors 
add up

squared relative 
errors add up



Excurse error propagation

Ratios:

Powers:

Logarithms:
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squared relative 
errors add up

error is relative 
error

relative error
times power

Curve fitting – Least squares
Starting point: - data set with N pairs of (xi,yi)

- xi known exactly, 
- yi Gaussian distributed around true value with error σi

- errors uncorrelated
- function f(x) which shall describe the values y (y = f(x))
- f(x) depends on one or more parameters a
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Curve fitting – Least squares
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Curve fitting – Least squares
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For best fitting theory curve (red curve) P(y1,..yN;a) becomes maximum!



Curve fitting – Least squares
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For best fitting theory curve (red curve) P(y1,..yN;a) becomes maximum!

Use logarithm of product, get a sum and maximize sum:
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OR minimize χ2 with:

Principle of least squares!!!

Curve fitting – Least squares

Principle of least squares!!!
(Χ2 minimization)

Solve equation(s) either analytically (only simple functions) 
or       numerically (specialized software, different algorithms)

χ2 value indicates goodness of fit

Errors available:        USE THEM! → so called weighted fit
Errors not available:  σi’s are set as constant → conventional fit
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Solve:



Reduced χ2

For weighted fit the reduced χ2 should become 1, if errors are properly chosen
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Expectation value of χ2 for weighted fit:
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Define reduced χ2:
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Expectation value of χ2 for unweighted fit:
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Should approach the variance of a single data point

Simple proportion

Differentiation:

Solve:

Get:

For σi = const = σ
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Simple proportion - Errors

Rewrite:

-> Error of m given by errors of yi
-> Use rules for error propagation
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-> Standard error of determination of m (single confidence interval) is then 
square-root of V(m)
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‐> σ2 is estimated as mean square deviation of fitted function from the y-
values if now errors are available

Straight line fit (2 parameters)

Differentiation w.r.t c:

Get:
(solve eqn. array)

or

Differentiation w.r.t m: or

Errors:

For all relations which are linear with respect to the  fit parameters, analytical 
solutions possible! 14

(or σi = const = σ)



Straight line fit (2 parameters)

Additional quantities for multiple parameters: Covariances
-> describes interdependency/correlation between the obtained parameters

Covariance matrix

Straight line fit:

Vii = Var(x(i))
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Squared errors of fit parameters!

More in depth

http://www-zeus.physik.uni-bonn.de/~brock/teaching/stat_ws0001/

Online lecture: Statistical Methods of Data Analysis by Ian C. Brock 

Numerical recipes in C++, Cambridge university press
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