The Islamic University of Gaza

Faculty of Engineering
Civil Engineering Department

Numerical Analysis ECIV 3306

Chapter 17

Least Square Regression

Part 5 - CURVE FITTING

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates.

There are two general approaches for curve fitting:

- Least Squares regression:

Data exhibit a significant degree of scatter. The strategy is to derive a single curve that represents the general trend of the data.

- Interpolation:

Data is very precise. The strategy is to pass a curve or a series of curves through each of the points.

Introduction

In engineering, two types of applications are encountered:

- Trend analysis. Predicting values of dependent variable, may include extrapolation beyond data points or interpolation between data points.
- Hypothesis testing. Comparing existing mathematical model with measured data.

Mathematical Background

- Arithmetic mean. The sum of the individual data points (yi) divided by the number of points (n).

$$
\bar{y}=\frac{\sum y_{i}}{n}, i=1, \ldots, n
$$

- Standard deviation. The most common measure of a spread for a sample.

$$
S_{y}=\sqrt{\frac{S_{t}}{n-1}}, \quad S_{t}=\sum\left(y_{i}-\bar{y}\right)^{2}
$$

Mathematical Background (cont'd)

- Variance. Representation of spread by the square of the standard deviation.

$$
S_{y}^{2}=\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}
$$

$$
S_{y}^{2}=\frac{\sum y_{i}^{2}-\left(\sum y_{i}\right)^{2} / n}{n-1}
$$

- Coefficient of variation. Has the utility to quantify the spread of data.

$$
c . v .=\frac{S_{y}}{\bar{y}} 100 \%
$$

Chapter 17 Least Squares Regression

Linear Regression

Fitting a straight line to a set of paired observations: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
$\boldsymbol{y}=\boldsymbol{a}_{0}+\boldsymbol{a}_{1} \boldsymbol{x}+\boldsymbol{e}$
a_{1}-slope
a_{0}-intercept
e-error, or residual, between the model and the observations

Linear Regression: Residual

Linear Regression: Question

How to find a_{0} and a_{1} so that the error would be minimum?

Linear Regression: Criteria for a "Best" Fit

$\min \sum_{i=1}^{n} e_{i}=\sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)$

$$
e_{1}=-e_{2}
$$

Linear Regression: Criteria for a "Best" Fit

$\min \sum_{i=1}^{n}\left|e_{i}\right|=\sum_{i=1}^{n}\left|y_{i}-a_{0}-a_{1} x_{i}\right|$

Linear Regression: Criteria for a "Best" Fit

n
$\min \max _{\mathrm{i}=1}\left|e_{i}\right|=\left|y_{i}-a_{0}-a_{1} x_{i}\right|$

Linear Regression: Least Squares Fit

$$
S_{r}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}, \text { measured }-y_{i}, \text { model }\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

$$
\min S_{r}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

Yields a unique line for a given set of data.

Linear Regression: Least Squares Fit

$$
\min S_{r}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

The coefficients a_{0} and a_{1} that minimize S_{r} must satisfy the following conditions:

$$
\left\{\begin{array}{l}
\frac{\partial S_{r}}{\partial a_{0}}=0 \\
\frac{\partial S_{r}}{\partial a_{1}}=0
\end{array}\right.
$$

Linear Regression:

 Determination of a_{o} and $a_{1}$$$
\left.\begin{array}{l}
\frac{\partial S_{r}}{\partial a_{o}}=-2 \sum\left(y_{i}-a_{o}-a_{1} x_{i}\right)=0 \\
\frac{\partial S_{r}}{\partial a_{1}}=-2 \sum\left[\left(y_{i}-a_{o}-a_{1} x_{i}\right) x_{i}\right]=0 \\
0=\sum y_{i}-\sum a_{0}-\sum a_{1} x_{i} \\
0=\sum y_{i} x_{i}-\sum a_{0} x_{i}-\sum a_{1} x_{i}^{2} \\
\sum a_{0}=n a_{0} \\
n a_{0}+\left(\sum x_{i}\right) a_{1}=\sum y_{i} \\
\sum y_{i} x_{i}=\sum a_{0} x_{i}+\sum a_{1} x_{i}^{2}
\end{array}\right\} \begin{aligned}
& \text { unknowns, can be solved } \\
& \text { simultaneously }
\end{aligned}
$$

Linear Regression:
 Determination of ao and a1

$$
\begin{gathered}
a_{1}=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
a_{0}=\bar{y}-a_{1} \bar{x}
\end{gathered}
$$

Data spread around Mean
Data spread around best-fit line

Examples of linear regression with (a) small and (b) large residual errors

Error Quantification of Linear Regression

- Total sum of the squares around the mean for the dependent variable, y , is $\boldsymbol{S}_{\boldsymbol{t}}$

$$
S_{t}=\sum\left(y_{i}-\bar{y}\right)^{2}
$$

- Sum of the squares of residuals around the regression line is \boldsymbol{S}_{r}

$$
S_{r}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{o}-a_{l} x_{i}\right)^{2}
$$

Error Quantification of Linear Regression

- $S_{t}-S_{r}$ quantifies the improvement or error reduction due to describing data in terms of a straight line rather than as an average value.

\boldsymbol{r}^{2} : coefficient of determination
r : correlation coefficient

Error Quantification of Linear Regression

For a perfect fit:

- $S_{r}=0$ and $r=r^{2}=1$, signifying that the line explains 100 percent of the variability of the data.
- For $r=r^{2}=0, S_{r}=S_{t}$, the fit represents no improvement.

Least Squares Fit of a Straight Line: Example

Fit a straight line to the x and y values in the following Table:

$\mathbf{x}_{\mathbf{i}}$	$\mathbf{y}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{2}}$
1	0.5	0.5	1
2	2.5	5	4
3	2	6	9
4	4	16	16
5	3.5	17.5	25
6	6	36	36
7	5.5	38.5	49
$\mathbf{2 8}$	$\mathbf{2 4}$	$\mathbf{1 1 9 . 5}$	$\mathbf{1 4 0}$

$$
\sum x_{i}=28 \quad \sum y_{i}=24.0
$$

$$
\sum x_{i}^{2}=140 \quad \sum x_{i} y_{i}=119.5
$$

$$
\bar{x}=\frac{28}{7}=4
$$

$$
\bar{y}=\frac{24}{7}=3.428571
$$

Least Squares Fit of a Straight Line: Example (cont'd)

$$
\begin{aligned}
a_{1} & =\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
& =\frac{7 \times 119.5-28 \times 24}{7 \times 140-28^{2}}=0.8392857 \\
a_{0} & =\bar{y}-a_{1} \bar{x} \\
& =3.428571-0.8392857 \times 4=0.07142857 \\
\mathbf{Y} & =0.07142857+\mathbf{0 . 8 3 9 2 8 5 5 7} \mathbf{x}
\end{aligned}
$$

Least Squares Fit of a Straight Line: Example (Error Analysis)

x_{i}	y_{i}	$\left(y_{i}-\bar{y}\right)^{2}$	e_{i}^{2}
1	0.5	8.5765	0.1687
2	2.5	0.8622	0.5625
3	2.0	2.0408	0.3473
4	4.0	0.3265	0.3265
5	3.5	0.0051	0.5896
6	6.0	6.6122	0.7972
7	5.5	4.2908	0.1993
$\mathbf{2 8}$	$\mathbf{2 4 . 0}$	$\mathbf{2 2 . 7 1 4 3}$	$\mathbf{2 . 9 9 1 1}$

$$
Y=0.07142857+0.8392857 x
$$

$$
\begin{aligned}
& S_{t}=\sum\left(y_{i}-\bar{y}\right)^{2}=22.7143 \\
& S_{r}=\sum e_{i}^{2}=2.9911 \\
& r^{2}=\frac{S_{t}-S_{r}}{S_{t}}=0.868 \\
& r=\sqrt{r^{2}}=\sqrt{0.868}=0.932
\end{aligned}
$$

$$
S_{r}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{o}-a_{1} x_{i}\right)^{2}
$$

Least Squares Fit of a Straight Line: Example (Error Analysis)

-The standard deviation (quantifies the spread around the mean):

$$
s_{y}=\sqrt{\frac{S_{t}}{n-1}}=\sqrt{\frac{22.7143}{7-1}}=1.9457
$$

-The standard error of estimate (quantifies the spread around the regression line)

$$
s_{y / x}=\sqrt{\frac{S_{r}}{n-2}}=\sqrt{\frac{2.9911}{7-2}}=0.7735
$$

Because $S_{y / x}<S_{y}$, the linear regression model has good fitness

Algorithm for linear regression

SUB Regress(x, y, n, al, a0, syx, r2)

```
sumx \(=0:\) sumxy \(=0:\) st \(=0\)
sumy \(=0:\) sumx2 \(=0: s r=0\)
DO \(i=1\), n
    \(\operatorname{sum} x=\operatorname{sum} x+x_{i}\)
    sumy \(=\) sumy \(+y_{i}\)
    sumxy \(=\) sumxy \(+x_{i}{ }^{*} y_{i}\)
    sumx2 \(=\operatorname{sumx2}+x_{i}^{*} x_{i}\)
END DO
\(x m=s u m x / n\)
\(y m=s u m y / n\)
a1 \(=(n *\) sumxy - sumx*sumy \() /(n *\) sumx2 - sumx*sumx \()\)
\(a 0=y m-a 1^{*} x m\)
DO \(i=1, n\)
    \(s t=s t+\left(y_{j}-y m\right)^{2}\)
    \(s r=s r+\left(y_{i}-a 1 * x_{i}-a 0\right)^{2}\)
END DO
syx \(=(s r /(n-2))^{0.5}\)
\(r 2=(s t-s r) / s t\)
```

END Regress

Linearization of Nonlinear Relationships

- The relationship between the dependent and independent variables is linear.
- However, few types of nonlinear functions can be transformed into linear regression problems.
$>$ The exponential equation.
$>$ The power equation.
$>$ The saturation-growth-rate equation.

Linearization of Nonlinear Relationships
 1. The exponential equation.

$$
\ln y=\ln a_{1}+b_{1} x
$$

Linearization of Nonlinear Relationships 2. The power equation

$$
\log y=\log a_{2}+b_{2} \log x
$$

Linearization of Nonlinear Relationships 3. The saturation-growth-rate equation

$$
\frac{1}{y}=\frac{1}{a_{3}}+\frac{b_{3}}{a_{3}}\left(\frac{1}{x}\right)
$$

Example

Fit the following Equation:

$$
y=a_{2} x^{b_{2}}
$$

to the data in the following table:

x_{i}	y_{i}	$\mathrm{X}=\log \mathrm{x}_{\mathrm{i}}$	$\mathrm{Y}=\log \mathrm{y}_{\mathrm{i}}$
1	0.5	0	-0.301
2	1.7	0.301	0.226
3	3.4	0.477	0.534
4	5.7	0.602	0.753
$\mathbf{5}$	8.4	0.699	0.922
$\mathbf{1 5}$	19.7	2.079	2.141

$\log y=\log \left(a_{2} x^{b_{2}}\right)$
$\log y=\log a_{2}+b_{2} \log x$
let $Y=\log y, X=\log x$,

$$
a_{0}=\log a_{2}, a_{1}=b_{2}
$$

$$
Y=a_{0}+a_{1} X
$$

Example

Sum

$\mathbf{X i}$	Yi	$\mathrm{X}_{\mathrm{i}}=\log (\mathrm{X})$	$\mathrm{Y}^{*}{ }_{\mathrm{i}}=\log (\mathrm{Y})$	$\mathrm{X}^{*} \mathrm{Y}^{*}$	$\mathrm{X}^{*}{ }^{2}$
1	0.5	0.0000	-0.3010	0.0000	0.0000
2	1.7	0.3010	0.2304	0.0694	0.0906
3	3.4	0.4771	0.5315	0.2536	0.2276
4	5.7	0.6021	0.7559	0.4551	0.3625
5	8.4	0.6990	0.9243	0.6460	0.4886
15	19.700	$\mathbf{2 . 0 7 9}$	$\mathbf{2 . 1 4 1}$	$\mathbf{1 . 4 2 4}$	$\mathbf{1 . 1 6 9}$

$$
\left\{\begin{array}{l}
a_{1}=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}=\frac{5 \times 1.424-2.079 \times 2.141}{5 \times 1.169-2.079^{2}}=1.75 \\
a_{0}=\bar{y}-a_{1} \bar{x}=0.4282-1.75 \times 0.41584=-0.334
\end{array}\right.
$$

Linearization of Nonlinear

 Functions: Example$$
\log y=-0.334+1.75 \log x
$$

$$
y=0.46 x^{1.75}
$$

(b)

Polynomial Regression

- Some engineering data is poorly represented by a straight line.
- For these cases a curve is better suited to fit the data.
- The least squares method can readily be extended to fit the data to higher order polynomials.

Polynomial Regression (cont'd)

A parabola is preferable

Polynomial Regression (cont'd)

- A $2^{\text {nd }}$ order polynomial (quadratic) is defined by:

$$
y=a_{o}+a_{1} x+a_{2} x^{2}+e
$$

- The residuals between the model and the data:

$$
e_{i}=y_{i}-a_{o}-a_{1} x_{i}-a_{2} x_{i}^{2}
$$

- The sum of squares of the residual:

$$
S_{r}=\sum e_{i}^{2}=\sum\left(y_{i}-a_{o}-a_{1} x_{i}-a_{2} x_{i}^{2}\right)^{2}
$$

Polynomial Regression (cont'd)

$\frac{\partial S_{r}}{\partial a_{o}}=-2 \sum\left(y_{i}-a_{o}-a_{l} x_{i}-a_{2} x_{i}^{2}\right)=0$
$\frac{\partial S_{r}}{\partial a_{1}}=-2 \sum\left(y_{i}-a_{o}-a_{1} x_{i}-a_{2} x_{i}^{2}\right) x_{i}=0$
$\frac{\partial S_{r}}{\partial a_{2}}=-2 \sum\left(y_{i}-a_{o}-a_{l} x_{i}-a_{2} x_{i}^{2}\right) x_{i}^{2}=0$
$\sum y_{i}=n \cdot a_{o}+a_{1} \sum x_{i}+a_{2} \sum x_{i}^{2} \quad 3$ linear equations
$\sum x_{i} y_{i}=a_{o} \sum x_{i}+a_{l} \sum x_{i}^{2}+a_{2} \sum x_{i}^{3}$ with 3 unknowns $\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}\right)$, can be solved

Polynomial Regression (cont'd)

- A system of 3×3 equations needs to be solved to determine the coefficients of the polynomial.

$$
\left[\begin{array}{ccc}
n & \sum x_{i} & \sum x_{i}^{2} \\
\sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\
\sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4}
\end{array}\right]\left\{\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\sum y_{i} \\
\sum x_{i} y_{i} \\
\sum x_{i}^{2} y_{i}
\end{array}\right\}
$$

- The standard error \& the coefficient of determination

$$
s_{y / x}=\sqrt{\frac{S_{r}}{n-3}} \quad r^{2}=\frac{S_{t}-S_{r}}{S_{t}}
$$

Polynomial Regression (cont’d)

General:

The mth-order polynomial:

$$
y=a_{o}+a_{1} x+a_{2} x^{2}+\ldots . .+a_{m} x^{m}+e
$$

- A system of $(m+1) x(m+1)$ linear equations must be solved for determining the coefficients of the mth-order polynomial.
- The standard error:

$$
s_{y / x}=\sqrt{\frac{S_{r}}{n-(m+1)}}
$$

- The coefficient of determination: $r^{2}=\frac{S_{t}-S_{r}}{S_{t}}$

Polynomial Regression- Example

Fit a second order polynomial to data:

Polynomial Regression- Example (cont'd)

- The system of simultaneous linear equations:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
6 & 15 & 55 \\
15 & 55 & 225 \\
55 & 225 & 979
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right\}=\left\{\begin{array}{c}
152.6 \\
585.6 \\
2488.8
\end{array}\right\} \quad\left[\begin{array}{ccc}
n & \sum x_{i} & \sum x_{i}^{2} \\
\sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{x_{i}} \\
\sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left\{\begin{array}{c}
\sum y_{i} \\
\sum x_{i} y_{i} \\
\sum x_{i} y_{i}
\end{array}\right\}} \\
& a_{0}=2.47857, a_{1}=2.35929, a_{2}=1.86071 \\
& y=2.47857+2.35929 x+1.86071 x^{2}
\end{aligned}
$$

Polynomial Regression- Example (cont'd)

$\boldsymbol{x}_{\boldsymbol{i}}$	y_{i}	$y_{\text {model }}$	e_{i}^{2}	$\left(y_{i}-y^{\prime}\right)^{2}$
0	2.1	2.4786	0.14332	544.42889
1	7.7	6.6986	1.00286	314.45929
2	13.6	14.64	1.08158	140.01989
3	27.2	26.303	0.80491	3.12229
4	40.9	41.687	0.61951	239.22809
5	61.1	60.793	0.09439	1272.13489
15	152.6		3.74657	2513.39333

-The standard error of estimate:

$$
s_{y / x}=\sqrt{\frac{3.74657}{6-3}}=1.12
$$

-The coefficient of determination:

$$
\begin{aligned}
& S_{t}=\sum\left(y_{i}-\bar{y}\right)^{2}=2513.39 \\
& S_{r}=\sum e_{i}^{2}=\sum\left(y_{i}-a_{o}-a_{1} x_{i}-a_{2} x_{i}^{2}\right)^{2} \\
& S_{r}=\sum e_{i}^{2}=3.74657
\end{aligned}
$$

$$
r^{2}=\frac{2513.39-3.74657}{2513.39}=0.99851, \quad r=\sqrt{r^{2}}=0.99925
$$

Nonlinear Regression

- Consider the previous exponential regression:

$$
y=f\left(x_{i}\right)=a_{o}\left(1-e^{-a_{I} x}\right)
$$

- The sum of the squares of the residuals:
$S_{r}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{o}\left(1-e^{-a_{l} x_{i}}\right)\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$
- The criterion for least squares regression is:

$$
\frac{\partial S_{r}}{\partial a_{o}}=0 \quad \& \quad \frac{\partial S_{r}}{\partial a_{1}}=0
$$

Nonlinear Regression

$$
\begin{aligned}
& y=f\left(x_{i}\right)=a_{o}\left(1-e^{-a_{l} x}\right) \\
& S_{r}=\sum_{i=1}^{n}\left(y_{i}-a_{o}\left(1-e^{-a_{1} x_{i}}\right)\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
& \frac{\partial S_{r}}{\partial a_{o}}=0 \quad \& \frac{\partial S_{r}}{\partial a_{l}}=0 \\
& \frac{\partial S_{r}}{\partial a_{o}}=-2 \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)\left(\frac{\partial f\left(x_{i}\right)}{\partial a_{o}}\right)=0 \\
& \frac{\partial S_{r}}{\partial a_{l}}=-2 \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)\left(\frac{\partial f\left(x_{i}\right)}{\partial a_{l}}\right)=0
\end{aligned}
$$

Nonlinear Regression

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)\left(\frac{\partial f\left(x_{i}\right)}{\partial a_{o}}\right)=0 \\
& \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)\left(\frac{\partial f\left(x_{i}\right)}{\partial a_{l}}\right)=0
\end{aligned}
$$

- The partial derivatives are expressed at every data point (i) in terms of a_{0} and a_{1}.
- Thus, the above leads to 2 equations in 2 unknowns which can be solved iteratively for a_{0} and a_{1}.

