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Least Square Regression



Part 5 - CURVE FITTING

Describes techniques to fit curves (curve fitting) to discrete
data to obtain intermediate estimates.

There are two general approaches for curve fitting:

• Least Squares regression:

Data exhibit a significant degree of scatter. The strategy is
to derive a single curve that represents the general trend
of the data.

• Interpolation:

Data is very precise. The strategy is to pass a curve or a
series of curves through each of the points.



Introduction

In engineering, two types of applications are 
encountered:

– Trend analysis. Predicting values of dependent
variable, may include extrapolation beyond data
points or interpolation between data points.

– Hypothesis testing. Comparing existing
mathematical model with measured data.





Mathematical Background
• Arithmetic mean. The sum of the individual data 

points (yi) divided by the number of points (n).

• Standard deviation. The most common measure of a 
spread for a sample.
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Mathematical Background (cont’d)

• Variance. Representation of spread by the square of 
the standard deviation.

or

• Coefficient of variation. Has the utility to quantify the 
spread of data.
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Chapter 17
Least Squares Regression

Linear Regression

Fitting a straight line to a set of paired 
observations: (x1, y1), (x2, y2),…,(xn, yn).

y = a0+ a1 x + e

a1 - slope

a0 - intercept

e - error, or residual, between the model and 
the observations



Linear Regression: Residual



Linear Regression: Question

How to find a0 and a1 so that the error would be 

minimum?



Linear Regression: Criteria for a “Best” Fit





n

i

ii

n

i

i xaaye
1

10

1

)(min 

e1
e2

e1= -e2



Linear Regression: Criteria for a “Best” Fit
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Linear Regression: Criteria for a “Best” Fit
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Linear Regression: Least Squares Fit
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Yields a unique line for a given set of data.



Linear Regression: Least Squares Fit
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The coefficients a0 and a1 that minimize Sr must satisfy 

the following conditions:
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Linear Regression: 
Determination of ao and a1
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2 equations with 2 

unknowns, can be solved 

simultaneously



Linear Regression: 
Determination of ao and a1
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18

Data spread around Mean Data spread around best-fit line
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Examples of linear regression with (a) small and 

(b) large residual errors



Error Quantification of Linear Regression

• Total sum of the squares around the mean for 
the dependent variable, y, is St

• Sum of the squares of residuals around the 
regression line is Sr
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Error Quantification of Linear Regression

• St-Sr quantifies the improvement or error
reduction due to describing data in terms of a
straight line rather than as an average value.
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r2: coefficient of determination

r : correlation coefficient



Error Quantification of Linear Regression

For a perfect fit:

• Sr= 0 and r = r2 =1, signifying that the line 
explains 100 percent of the variability of the 
data.

• For r = r2 = 0, Sr = St, the fit represents no 
improvement.



Least Squares Fit of a Straight Line: 
Example

Fit a straight line to the x and y values in the 
following Table:

5.119 ii yx

28 ix 0.24 iy

1402  ix

428571.3
7

24
    4

7

28
 yx

428571.3
7

24
    4

7

28
 yx

xi yi xiyi xi
2

1 0.5 0.5 1

2 2.5 5 4

3 2 6 9

4 4 16 16

5 3.5 17.5 25

6 6 36 36

7 5.5 38.5 49

28 24 119.5 140



Least Squares Fit of a Straight Line: Example 
(cont’d)

07142857.048392857.0428571.3
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Least Squares Fit of a Straight Line: 
Example (Error Analysis)

9911.2
2
 ir eS

932.0868.02  rr

xi yi

1            0.5

2            2.5

3            2.0

4            4.0

5            3.5

6            6.0

7            5.5

8.5765       0.1687            

0.8622       0.5625

2.0408       0.3473     

0.3265       0.3265

0.0051       0.5896    

6.6122       0.7972

4.2908       0.1993
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28          24.0        22.7143      2.9911

868.02 
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Y = 0.07142857 + 0.8392857 x



Least Squares Fit of a Straight Line: 
Example (Error Analysis)
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•The standard deviation (quantifies the spread around the mean):

•The standard error of estimate (quantifies the spread around the  

regression line)

Because                   , the linear regression model has good fitness



Algorithm for linear  regression



Linearization of Nonlinear Relationships

• The relationship between the dependent and 
independent variables is linear.

• However, few types of nonlinear functions can 
be transformed into linear regression 
problems.

The exponential equation.

The power equation.

The saturation-growth-rate equation.



The 

exponential 

equation

The power 

equation
Saturation-

growth-rate 

equation



Linearization of Nonlinear Relationships
1. The exponential equation.
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Linearization of Nonlinear Relationships
2. The power equation
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Linearization of Nonlinear Relationships
3. The saturation-growth-rate equation
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Example

Fit the following Equation:      

2
2

b
xay 

to the data in the following table:

xi yi

1            0.5

2            1.7

3            3.4

4            5.7

5 8.4

15        19.7

X=logxi Y=logyi

0                 -0.301

0.301           0.226

0.477           0.534

0.602           0.753

0.699           0.922

2.079           2.141

)log(log 2

2

b
xay 

2120 log    
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x, y, X Y
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Example

Xi Yi X*i=Log(X) Y*i=Log(Y) X*Y* X*^2

1 0.5 0.0000 -0.3010 0.0000 0.0000

2 1.7 0.3010 0.2304 0.0694 0.0906

3 3.4 0.4771 0.5315 0.2536 0.2276

4 5.7 0.6021 0.7559 0.4551 0.3625

5 8.4 0.6990 0.9243 0.6460 0.4886

Sum 15 19.700 2.079 2.141 1.424 1.169

1 2 22

0 1

5 1.424 2.079 2.141
1.75

5 1.169 2.079( )

0.4282 1.75 0.41584 0.334

i i i i

i i

n x y x y
a

n x x

a y a x

    
  

 


      

  

 



Linearization of Nonlinear 
Functions: Example

log y=-0.334+1.75log x

1.750.46y x



Polynomial Regression

• Some engineering data is poorly represented 
by a straight line.

• For these cases a curve is better suited to fit 
the data. 

• The least squares method can readily be 
extended to fit the data to higher order 
polynomials.



Polynomial Regression (cont’d)

A parabola is preferable



Polynomial Regression (cont’d)

• A 2nd order polynomial (quadratic) is defined by:

• The residuals between the model and the data:

• The sum of squares of the residual:
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Polynomial Regression (cont’d)
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Polynomial Regression (cont’d)

• A system of 3x3 equations needs to be solved to determine 

the coefficients of the polynomial.

• The standard error & the coefficient of determination
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Polynomial Regression (cont’d)

General:

The mth-order polynomial:

• A system of (m+1)x(m+1) linear equations must be solved for 

determining the coefficients of the mth-order polynomial.

• The standard error:

• The coefficient of determination:
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Polynomial Regression- Example

Fit a second order polynomial to data:

2253  ix

9794  ix

xi yi xi
2 xi

3 xi
4 xiyi xi

2yi

0 2.1 0 0 0 0 0

1 7.7 1 1 1 7.7 7.7

2 13.6 4 8 16 27.2 54.4

3 27.2 9 27 81 81.6 244.8

4 40.9 16 64 256 163.6 654.4

5 61.1 25 125 625 305.5 1527.5

15 152.6 55 225 979 585.6 2489

6.585 ii yx

15 ix

6.152 iy

552  ix

433.25
6

6.152
    ,5.2

6

15
 yx 8.2488

2
 ii yx



Polynomial Regression- Example (cont’d)

• The system of simultaneous linear equations: 
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86071.1,35929.2,47857.2
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Polynomial Regression- Example (cont’d)

xi yi ymodel ei
2 (yi-y`)2

0 2.1 2.4786 0.14332 544.42889

1 7.7 6.6986 1.00286 314.45929

2 13.6 14.64 1.08158 140.01989

3 27.2 26.303 0.80491 3.12229

4 40.9 41.687 0.61951 239.22809

5 61.1 60.793 0.09439 1272.13489

15 152.6 3.74657 2513.39333

•The standard error of estimate:

•The coefficient of determination:
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Nonlinear Regression

• Consider the previous exponential regression:

• The sum of the squares of the residuals:

• The criterion for least squares regression is:
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Nonlinear Regression
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Nonlinear Regression
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 The partial derivatives are expressed at every 

data point (i) in terms of ao and a1.

 Thus, the above leads to 2 equations in 2 

unknowns which can be solved iteratively for ao

and a1.


