The Islamic University of Gaza Faculty of Engineering Civil Engineering Department

Numerical Analysis ECIV 3306

Chapter 17

Least Square Regression

Part 5 - CURVE FITTING

Describes techniques to fit curves (*curve fitting*) to discrete data to obtain intermediate estimates.

There are two general approaches for curve fitting:

• Least Squares regression:

Data exhibit a significant degree of scatter. The strategy is to derive a single curve that represents the general trend of the data.

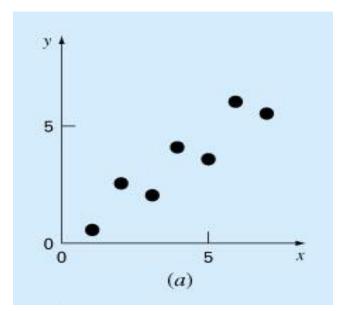
• Interpolation:

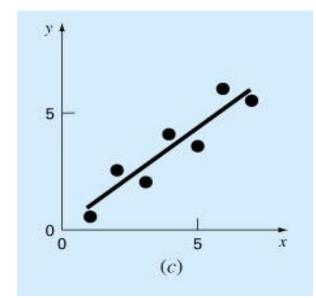
Data is very precise. The strategy is to pass a curve or a series of curves through each of the points.

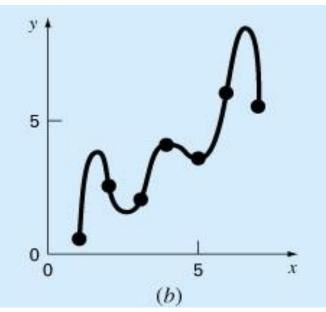
Introduction

In engineering, two types of applications are encountered:

- Trend analysis. Predicting values of dependent variable, may include extrapolation beyond data points or interpolation between data points.
- Hypothesis testing. Comparing existing mathematical model with measured data.







Mathematical Background

• Arithmetic mean. The sum of the individual data points (yi) divided by the number of points (n).

$$\overline{y} = \frac{\sum y_i}{n}, i = 1, \dots, n$$

• **Standard deviation**. The most common measure of a spread for a sample.

$$S_y = \sqrt{\frac{S_t}{n-1}}, \quad S_t = \sum (y_i - \overline{y})^2$$

Mathematical Background (cont'd)

• *Variance*. Representation of spread by the square of the standard deviation.

$$S_y^2 = \frac{\sum (y_i - \overline{y})^2}{n - 1}$$

$$S_{y}^{2} = \frac{\sum y_{i}^{2} - \left(\sum y_{i}\right)^{2} / n}{n - 1}$$

Coefficient of variation. Has the utility to quantify the spread of data.

$$c.v. = \frac{S_y}{\overline{y}} 100\%$$

Chapter 17 Least Squares Regression

Linear Regression

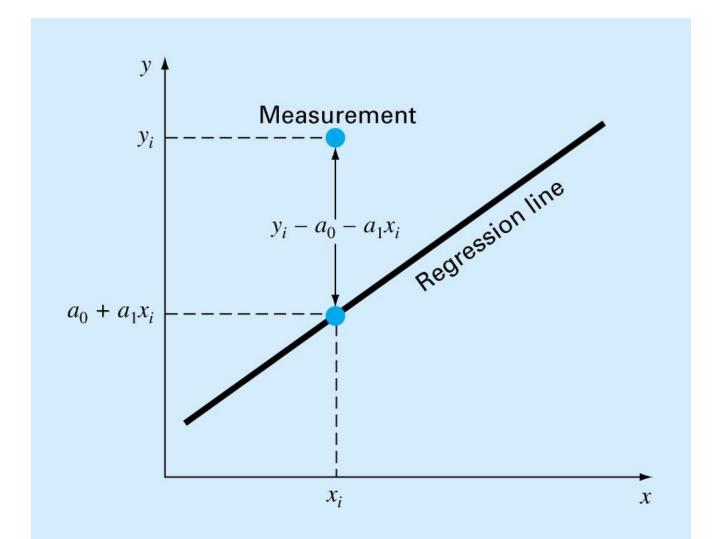
Fitting a straight line to a set of paired observations: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.

- $y = a_0 + a_1 x + e$
- a_1 slope

 a_0 - intercept

e - error, or residual, between the model and the observations

Linear Regression: Residual

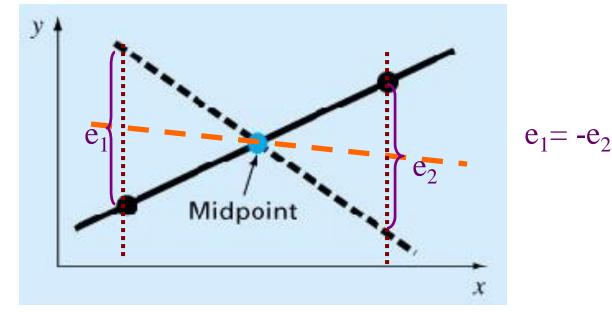


Linear Regression: Question

How to find a_0 and a_1 so that the error would be minimum?

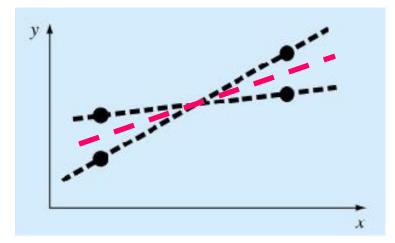
Linear Regression: Criteria for a "Best" Fit

$$\min \sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)$$



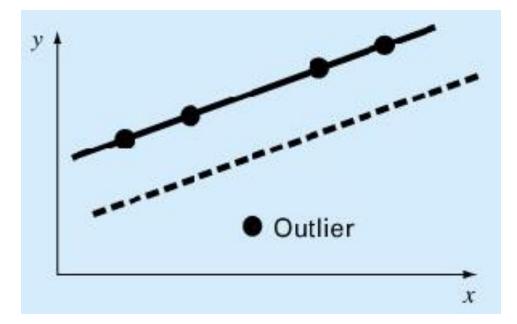
Linear Regression: Criteria for a "Best" Fit

$$\min \sum_{i=1}^{n} |e_i| = \sum_{i=1}^{n} |y_i - a_0 - a_1 x_i|$$



Linear Regression: Criteria for a "Best" Fit

$$\min_{i=1}^{n} \max_{i=1} |e_i| = |y_i - a_0 - a_1 x_i|$$



Linear Regression: Least Squares Fit

$$S_{r} = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i}, \text{measured} - y_{i}, \text{model})^{2} = \sum_{i=1}^{n} (y_{i} - a_{0} - a_{1}x_{i})^{2}$$

min
$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

Yields a unique line for a given set of data.

Linear Regression: Least Squares Fit

min
$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

The coefficients a_0 and a_1 that minimize S_r must satisfy the following conditions:

$$\begin{cases} \frac{\partial S_r}{\partial a_0} = 0\\ \frac{\partial S_r}{\partial a_1} = 0 \end{cases}$$

Linear Regression: Determination of *a_o* and *a₁*

$$\frac{\partial S_r}{\partial a_o} = -2\sum (y_i - a_o - a_1 x_i) = 0$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum [(y_i - a_o - a_1 x_i) x_i] = 0$$

$$0 = \sum y_i - \sum a_0 - \sum a_1 x_i$$

$$0 = \sum y_i x_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$\sum a_0 = na_0$$

$$na_0 + (\sum x_i)a_1 = \sum y_i$$

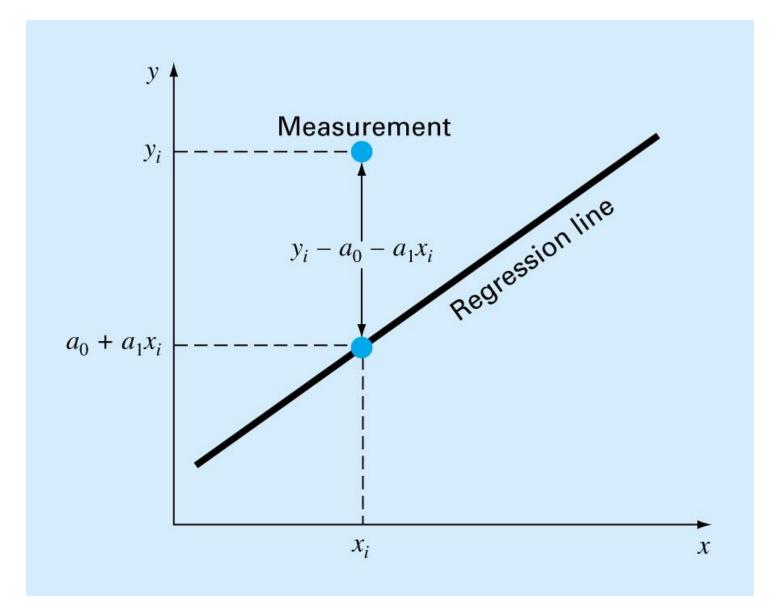
$$\sum y_i x_i = \sum a_0 x_i + \sum a_1 x_i^2$$

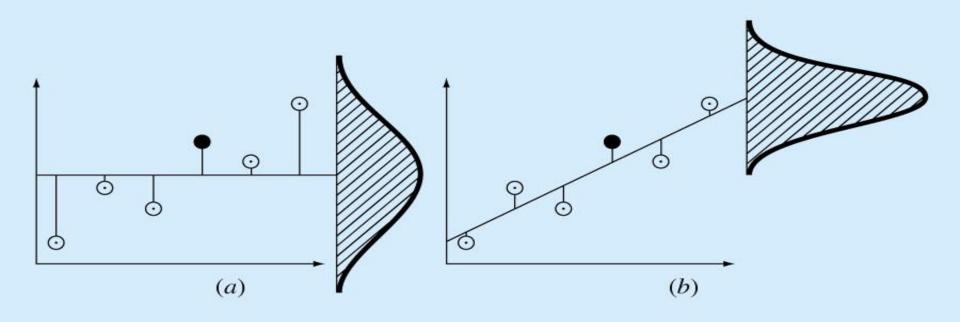
2 equations with 2 ➤ unknowns, can be solved simultaneously

Linear Regression: Determination of ao and a1

$$a_{1} = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

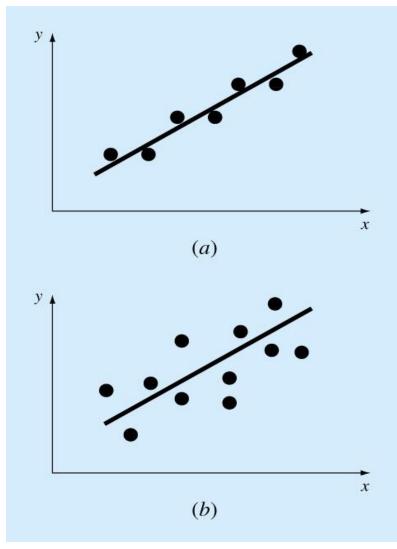




Data spread around Mean

Data spread around best-fit line

Examples of linear regression with (a) small and (b) large residual errors



Error Quantification of Linear Regression

 Total sum of the squares around the mean for the dependent variable, y, is S_t

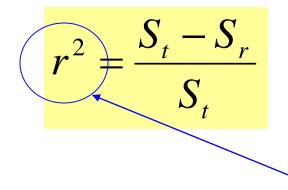
$$S_t = \sum (y_i - \overline{y})^2$$

Sum of the squares of residuals around the regression line is S_r

$$S_{r} = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - a_{o} - a_{1}x_{i})^{2}$$

Error Quantification of Linear Regression

• S_t - S_r quantifies the improvement or error reduction due to describing data in terms of a straight line rather than as an average value.



 $r^{2:}$ coefficient of determination

r: correlation coefficient

Error Quantification of Linear Regression

For a perfect fit:

- S_r= 0 and r = r² =1, signifying that the line explains 100 percent of the variability of the data.
- For $r = r^2 = 0$, $S_r = S_t$, the fit represents no improvement.

Least Squares Fit of a Straight Line: Example

Fit a straight line to the x and y values in the following Table:

X _i	y _i	x _i y _i	X_i^2
1	0.5	0.5	1
2	2.5	5	4
3	2	6	9
4	4	16	16
5	3.5	17.5	25
6	6	36	36
7	5.5	38.5	49
28	24	119.5	140

Least Squares Fit of a Straight Line: Example (cont'd)

$$a_{1} = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

= $\frac{7 \times 119.5 - 28 \times 24}{7 \times 140 - 28^{2}} = 0.8392857$
 $a_{0} = \overline{y} - a_{1}\overline{x}$
= $3.428571 - 0.8392857 \times 4 = 0.07142857$

 $\mathbf{Y} = \mathbf{0.07142857} + \mathbf{0.8392857} \ \mathbf{x}$

Least Squares Fit of a Straight Line: Example (Error Analysis)

x _i	y _i	$(y_i - \overline{y})^2$	e_i^2	
1	0.5	8.5765	0.1687	$S_t = \sum (y_i - \overline{y})^2 = 22.71$
2	2.5	0.8622	0.5625	$\mathbf{S}_t = \sum (\mathbf{y}_i \mathbf{y}) = 22.71$
3	2.0	2.0408	0.3473	$S_r = \sum e_i^2 = 2.9911$
4	4.0	0.3265	0.3265	r L i 2.7711
5	3.5	0.0051	0.5896	
6	6.0	6.6122	0.7972	$r^2 - \frac{S_t - S_r}{S_t - S_r} = 0.868$
7	5.5	4.2908	0.1993	$r^2 = \frac{S_t - S_r}{S_t} = 0.868$
28	24.0	22.7143	2.9911	
		7 0 0 0 0 0 0		$r = \sqrt{r^2} = \sqrt{0.868} = 0.932$

Y = 0.07142857 + 0.8392857 x

$$S_{r} = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - a_{o} - a_{1}x_{i})^{2}$$

Least Squares Fit of a Straight Line: Example (Error Analysis)

•The standard deviation (quantifies the spread around the mean):

$$s_y = \sqrt{\frac{S_t}{n-1}} = \sqrt{\frac{22.7143}{7-1}} = 1.9457$$

•The standard error of estimate (quantifies the spread around the regression line)

$$s_{y/x} = \sqrt{\frac{S_r}{n-2}} = \sqrt{\frac{2.9911}{7-2}} = 0.7735$$

Because $S_{y/x} < S_y$, the linear regression model has good fitness

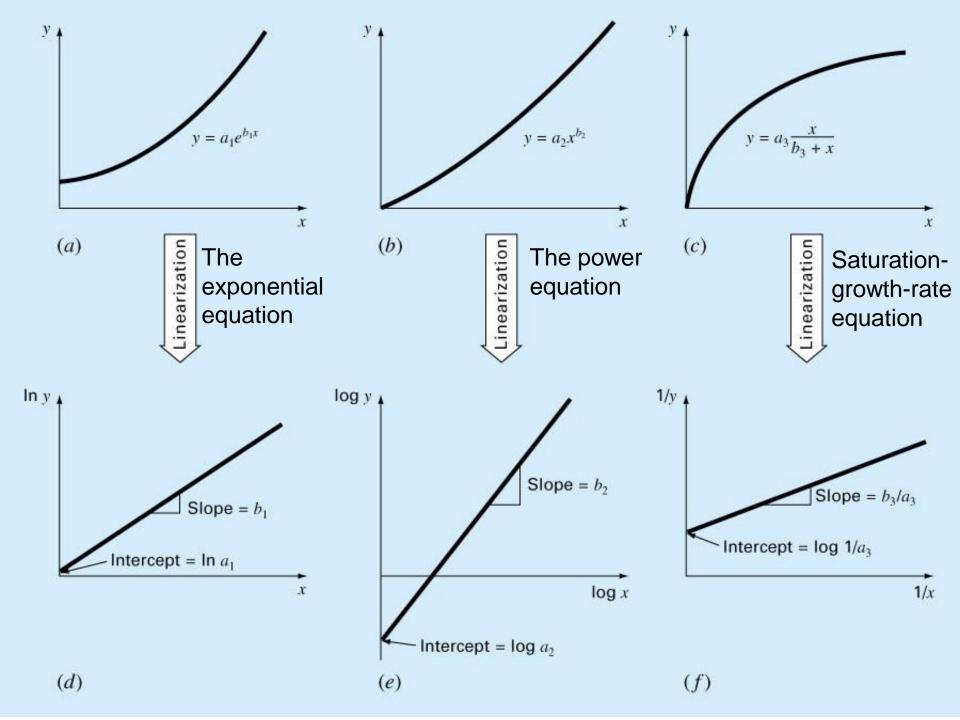
Algorithm for linear regression

SUB Regress(x, y, n, al, a0, syx, r2)

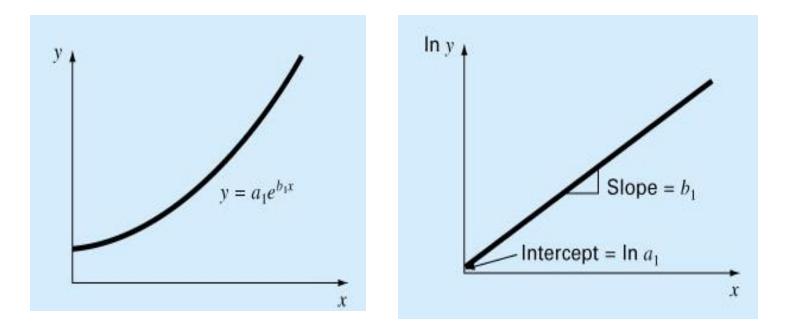
```
sumx = 0: sumxy = 0: st = 0
sumy = 0: sumx2 = 0: sr = 0
D0 \ i = 1. \ n
  sumx = sumx + x_i
  sumy = sumy + y_i
  sum xy = sum xy + x_i * y_i
  sumx2 = sumx2 + x_i * x_i
END DO
xm = sumx/n
ym = sumy/n
a1 = (n*sum xy - sum x*sum y)/(n*sum x2 - sum x*sum x)
a0 = ym - a1*xm
D0 \ i = 1. \ n
  st = st + (y_i - ym)^2
  sr = sr + (v_i - a1^*x_i - a0)^2
FND DO
syx = (sr/(n-2))^{0.5}
r^2 = (st - sr)/st
```

Linearization of Nonlinear Relationships

- The relationship between the dependent and independent variables is linear.
- However, few types of nonlinear functions can be transformed into linear regression problems.
- > The exponential equation.
- \succ The power equation.
- ➤ The saturation-growth-rate equation.

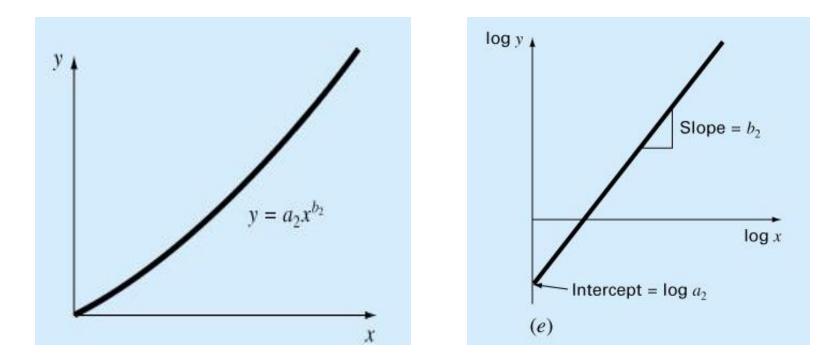


Linearization of Nonlinear Relationships 1. The exponential equation.



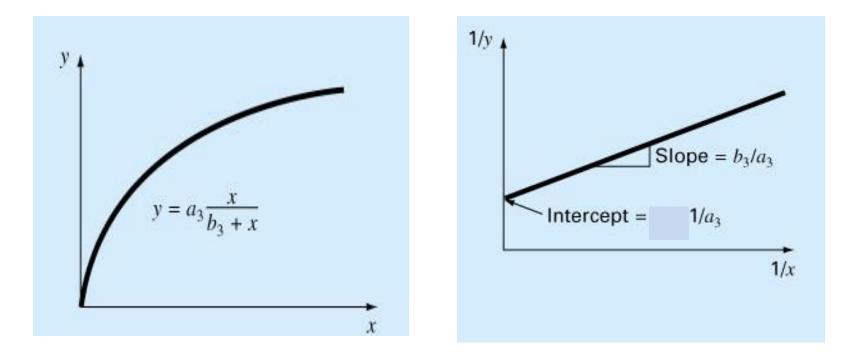
$$\ln y = \ln a_1 + b_1 x$$

Linearization of Nonlinear Relationships 2. The power equation



$$\log y = \log a_2 + b_2 \log x$$

Linearization of Nonlinear Relationships 3. The saturation-growth-rate equation



$$\frac{1}{y} = \frac{1}{a_3} + \frac{b_3}{a_3} \left(\frac{1}{x}\right)$$

Example

Fit the following Equation:

$$y = a_2 x^{b_2}$$

to the data in the following table:

X _i	y _i	X=logx _i	Y=logy _i
1	0.5	0	-0.301
2	1.7	0.301	0.226
3	3.4	0.477	0.534
4	5.7	0.602	0.753
5	8.4	0.699	0.922
15	19.7	2.079	2.141

 $log y = log(a_2 x^{b_2})$ $log y = log a_2 + b_2 log x$ let Y = log y, X = log x, $a_0 = log a_2, a_1 = b_2$ $Y = a_0 + a_1 X$

Example

Xi	Yi	X* _i =Log(X)	Y* _i =Log(Y)	Х*Ү*	X*^2
1	0.5	0.0000	-0.3010	0.0000	0.0000
2	1.7	0.3010	0.2304	0.0694	0.0906
3	3.4	0.4771	0.5315	0.2536	0.2276
4	5.7	0.6021	0.7559	0.4551	0.3625
5	8.4	0.6990	0.9243	0.6460	0.4886
15	19.700	2.079	2.141	1.424	1.169

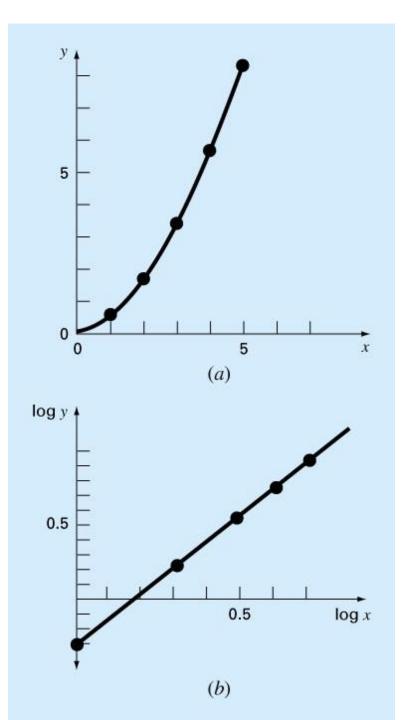
-

$$\begin{cases} a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2} = \frac{5 \times 1.424 - 2.079 \times 2.141}{5 \times 1.169 - 2.079^2} = 1.75 \\ a_0 = \overline{y} - a_1 \overline{x} = 0.4282 - 1.75 \times 0.41584 = -0.334 \end{cases}$$

Linearization of Nonlinear Functions: Example

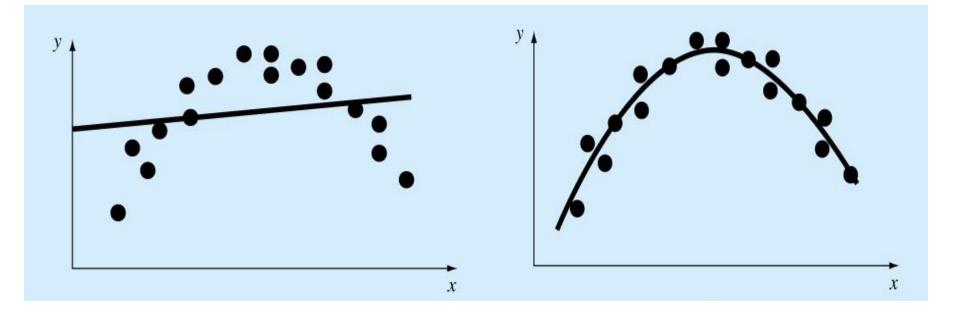
$$\log y = -0.334 + 1.75 \log x$$

$$y = 0.46x^{1.75}$$



Polynomial Regression

- Some engineering data is poorly represented by a straight line.
- For these cases a curve is better suited to fit the data.
- The least squares method can readily be extended to fit the data to higher order polynomials.



A parabola is preferable

- A 2nd order polynomial (quadratic) is defined by: $y = a_o + a_1 x + a_2 x^2 + e$
- The residuals between the model and the data:

$$e_i = y_i - a_o - a_1 x_i - a_2 x_i^2$$

• The sum of squares of the residual:

$$S_{r} = \sum e_{i}^{2} = \sum \left(y_{i} - a_{o} - a_{1} x_{i} - a_{2} x_{i}^{2} \right)^{2}$$

$$\frac{\partial S_r}{\partial a_o} = -2\sum (y_i - a_o - a_1 x_i - a_2 x_i^2) = 0$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum (y_i - a_o - a_1 x_i - a_2 x_i^2) x_i = 0$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum (y_i - a_o - a_1 x_i - a_2 x_i^2) x_i^2 = 0$$

$$\partial a_2$$

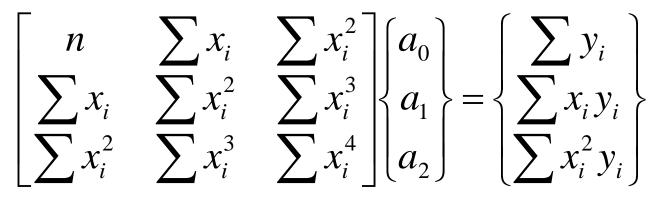
$$\sum y_i = n \cdot a_o + a_1 \sum x_i + a_2 \sum x_i^2$$

$$\sum x_i y_i = a_o \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3$$

$$\sum x_i^2 y_i = a_o \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4$$

3 linear equations with 3 unknowns
(a_o,a₁,a₂), can be solved

• A system of 3x3 equations needs to be solved to determine the coefficients of the polynomial.



The standard error & the coefficient of determination

$$s_{y/x} = \sqrt{\frac{S_r}{n-3}}$$

$$r^2 = \frac{S_t - S_r}{S_t}$$

General:

The mth-order polynomial:

$$y = a_o + a_1 x + a_2 x^2 + \dots + a_m x^m + e$$

- A system of (m+1)x(m+1) linear equations must be solved for determining the coefficients of the mth-order polynomial.
- The standard error:

$$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$

• The coefficient of determination:

$$r^2 = \frac{S_t - S_r}{S_t}$$

Polynomial Regression- Example

X _i	y _i	X_i^2	$X_i^{\mathcal{J}}$	X_i^4	$X_i V_i$	$X_i^2 Y_i$
0	2.1	0	0	0	0	0
1	7.7	1	1	1	7.7	7.7
2	13.6	4	8	16	27.2	54.4
3	27.2	9	27	81	81.6	244.8
4	40.9	16	64	256	163.6	654.4
5	61.1	25	125	625	305.5	1527.5
15	152.6	55	225	979	585.6	2489

Fit a second order polynomial to data:

$$\overline{x} = \frac{15}{6} = 2.5, \quad \overline{y} = \frac{152.6}{6} = 25.433$$

$$\sum x_i^3 = 225$$

$$\sum x_i^4 = 979$$

$$\sum x_i y_i = 585.6$$

$$\sum x_i^2 y_i = 2488.8$$

Polynomial Regression- Example (cont'd)

• The system of simultaneous linear equations:

$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{bmatrix} \qquad \begin{bmatrix} n & \sum x_i & \sum x_i^2 \\ \sum x_i^2 & \sum x_i^3 \\ \sum x_i^2 & \sum x_i^3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \\ \sum x_i^2 y_i \end{bmatrix}$$

 $a_0 = 2.47857, a_1 = 2.35929, a_2 = 1.86071$ $y = 2.47857 + 2.35929x + 1.86071x^2$

Polynomial Regression- Example (cont'd)

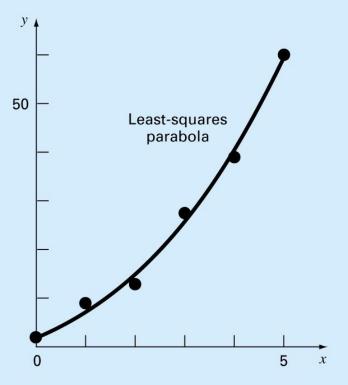
X _i	y _i	Y_{model}	e _i^2	(y _i -y`) ²
0	2.1	2.4786	0.14332	544.42889
1	7.7	6.6986	1.00286	314.45929
2	13.6	14.64	1.08158	140.01989
3	27.2	26.303	0.80491	3.12229
4	40.9	41.687	0.61951	239.22809
5	61.1	60.793	0.09439	1272.13489
15	152.6		3.74657	2513.39333

•The standard error of estimate:

$$s_{y/x} = \sqrt{\frac{3.74657}{6-3}} = 1.12$$

•The coefficient of determination:

$$r^{2} = \frac{2513.39 - 3.74657}{2513.39} = 0.99851, \quad r = \sqrt{r^{2}} = 0.99925$$



$$S_{t} = \sum (y_{i} - \overline{y})^{2} = 2513.39$$

$$S_{r} = \sum e_{i}^{2} = \sum (y_{i} - a_{o} - a_{1}x_{i} - a_{2}x_{i}^{2})^{2}$$

$$S_{r} = \sum e_{i}^{2} = 3.74657$$

Nonlinear Regression

• Consider the previous exponential regression:

$$y = f(x_i) = a_o(1 - e^{-a_1 x})$$

• The sum of the squares of the residuals:

$$S_{r} = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} \left(y_{i} - a_{o} (1 - e^{-a_{1}x_{i}}) \right)^{2} = \sum_{i=1}^{n} \left(y_{i} - f(x_{i}) \right)^{2}$$

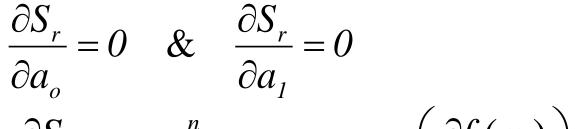
• The criterion for least squares regression is:

$$\frac{\partial S_r}{\partial a_o} = 0 \quad \& \quad \frac{\partial S_r}{\partial a_1} = 0$$

Nonlinear Regression

$$y = f(x_i) = a_o (1 - e^{-a_1 x})$$

$$S_r = \sum_{i=1}^n \left(y_i - a_o (1 - e^{-a_1 x_i}) \right)^2 = \sum_{i=1}^n \left(y_i - f(x_i) \right)^2$$



$$\frac{\partial S_r}{\partial a_o} = -2\sum_{i=1}^n \left(y_i - f(x_i) \right) \left(\frac{\partial f(x_i)}{\partial a_o} \right) = 0$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum_{i=1}^n \left(y_i - f(x_i) \right) \left(\frac{\partial f(x_i)}{\partial a_1} \right) = 0$$

Nonlinear Regression

$$\sum_{i=1}^{n} \left(y_i - f(x_i) \right) \left(\frac{\partial f(x_i)}{\partial a_o} \right) = 0$$
$$\sum_{i=1}^{n} \left(y_i - f(x_i) \right) \left(\frac{\partial f(x_i)}{\partial a_1} \right) = 0$$

- The partial derivatives are expressed at every data point (i) in terms of a_o and a₁.
- Thus, the above leads to 2 equations in 2 unknowns which can be solved iteratively for a_o and a₁.