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Least Square Regression



Part 5 - CURVE FITTING

Describes techniques to fit curves (curve fitting) to discrete
data to obtain intermediate estimates.

There are two general approaches for curve fitting:
* Least Squares regression:

Data exhibit a significant degree of scatter. The strategy is
to derive a single curve that represents the general trend
of the data.

* Interpolation:

Data is very precise. The strategy is to pass a curve or a
series of curves through each of the points.



Introduction

In engineering, two types of applications are
encountered:
— Trend analysis. Predicting values of dependent

variable, may include extrapolation beyond data
points or interpolation between data points.

— Hypothesis testing. Comparing existing
mathematical model with measured data.
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Mathematical Background

* Arithmetic mean. The sum of the individual data
points (yi) divided by the number of points (n).

Zyi,izl,.

n

Y = ..,n

e Standard deviation. The most common measure of a
spread for a sample.

St
n-—1

Sy: ’ St:Z(yi_y)z



Mathematical Background (cont’d)

* Variance. Representation of spread by the square of
the standard deviation.

Sz:Z(yi—V)Z Sz_ny—(Zyi)zln
’ n-1 y n—1

Coefficient of variation. Has the utility to quantify the
spread of data.

S
cv.=—100%
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Chapter 17
Least Squares Regression

Linear Regression

Fitting a straight line to a set of paired
observations: (x;, V,), (Xo, V2),---. (X, V).
y=a+ax+e

a, - slope

a, - Intercept

e - error, or residual, between the model and
the observations




Linear Regression: Residual

Measurement

Vi

ap + ax;

i



Linear Regression: Question

How to find a,and &, so that the error would be
minimum?



Linear Regression: Criteria for a “Best” Fit

min Zei = Z(Yi — 3y — %)
-1 i1
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Linear Regression: Criteria for a “Best” Fit
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Linear Regression: Criteria for a “Best” Fit

n
min ni]flx‘ei =y —ay —a,X; |
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Linear Regression: Least Squares Fit

n n n
2

S =) e’ = (yi,measured—yi,model)z=Z(yi—ao—alxi)2
=1 =1

r |
=1 i

: n o .
min S, = > e = _Zl(Yi —ay — &%)
|= —

Yields a unigue line for a given set of data.



Linear Regression: Least Squares Fit

- N2 2
min S, = > e = _Zl(Yi —ay — &%)

The coefficients a, and a, that minimize S, must satisfy
the following conditions:
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Linear Regression:
Determination of a_, and aq,

22(: :_ZZ(yi_ao_alxi):O

22; :_22[(Yi _ao_alxi)xi]zo

0= y;=D.a D ax

OZZYi i_zaoxi_zalxiz

>, =na, \

na, +(in)aﬂzzyi 2 equations with 2

~ unknowns, can be solved
simultaneously

ZYi i :Zaoxi +Za“lxi2
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Linear Regression:
Determination of ao and al

anv. 2 XY
> -(3n)
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a + a1 X;

Measurement

S
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Data spread around Mean Data spread around best-fit line
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Examples of linear regression with (a) small and
(b) large residual errors
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Error Quantification of Linear Regression

e Total sum of the squares around the mean for
the dependent variable, y, is S,

S, => (Vi —y)’

* Sum of the squares of residuals around the
regression line is S,

S, = Zn:eiz :Zn:(yi — 4, _alxi)2
i1 i1



Error Quantification of Linear Regression

* 5,-S, quantifies the improvement or error
reduction due to describing data in terms of a
straight line rather than as an average value.

G
St
r? coefficient of determination

/. correlation coefficient




Error Quantification of Linear Regression

For a perfect fit:

* S=0and r=r?=1, signifying that the line
explains 100 percent of the variability of the
data.

* Forr=r>=0,S, =S,, the fit represents no
Improvement.



Least Squares Fit of a Straight Line:
Example

Fit a straight line to the x and y values in the
following Table:

X Y, X.Yi X;?

1 05 05 1

5 25 ZXiZ =140 le yi :1195
3 2 6 9

4 16 16 X = 28 _ 4

5 35 175 25 /

6 6 36 36 Y

7 55 385 49 y = = = 3.428571

28 24 119.5 140




Least Squares Fit of a Straight Line: Example
(cont’d)

ORI RIN]
Ny X —(Zx)
 7x119.5-28x24
 7x140-28
=Yy—-aX
—3.428571-0.8392857x 4 = 0.07142857

=0.8392857

Y =0.07142857 + 0.8392857 X



Least Squares Fit of a Straight Line:

Xi Yi Vi-y)° e
1 0.5 8.5765  0.1687
2 2.5 0.8622  0.5625
3 2.0 2.0408  0.3473
4 4.0 0.3265  0.3265
5 3.5 0.0051  0.5896
6 6.0 6.6122  0.7972
/ 2.0 4.2908  0.1993
28 24.0 22.7143 29911

Y =0.07142857 + 0.8392857 X

Sr :Zeiz :Z(y

n
=1

i — 4, _alxi)2

Example (Error Analysis)

S, =>.(y;—y) =227143

S, =>e =2.9911

, S-S

r-= =0.868

t

r=+r? =/0.868=0.932



Least Squares Fit of a Straight Line:
Example (Error Analysis)

*The standard deviation (quantifies the spread around the mean):

=1.9457

S, \/22.7143

S =
g n-1 /-1

*The standard error of estimate (quantifies the spread around the
regression line)

/ ,/279911 0.7735

Because S , the linear regression model has good fithess




Algorithm for linear regression

SUB Regress(x, y, n, al, a0, syx, r2)

sumx = 0: sumxy = 0: st = 0
sumy = 0: sumxZ2 = 0: sr = 0
DO i =1, n

Sumx = sumx + X;

sumy = sumy + yi

sumxy = sumxy + Xi*yi

sumx2 = sumxz + Xi*X;

END DO
Xm = sumx/n
ym = sumy/n

al = (n*sumxy — sumx*sumy)/(n*sumx2 — Sumx*sumx)
a0 = ym — al*xm
DO i=1,n
st = st + (y; — ym)?
sr=sr+ (yi — al*x; — a0)?
END DO
syx = (sr/(n — 2))%
12 = (8f — SP)ISt

END Regress



Linearization of Nonlinear Relationships

® The relationship between the dependent and
independent variables is linear.

® However, few types of nonlinear functions can
be transformed into linear regression
problems.

The exponential equation.
ne power equation.
he saturation-growth-rate equation.
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In YV

Slope = b,

Intercept = In q,

exponential

(d)

log vy

(b)

The power
equation

<Einearization

Slope = b,

log x

Intercept = log «,

(e)

X

(¢)

Saturation-
growth-rate
equation

g

<llinearization

1y

SlOpe = b}/ﬂ}

Intercept = log 1/a;

(f)



Linearization of Nonlinear Relationships
1. The exponential equation.

In "" A

Slope = b,

Intercept = In g,

Iny=Ina, +bx



Linearization of Nonlinear Relationships
2. The power equation

log v 4

Slope = b,

log x

Intercept = log a,

X (e)

logy =loga, +b, logx



Linearization of Nonlinear Relationships
3. The saturation-growth-rate equation

1/." A

Intercept =

Slope = by/a,

1/(13




Example

Fit the following Equation:

b
y:a2X2

to the data in the following table: logy = log(a, x*)
o 2

X; Y. X=logx; Y=logy., logy=1Iloga, +Db,logx
1 0.5 0 -0.301 letY =logy, X =logx,
2 1.7 0301 0.226 a, =loga,, a, =b,

3 3.4 0.477 0.534

4 5.7 0.602 0753 ¥ =& taX

5 8.4 0.699 0.922

15 19.7 2.079 2.141



Example

Sum

I\

Xi Yi | X*=log(X) | Y*=Log(Y) | X*Y* | X*A2
1 0.5 0.0000 -0.3010 0.0000  0.0000
2 1.7 0.3010 0.2304 0.0694 0.0906
3 3.4 0.4771 0.5315 0.2536 0.2276
4 5.7 0.6021 0.7559 0.4551 0.3625
5 8.4 0.6990 0.9243 0.6460 0.4886
2.079 2.141 1.424 | 1.169
an Vi =2 Xi 2 Yi _ 5x1.424-2.079x2.141 _
nY xZ -3 %)’ 5x1.169—2.079’

& =Y

—a,X =0.4282-1.75x0.41584 = -0.334



Linearization of Nonlinear
Functions: Example

\

log )~=-0.334+1.75log x

y =0.46x""

0.5

[TTTTTTTTI

log x

(b)



Polynomial Regression

 Some engineering data is poorly represented
by a straight line.

* For these cases a curve is better suited to fit
the data.

* The least squares method can readily be
extended to fit the data to higher order
polynomials.



Polynomial Regression (cont’d)

A parabola is preferable



Polynomial Regression (cont’d)

* A 2" order polynomial (quadratic) is defined by:
y=a +aX+a,x’ +e

e The residuals between the model and the data:
2
€ =Yi—a, — X —a,X

 The sum of squares of the residual:

S, =Yg = Z(yi —&, —&X _azxiz)z



Polynomial Regression (cont’d)

0S,

oa, - _ZZ(Yi —a, — 4 X _azxiz) =0

P _ =2 (Vi =8, —a% —a,% )% =0

0a,

2Sr _ _ZZ(yi —a, —aX —azxiz))(i2 =0
a

2
2
Z yi=n-a,+ alZ X, +a, Z X \  3linear equations
with 3 unknowns

Z XY, = aOZ X, + alZ Xi2 + azz Xi3 > S)(K/agéaZ)’ can be
Yy =ag ) X Fay ) X +a22xi




Polynomial Regression (cont’d)

* A system of 3x3 equations needs to be solved to determine

the coefficients of the polynomial.

n zxi inz_ 3] | Zyu W
DX DX X Ha nyI
_Z Xi2 ZX? in4_ a, | \Z Xi Yi

* The standard error & the coefficient of determination

'

o

y/Ix
n-3 S,




Polynomial Regression (cont’d)

General:
The mth-order polynomial:
y=a +aX+aX +...+a x"+e

* A system of (m+1)x(m+1) linear equations must be solved for

determining the coefficients of the mth-order polynomial.

e The standard error:

Sy/x = >
" n—(m+1)

* The coefficient of determination: r< = r




Polynomial Regression- Example

Fit a second order polynomial to data:

40.9 16 64 256 163.6 6544
61.1 25 125 625 3055 1527.5

XV X7 X xy )P
0 2.1 0 0 0 0 0

1 7.7 1 (.7 7.7

2 13.6 4 8 16 271.2 544
3 217.2 9 27 81 8l1.6 2448
A

S

15 1526 55 225 979 585.6 2489

D x =15

Dy, =1526

D x? =55

D x> =225

D x =979

D Xy, =585.6
> Xy, = 24888



55 225 979||a,

Polynomial Regression- Example (cont’d)

* The system of simultaneous linear equations:

6

15 55](a,

15 55 225fa,

a, = 2.47857,a, = 2.35929 a, =1.86071

N\

(1526
585.6

'

24888

n Y% DX (a,
XX 2N A

PR EDR DR ICY

QD

N\

QD

y =2.47857+2.35929x +1.86071x"

=2

vV~




Polynomial Regression- Example (cont’d)

Xj Vi Ymogel ef vy F
0 2.1 24786 0.14332  544.42889
1 7.7 6.6986 1.00286  314.45929
2 13.6 14.64 1.08158  140.01989
3 27.2 26.303 0.80491 3.12229
4 40.9 41.687 0.61951  239.22809
5 61.1 60.793 0.09439 1272.13489
15 152.6 3.74657  2513.39333
*The standard error of estimate:
), = \/3.;416357 115

*The coefficient of determination:

> _ 251339-3.74657
251339

y

50

A

Least-squares
parabola

| | |
0 5 5

=>(y;—y) =251339

S, :Zeiz :Z(yi —a, —aX _azxiz)2
S, => e =3.74657

~0.99851 r=+/r2 =0.99925



Nonlinear Regression

* Consider the previous exponential regression:

y="F(x)=2a,(1-¢™)

 The sum of the squares of the residuals:
2 2

1= =1
* The criterion for least squares regression is:

0S
oa

0S, _ 0
0a,

=0 &

0]




Nonlinear Regression

y="f(x)=2a,(1-e"™)

n 2 N :
S, =2 (yi—a,(1-e™%)) = >y, - £ (x))
i=1 =1
S, 0S, _
oa, B 0a, -

an .—f(x)[af(x)jzo




Nonlinear Regression

Z(y. — f(x, ))(5f(x)j
;(yi - f(xi))(aggxi)jzo

1

e The partial derivatives are expressed at every
data point (i) in terms of a, and a,.

e Thus, the above leads to 2 equations in 2
unknowns which can be solved iteratively for a,
and a,.



