
Adam Thompson | Senior Solutions Architect | adamt@nvidia.com

@adamlikesai

CUSIGNAL – GPU ACCELERATED
SCIPY SIGNAL

mailto:adamt@nvidia.com

22

cuSignal is built as a GPU accelerated version of
the popular SciPy Signal library

Most of the coding has leveraged CuPy – GPU
accelerated NumPy

In certain cases, we have implemented custom
CUDA kernels using Numba – more on this (pros
and cons!) later

GitHub Repo:
https://github.com/rapidsai/cusignal

https://github.com/rapidsai/cusignal

33

BACKGROUND AND
MOTIVATIONS

4

@bhilburn

THE FOUR FUNDAMENTAL FORCES OF THE UNIVERSE

5

@bhilburn

THE FOUR FUNDAMENTAL FORCES OF THE UNIVERSE

6

@bhilburn

THE FOUR FUNDAMENTAL FORCES OF THE UNIVERSE

Remember everyone, of the four fundamental forces of the universe, only one is

safe to manipulate at home! Grab an SDR, @gnuradio, and have fun!

7

8

9

10

700MHz, Band 13 – Active Main LTE Band for Verizon (4G)

11

TWO FUNDAMENTAL NEEDS

Fast filtering, FFTs, correlations, convolutions, resampling, etc to
process increasingly larger bandwidths of signals at increasingly fast
rates and do increasingly cool stuff we couldn’t do before

Artificial Intelligence techniques applied to spectrum sensing, signal
identification, spectrum collaboration, and anomaly detection

12

SIGNAL PROCESSING ON GPUS: A HISTORY

13

SIGNAL

Free and Open Source signal processing from Python (BSD 3 license)

CPU performance optimizations for various computationally intensive
operations (e.g. linear filtering)

Extensive functionality: convolution, filtering and filter design, peak
finding, spectral analysis among others

https://github.com/scipy/scipy/tree/master/scipy/signal

14

LET’S TALK ABOUT RAPIDS FOR A SECOND

15

Pandas
Analytics

CPU Memory

Data Preparation VisualizationModel Training

Scikit-Learn
Machine Learning

NetworkX
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

Matplotlib/Seaborn
Visualization

Open Source Data Science Ecosystem
Familiar Python APIs

Dask

16

cuDF cuIO
Analytics

GPU Memory

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

RAPIDS
End-to-End Accelerated GPU Data Science

Dask

https://rapids.ai/

17

Interoperability for the Win
DLPack and __cuda_array_interface__

mpi4py

1818

CUSIGNAL CORE

19

REFERENCE RAPIDS TECHNOLOGY STACK

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF

cuDF
Numpy

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas

20

CUSIGNAL TECHNOLOGY STACK

Python

CUDA Libraries

CUDA

Numba CuPy NumPy

Innovate Here

21

ALGORITHMS
GPU-accelerated SciPy Signal

Convolution

Filtering and Filter Design

Waveform Generation

Window Functions

Spectral Analysis

Convolve/Correlate
FFT Convolve
Convolve/Correlate 2D

Resampling – Polyphase, Upfirdn, Resample
Hilbert/Hilbert 2D
Wiener
Firwin

Chirp
Square
Gaussian Pulse

Kaiser
Blackman
Hamming
Hanning

Periodogram
Welch
Spectrogram

Wavelets

More to come!

Peak Finding

22

PERFORMANCE
As Always, YMMV. Benchmarked with ~1e8 sample signals on a P100 GPU using time around Python calls

Method Scipy Signal (ms) cuSignal (ms) Speedup (xN)

fftconvolve 34173 450 76.0

correlate 20580 390 52.8

resample 18834 372 50.7

resample_poly 4182 291 14.3

welch 7015 270 25.9

spectrogram 4061 271 15.0

cwt 56035 628 89.2

Learn more about cuSignal functionality and performance by browsing the notebooks

https://github.com/rapidsai/cusignal/tree/master/notebooks

23

SPEED OF LIGHT PERFORMANCE – P100
timeit (7 runs) rather than time. Benchmarked with ~1e8 sample signals on a P100 GPU

Method Scipy Signal (ms) cuSignal (ms) Speedup (xN)

fftconvolve 33200 130.0 255.4

correlate 19900 72.6 274.1

resample 15100 70.2 215.1

resample_poly 4250 52.3 81.3

welch 6730 79.5 84.7

spectrogram 4120 37.7 109.3

cwt 56200 272 206.6

Learn more about cuSignal functionality and performance by browsing the notebooks

https://github.com/rapidsai/cusignal/tree/master/notebooks

24

SPEED OF LIGHT PERFORMANCE – V100
timeit (7 runs) rather than time. Benchmarked with ~1e8 sample signals on a DGX Station

Method Scipy Signal (ms) cuSignal (ms) Speedup (xN)

fftconvolve 28400 92.2 308.0

correlate 16800 48.4 347.1

resample 14700 51.1 287.7

resample_poly 3110 13.7 227.0

welch 4620 53.7 86.0

spectrogram 2520 28 90.0

cwt 46700 277 168.6

Learn more about cuSignal functionality and performance by browsing the notebooks

https://github.com/rapidsai/cusignal/tree/master/notebooks

2525

“Using the cuSignal library we were able to
speed-up a long running signal processing task

from ~14 hours to ~3 hours with minimal drop-in
code replacements.”

2019 SECAF Government Contractor of the Year, $7.5-15M Revenue Category

26

DIVING DEEPER

Much of the cuSignal codebase has been written by simply swapping out
NumPy functionality for CuPy and fixing errors as they appear

resample_poly is different, however, and includes a custom Numba
CUDA kernel implementing upfirdn

Not all memory is created equal, and it doesn’t always originate on the
GPU

27

DIVING DEEPER

Much of the cuSignal codebase has been written by simply swapping out
NumPy functionality for CuPy and fixing errors as they appear

resample_poly is different, however, and includes a custom Numba
CUDA kernel implementing upfirdn

Not all memory is created equal, and it doesn’t always originate on the
GPU

28

CUPY

A NumPy-Compatible Matrix Library Accelerated by CUDA

Free and open source software developed under the Chainer project and
Preferred Networks (MIT License)

Includes CUDA libraries: cuBLAS, cuDNN, cuRand, cuSolver, cuSparse, cuFFT,
and NCCL

Typically a drop-in replacement for NumPy

Ability to write custom kernel for additional performance, requiring a bit of
C++

29

HILBERT TRANSFORM: NUMPY CUPY

30

DIVING DEEPER

Much of the cuSignal codebase has been written by simply swapping out
NumPy functionality for CuPy and fixing errors as they appear

resample_poly is different, however, and includes a custom Numba
CUDA kernel implementing upfirdn

Not all memory is created equal, and it doesn’t always originate on the
GPU

31

NUMBA
JIT Compiler for Python with LLVM

• Write Python function
• Use C/Fortran style for loops
• Large subset of Python language
• Mostly for numeric data

• Wrap it in @numba.jit
• Compiles to native code with LLVM
• JIT compiles on first use with new

type signatures

• Runs at C/Fortran speeds

See also: Cython, Pythran, pybind, f2py

def sum(x):
total = 0
for i in range(x.shape[0]):

total += x[i]
return total

>>> x = numpy.arange(10_000_000)
>>> %time sum(x)
1.34 s ± 8.17 ms

32

NUMBA
JIT Compiler for Python with LLVM

• Write Python function
• Use C/Fortran style for loops
• Large subset of Python language
• Mostly for numeric data

• Wrap it in @numba.jit
• Compiles to native code with LLVM
• JIT compiles on first use with new

type signatures

• Runs at C/Fortran speeds

See also: Cython, Pythran, pybind, f2py

import numba

@numba.jit
def sum(x):

total = 0
for i in range(x.shape[0]):

total += x[i]
return total

>>> x = numpy.arange(10_000_000)
>>> %time sum(x)
55 ms

33

NUMBA
JIT Compiler for Python with LLVM

• Write Python function
• Use C/Fortran style for loops
• Large subset of Python language
• Mostly for numeric data

• Wrap it in @numba.jit
• Compiles to native code with LLVM
• JIT compiles on first use with new

type signatures

• Runs at C/Fortran speeds

See also: Cython, Pythran, pybind, f2py

import numba

@numba.jit
def sum(x):

total = 0
for i in range(x.shape[0]):

total += x[i]
return total

>>> x = numpy.arange(10_000_000)
>>> %time sum(x)
55 ms # mostly compile time

34

NUMBA
JIT Compiler for Python with LLVM

• Write Python function
• Use C/Fortran style for loops
• Large subset of Python language
• Mostly for numeric data

• Wrap it in @numba.jit
• Compiles to native code with LLVM
• JIT compiles on first use with new

type signatures

• Runs at C/Fortran speeds

See also: Cython, Pythran, pybind, f2py

import numba

@numba.jit
def sum(x):

total = 0
for i in range(x.shape[0]):

total += x[i]
return total

>>> x = numpy.arange(10_000_000)
>>> %time sum(x)
5.09 ms ± 110 µs # subsequent runs

35

NUMBA
JIT Compiler for Python with LLVM

• Write Python function
• Use C/Fortran style for loops
• Large subset of Python language
• Mostly for numeric data

• Wrap it in @numba.jit
• Compiles to native code with LLVM
• JIT compiles on first use with new

type signatures

• Runs at C/Fortran speeds
• Supports

• Normal numeric code
• Dynamic data structures
• Recursion
• CPU Parallelism (thanks Intel!)
• CUDA, AMD ROCm, ARM
• ...

import numba

@numba.jit
def sum(x):

total = 0
for i in range(x.shape[0]):

total += x[i]
return total

>>> x = numpy.arange(10_000_000)
>>> %time sum(x)
5.09 ms ± 110 µs

36

COMBINE NUMBA WITH CUPY
Write custom CUDA code from Python

37

COMBINE NUMBA WITH CUPY
Write custom CUDA code from Python

38

CUSTOM NUMBA KERNELS FOR IN CUSIGNAL

upfirdn

correlate2d

convolve2d

lombscargle

…and more on the way (lfilter of particular interest)

39

DIVING DEEPER

Much of the cuSignal codebase has been written by simply swapping out
NumPy functionality for CuPy and fixing errors as they appear

resample_poly is different, however, and includes a custom Numba
CUDA kernel implementing upfirdn

Not all memory is created equal, and it doesn’t always originate on the
GPU

40

CASE STUDY – POLYPHASE RESAMPLING

41

CASE STUDY – POLYPHASE RESAMPLING

42

CASE STUDY – POLYPHASE RESAMPLING

43

CASE STUDY – POLYPHASE RESAMPLING

44

WHAT’S GOING ON HERE?

Software Defined Radios (SDR) often transfer a “small” number of samples
from the local buffer to host to avoid dropped packets

Frequent, small data copies will cripple GPU performance; the GPU will be
underutilized, and we’ll be handcuffed by CPU controlled data transfers
from SDR to CPU to GPU

We are making use of pinned and mapped memory (zero-copy) from Numba
to provide a dedicated memory space usable by both the CPU and GPU,
reducing the data copy overhead

• _arraytools.get_shared_mem – mapped, pinned memory, similar to
np.zeros

• _arraytools.get_shared_array – mapped, pinned memory loaded with
given data of a given type

45

FFT BENCHMARKING

FFT speed with NumPy: 0.734 ms

FFT speed with CuPy and asarray call (CPU->GPU movement): 210* ms

FFT speed with CuPy and memory already on GPU with CuPy: 0.397 ms

FFT speed with mapped array and Numba (create array and load data): 0.792 ms

FFT speed if context came in as mapped (just load data in zero-copy space): 0.454 ms

N = 32768 complex128 samples

We want to create some mapped, pinned memory space of a
given size and load data here.

* includes FFT plan creation that is ultimately cached; in an online signal processing application, you can do this before you start
executing streaming FFTs. More details here

https://docs-cupy.chainer.org/en/stable/reference/generated/cupyx.scipy.fftpack.fft.html#cupyx.scipy.fftpack.fft

46

FROM CUSIGNAL TO
APPLICATIONS OF AI

4747

SCHEDULING
ANOMALY

DETECTION
SIGNAL

IDENTIFICATION

MARRIAGE OF DEEP LEARNING AND RF DATA

Learn features specific to
a desired emitter

Fits into many existing RF
dataflows

Success in high noise, high
interference environments

Automatic recognition of
free communication
channels

Provide a basis for
effective signal
transmission or reception

Facilitates in discovery

Early warning system for
defense and commercial
applications

Enforce FCC regulations

4848

MOVE SEAMLESSLY FROM CUSIGNAL TO
PYTORCH

4949

MOVE SEAMLESSLY FROM CUSIGNAL TO
PYTORCH

5050

MOVE SEAMLESSLY FROM CUSIGNAL TO
PYTORCH

As of PyTorch 1.2, __cuda_array_interface__ is officially supported,
and one no longer has to move data to PyTorch via DLPack

5151

END-TO-END EXAMPLE

Generate 2000 signals that are each 2^15 samples in length; each signal has between 1 and 5
carriers spaced at one of 10 different center frequencies

Use polyphase resampler to upsample by 2

Run periodogram with flattop filter over each signal

Use a simple multi-layer linear neural network to train and predict the number of carriers in
an arbitrary signal

Predict the Number of Carriers in a Signal

https://github.com/rapidsai/cusignal/blob/master/notebooks/E2E_Example.ipynb

5252

WHERE TO GO FROM
HERE?

5353

WHAT’S NEXT FOR CUSIGNAL?

Integrate GPU CI/CD and add Conda packaging

Add test scripts to ensure integrity of cuSignal functionality, especially compared with
SciPy Signal

Please help profile performance, optimize the code, and add new features!

Further SDR integration via SoapySDR, pyrtlsdr, etc

Examine GPU acceleration of common RF recording specifications (SigMF, MIDAS
Blue/Platinum, Vita 49)

5454

ACKNOWLEDGEMENTS

SciPy Signal Core Development Team, Particularly Travis Oliphant

Matthew Nicely – NVIDIA – Numba/CUDA optimization

Ryan Crawford – Expedition Technology – API/Performance Feedback

Deepwave Digital – API/Performance Feedback, Online Signal Processing

John Murray – Fusion Data Science

Jeff Shultz – CACI

LPS/BAH

