<ANVIDIA. *

CUSIGNAL - GPU ACCELERATED
SCIPY SIGNAL

Adam Thompson | Senior Solutions Architect | adamt@nvidia.com

W @adamlikesai

mailto:adamt@nvidia.com

cuSignal is built as a GPU accelerated version of
the popular SciPy Signal library

Most of the coding has leveraged CuPy - GPU
accelerated NumPy

In certain cases, we have implemented custom
CUDA kernels using Numba - more on this (pros
and cons!) later

GitHub Repo:

https://github.com/rapidsai/cusignal

BACKGROUND AND
MOTIVATIONS

THE FOUR FUNDAMENTAL FORCES OF THE UNIVERSE

Weak Nuclear Force

Converting protons into neutrons Releasing radiation

h k

Electromagnetic Force Strong Nuclear Force

€ o o8
3’ e > g& 0. Q

Forming atoms and molecules Generating light Binding protons in atomic nuclei Breaking the bond

@

@bhilburn

THE FOUR FU

NTAL FORCES OF THE UNIVERSE

Weak Nuclear Force

Converting protons into | utrons
a disruptios weak nuclear fo
e of the p ety arg pro

he weak nuck

3, certain complex ny ot form,

08
s into

Releasmg radnatlon

pratons and nue
nuclear farce cor

nuatrans releasi

an imbal

raciation.

»
Gravity
Center of Mass
Adding motion to the U verse
& o obiccts to spir
par De ¢ ting
the center o planets all or 55,

Pranets with encug) develoy

riting OGS ERANEPOROLONS

s allowing them

ons of years

Electromagnetic Force

Forming atoms and molecules

ed electrans into bound arbits around

~ @bhilburn

Strong Nuclear Force

Binding protons in atomii uclei

sitively charged particies naturally repel each takes an extror

THE FOUR FUNDAMENTAL FORCES OF THE UNIVERSE

Weak Nuclear Force

Electromagnetic F Strong Nuclear Force

l R

Forming atoms a

Binding protons in atomic nuclei Breaking the bond

@bhilburn

€he New York Eimes

By Saturday afternoon, City Councilman Chris Glassburn announced

A Mystery Frequency Disrupted

Car F ObS nan Oth Cdy ’ and homemade battery-operated device designed by a local resident to

Now Residen ts Know Why alert him if someone was upstairs when he was working in his
< 5 g - P2sement. It did so by turning off a light.

that the mystery had been solved: The source of the problem was a

.
B

% “He has a fascination with electronics,” Mr. Glassburn said, adding
g that the resident has special needs and would not be identified to
protect his privacy.

M The inventor and other residents of his home had no idea that the
device was wreaking havoc on the neighborhood, he said, until Mr.
Glassburn and a volunteer with expertise in radio frequencies knocked
on the door.

“The way he designed it, it was persistently putting out a 315
megahertz signal,” Mr. Glassburn said. That is the frequency many car
fobs and garage door openers rely on.

Virginia Avenue in North Olmsted, Ohio, where residents complained that their car key fobs and garage

. : : : S '
door openers had stopped working. Dustin Franz for The New York Times 7 SNVIDIA

UNITED

STATES
FREQUENCY
ALLOCATIONS

THE RADIO SPECTRUM i ‘ T ; € EEE 3 BrelEl: s istalREEESERTIENE Lol Hpvatdeegiala -

RADIO SERVICES COLOR LEGEND

¥

$ Z £ H 3E
§ £ ¥ 3

-

L
5 33 zE E gr £ 3
Ed it B & & 4 i
st z ER i 57 H

i

30 Mikz L e

s sas s annnififs o [I W T TTERNTTEEATEIL 3 8 RdgiiEG aRddE R PP aiiigiiasEaiia Mid uumu UL S T 00 S
. . o i

i

RLLER AL LT
BEEROBEDED

ACTIVITY CODE

€
= g B

wos e servon

— mn Tt i
-~ a- 4 ot o8 b e s

|nvIDIA.

UNITED

STATES
FREQUENCY o
ALLOCATIONS |

THE RADIO SPECTRUM

RADIO SERVICES COLOR LEGEND

[H

23 P) B disiiraanasiianiiag

onmEROEEOE
BEEROBEDOT

ACTIVITY CODE

| [E——

XCATION USAGE DESIGNATION

e servon

aa 4 ot o8 b e s

EHTE

|nvIDIA.

gt

10 <ANVIDIA.

. NOLLYD01010vY

]
=
4
v
i
i
&

|
-
2
n
4

)
I
C
o
.Z
o
>
| -
o
y—
©
C
4°]
o
L
5
=
4°]
=
o
=
i
O
<
I
™M
~
©
[o=
4°]
m

Z,
L
=
o
o
N~

w;] J
¥ E X
-

ANONOHLSY 0l0ve

(Eoeds oq-2edsyes o ads)
. 3 LTIALYS WOUYORWNOOYH
ws e
s AUMTBFENOL YO RO

(33
«37190W
L1s
ERll=iely]

¥

ISV - 40.68 £.0IMi:

J80N

EREE i
750N I novoes oow
I!iﬁscﬁw_owmw%a NOILYOOTOIOYY

TWO FUNDAMENTAL NEEDS

/ Fast filtering, FFTs, correlations, convolutions, resampling, etc to
process increasingly larger bandwidths of signals at increasingly fast
rates and do increasingly cool stuff we couldn’t do before

Artificial Intelligence techniques applied to spectrum sensing, signal
identification, spectrum collaboration, and anomaly detection

11 NVIDIA.

SIGNAL PROCESSING ON GPUS: A HISTORY

=
GPU USIPL

GPU VSIPL is an implementation of Vector Signal Image Processing Library that targets Graphics Processing Units
(GPUs) supporting NVIDIA's CUDA platform. By leveraging processors capable of 900 GFLOP/s or more, your
application may achieve considerable speedup without any specialized development for GPUs. Our range-Doppler
map application achieved a 75x speedup on the GPU simply by linking it with GPU VSIPL.

Distribution

GPU VSIPL is currently released as a binary-only static library with the restriction that the library not be
redistributed. This should enable internal development and testing to see if GPU VSIPL meets your needs. If you
wish to distribute applications developed with GPU VSIPL, please contact us to arrange a separate licensing
agreement. Email gpu-vsipl@gtri.gatech.edu

For announcements on new updates to GPU VSIPL, and discussion about the software, please subscribe to the
GPU VSIPL Mailing List.

Validation

All releases are verified with the VSIPL Core Lite Test Suite.

GPU VSIPL was presented to the High Performance Embedded Computing Workshop 2008. Read the GPU VSIPL
extended abstract [PDF].

cuFFT cuSPARSE

GPU-accelerated library for Fast Fourier Transforms GPU-accelerated BLAS for sparse matrices

cuBLAS cuSOLVER

GPU-accelerated standard BLAS library Dense and sparse direct solvers for Computer Vision, CFD,
Computational Chemistry, and Linear Optimization
applications

12 <4 NVIDIA.

@SciPy SIGNAL

Free and Open Source signal processing from Python (BSD 3 license)

CPU performance optimizations for various computationally intensive
operations (e.g. linear filtering)

Extensive functionality: convolution, filtering and filter design, peak
finding, spectral analysis among others

13 <4 NVIDIA.

https://github.com/scipy/scipy/tree/master/scipy/signal

LET’S TALK ABOUT RAPIDS FOR A SECOND

DETOUR

Open Source Data Science Ecosystem
Familiar Python APlIs

DET

Scikit-Learn NetworkX PyTorch Chainer MxNet Matplotlib/Seaborn
Machine Learning Graph Analytics Deep Learning Visualization

CPU Memory

Pandas
Analytics

RAPIDS

RAPIDS

End-to-End Accelerated GPU Data Science

cuDF culO
Analytics

PyTorch Chainer MxNet
Deep Learning

cuXfilter <> pyViz
Visualization

CUML cuGraph
Machine Learning Graph Analytics
Apache
>>> . GPU Memory

RAPIDS 16

https://rapids.ai/

Interoperability for the Win

DLPack and

PYTORCH mpidpy

CUSIGNAL CORE

REFERENCE RAPIDS TECHNOLOGY STACK

Python Dask cuML
Dask cuDF

cuDF
Cython NUMpY

Thrust
Cub
cuSolver
N nvGraph
CUDA Libraries CUTLASS

cuSparse
cuRand
cuBlas

19 <ANVIDIA.

CUSIGNAL TECHNOLOGY STACK

Numba CuPy

<

Innovate Here

CUDA

CUDA Libraries

ALGORITHMS

GPU-accelerated SciPy Signal

luti Convolve/Correlate
Convolution FFT Convolve

Convolve/Correlate 2D

Resampling - Polyphase, Upfirdn, Resample

l I I | I I l I l Filtering and Filter Design VHvlil(l:r(;:-;tr/Hllbert 2D

Firwin

Chirp
Waveform Generation Square
Gaussian Pulse

Kaiser

: : Blackman
Hanning
Wavelets
Periodogram
Spectral Analysis Welch
Peak Finding Spectrogram

More to come!

21 <4 NVIDIA.

PERFORMANCE

fftconvolve 34173
correlate 20580
resample 18834

resample_poly 4182
welch 7015
spectrogram 4061
cwt 56035

Learn more about cuSignal functionality and performance by browsing the

450
390
372
291
270
271
628

76.0
52.8
50.7
14.3
25.9
15.0
89.2

22

NVIDIA.

https://github.com/rapidsai/cusignal/tree/master/notebooks

SPEED OF LIGHT PERFORMANCE - P100

timeit (7 runs) rather than time. Benchmarked with ~1e8 sample signals on a P100 GPU

fftconvolve 33200
correlate 19900
resample 15100

resample_poly 4250
welch 6730
spectrogram 4120
cwt 56200

130.0
72.6
70.2
52.3
79.5
37.7
272

255.4
274.1
215.1
81.3
84.7
109.3
206.6

Learn more about cuSignal functionality and performance by browsing the notebooks

23 <ANVIDIA.

https://github.com/rapidsai/cusignal/tree/master/notebooks

SPEED OF LIGHT PERFORMANCE - V100

timeit (7 runs) rather than time. Benchmarked with ~1e8 sample signals on a DGX Station

fftconvolve 28400
correlate 16800
resample 14700

resample_poly 3110
welch 4620
spectrogram 2520
cwt 46700

92.2
48.4
51.1
13.7
53.7
28
277

308.0
347.1
287.7
227.0
86.0
90.0
168.6

Learn more about cuSignal functionality and performance by browsing the notebooks

24 <ANVIDIA.

https://github.com/rapidsai/cusignal/tree/master/notebooks

“Using the cuSignal library we were able to
speed-up a long running signal processing task
from ~14 hours to ~3 hours with minimal drop-in
code replacements.”

EXPEDITION \‘

—CHNOLOGY

2019 SECAF Government Contractor of the Year, $7.5-15M Revenue Category

DIVING DEEPER

Much of the cuSignal codebase has been written by simply swapping out
NumPy functionality for CuPy and fixing errors as they appear

resample_poly is different, however, and includes a custom Numba
CUDA kernel implementing upfirdn

Not all memory is created equal, and it doesn’t always originate on the
. GPU

26 NVIDIA.

DIVING DEEPER

. Much of the cuSignal codebase has been written by simply swapping out
NumPy functionality for CuPy and fixing errors as they appear

resample_poly is different, however, and includes a custom Numba
CUDA kernel implementing upfirdn

Not all memory is created equal, and it doesn’t always originate on the
. GPU

27 NVIDIA.

Qtt"’ C U PY

og.g
N

A NumPy-Compatible Matrix Library Accelerated by CUDA

@ - E

Free and open source software developed under the Chainer project and
Preferred Networks (MIT License)

Includes CUDA libraries: cuBLAS, cuDNN, cuRand, cuSolver, cuSparse, cuFFT,
and NCCL

Typically a drop-in replacement for NumPy

Ability to write custom kernel for additional performance, requiring a bit of
C++

28 <ANVIDIA.

HILBERT TRANSFORM: NUMPY {4 CUPY

ilbert_cpu.p o hilbert_gpupy ®

C: » Users » adamt > Deskiop hilbert_cpu.py > ... C: » Users » adamt » Desktop hilbert_gpu.py
from scipy import fft as sp fft e
from numpy import asarray, zeros

def hilbert{x, N=None, axis=-1): def hilbert{x, N=None, axis=-1):
X = asarray(x) X = asarray(x)

ValueError("x must be real.™) raise ValueError{"x must be real.")

N = x.shape[axis]
if N <= 8:
ValueError(“N must be positive.") raise ValueError{"N must be positive.")

Xf = sp fft.fft(x, N, axis=axis) Xf = fftpack.fft(x, N, axis=axis)
h = zeros(N) h = zeros(N)
if N% 2 ==8: if N% 2 ==8:
h[@] = h[N /f 2] =1 h[e] = h[N // 2] =1
h[1:N // 2] = h[1:N /7 2] = 2
else: else:
h[e] = 1 h[e] = 1
h[1:(N + 1} // 2] = 2 h[1:(N + 1} // 2] = 2

2
2

if x.ndim > 1: if x.ndim > 1:
ind = [newaxis] * x.ndim ind = [newaxis] * x.ndim
ind[axis] = slice(MNone) ind[axis] = slice(Mone)
h = h[tuple(ind)] h = h[tuple(ind)]
x = sp_fft.ifft(Xf * h, axis=axis) ¥ = fftpack.ifft(Xf * h, axis=axis)
return x return x

DIVING DEEPER

Much of the cuSignal codebase has been written by simply swapping out
NumPy functionality for CuPy and fixing errors as they appear

resample_poly is different, however, and includes a custom Numba
CUDA kernel implementing upfirdn

Not all memory is created equal, and it doesn’t always originate on the
. GPU

30 NVIDIA.

Write Python function
Use C/Fortran style for loops
Large subset of Python language
Mostly for numeric data

Wrap it in @numba.jit
Compiles to native code with LLVM
JIT compiles on first use with new
type signatures

Runs at C/Fortran speeds

See also: Cython, Pythran, pybind, f2py

NUMBA

JIT Compiler for Python with LLVM

def sum(x):
total =0
for i in range(x.shape[0]):
total += X]i]
return total

>>> X = numpy.arange(10_000_000)
>>> Optime sum(X)
1.34s £8.17 ms

31

< NVIDIA.

Write Python function
Use C/Fortran style for loops
Large subset of Python language
Mostly for numeric data

Wrap it in @numba.jit
Compiles to native code with LLVM
JIT compiles on first use with new
type signatures

Runs at C/Fortran speeds

See also: Cython, Pythran, pybind, f2py

NUMBA

JIT Compiler for Python with LLVM

import numba

@numba.jit
def sum(x):
total =0
for i in range(x.shape[0]):
total += X]i]
return total

>>> X = numpy.arange(10_000_000)
>>> Optime sum(X)
25 ms

32

< NVIDIA.

Write Python function
Use C/Fortran style for loops
Large subset of Python language
Mostly for numeric data

Wrap it in @numba.jit
Compiles to native code with LLVM
JIT compiles on first use with new
type signatures

Runs at C/Fortran speeds

See also: Cython, Pythran, pybind, f2py

NUMBA

JIT Compiler for Python with LLVM

import numba

@numba.jit
def sum(x):
total =0
for i in range(x.shape[0]):
total += X]i]
return total

>>> x = numpy.arange(10 000 _000)
>>> %ptime sum(X)
55 ms # mostly compile time

33

< NVIDIA.

Write Python function
Use C/Fortran style for loops
Large subset of Python language
Mostly for numeric data

Wrap it in @numba.jit
Compiles to native code with LLVM
JIT compiles on first use with new
type signatures

Runs at C/Fortran speeds

See also: Cython, Pythran, pybind, f2py

NUMBA

JIT Compiler for Python with LLVM

import numba

@numba.jit
def sum(x):
total =0
for i in range(x.shape[0]):
total += X]i]
return total

>>> x = numpy.arange(10 000 _000)
>>> %ptime sum(X)
5.09ms £ 110 us # subsequent runs

34

< NVIDIA.

NUMBA

JIT Compiler for Python with LLVM

Write Python function import numba
Use C/Fortran style for loops
Large subset of Python language @numba.jit
Mostly for numeric data def sum(x):
Wrap it in @numba.jit total = 0

Compiles to native code with LLVM
JIT compiles on first use with new
type signatures

Runs at C/Fortran speeds

for i in range(x.shape[0]):
total += X]i]
return total

Supports
Normal numeric code
Dynamic data structures >>> x = numpy.arange(10_000_000)
Recursion >>> %ptime sum(X)
CPU Parallelism (thanks Intel!) 5.09 ms + 110 ps

CUDA, AMD ROCm, ARM

35 < NVIDIA.

COMBINE NUMBA WITH CUPY

Write custom CUDA code from Python

Stencil computations on CPU

In [1]: import numpy as np
import numba

@numba.stencil
def smooth(x):
return (x[-1, -1] + x[-1, 0] + x[-1, 1] +
X[0, -1] + x[0, O] + X[O, 1] +
x[1, -1]1 + x[1, 0] + x[1, 11) // 9

@numba.njit

def smooth_cpu(x):
return _smooth(x)

In [2]: x_cpu = np.ones((10000, 10000), dtype='int8')

$timeit smooth_cpu(x_cpu)

621 ms * 15.1 ms per loop (mean % std. dev. of 7 runs, 1 loop each)

36 < NVIDIA.

In

In

(3]

[4]

COMBINE NUMBA WITH CUPY

Write custom CUDA code from Python

Stencil computations on GPU

Using the numba . cuda module I'm able to get about a 200x increase with a modest increase in code complexity.

from numba import cuda

@cuda.jit
def smooth gpu(x, out):
i, j = cuda.grid(2)
n, m = x.shape
if 1 <=i<n-1andl<=3j<m- 1:
out[i, j] = (x[1i -1, j - 1] + x[i -1, j] + x[i -1, j + 1] +
X[i rj‘1]+x[i rj]+x[i rj+1]+
x[1+1, j-1] +x[1+1, j] +x[i+1, jJ+1]) // 9

import cupy, math

X_gpu = cupy.ones((10000, 10000), dtype='int8')
out_gpu = cupy.zeros((10000, 10000), dtype='int8')

I copied the four lines below from the Numba docs
threadsperblock = (16, 16)

blockspergrid_x = math.ceil(x_gpu.shape[0] / threadsperblock[0])
blockspergrid_y = math.ceil(x_gpu.shape[l] / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)

%timeit smooth gpu[blockspergrid, threadsperblock](x_gpu, out gpu)

2.87 ms * 90.8 us per loop (mean t std. dev. of 7 runs, 1000 loops each)

Note: the GPU solution here cheats a bit because it pre-allocates the output array

37

< NVIDIA.

CUSTOM NUMBA KERNELS FOR ¢% IN CUSIGNAL

upfirdn
correlate2d
convolve2d
lombscargle

...and more on the way ([filter of particular interest)

DIVING DEEPER

Much of the cuSignal codebase has been written by simply swapping out
NumPy functionality for CuPy and fixing errors as they appear

resample_poly is different, however, and includes a custom Numba
CUDA kernel implementing upfirdn

Not all memory is created equal, and it doesn’t always originate on the
. GPU

39 NVIDIA.

CASE STUDY - POLYPHASE RESAMPLING

Scipy Signal (CPU)

import numpy as np
from scipy import signal

start = @

stop = 18

num_samps = int({le8)
resample up = 2
resample down = 3

cx = np.linspace(start, stop, num samps, endpoint=False)
cy = np.cos(-cx**2/6.8)
ct = signal.resample poly{cy, resample up, resample down, window=('kaiser', 8.5))

This code executes on 2x Xeon E5-2600 in 2.36 sec.

CASE STUDY - POLYPHASE RESAMPLING

cuSignal with Data Generated on the GPU with CuPy

import cupy as cp
import cusignal

start =
stop = 1
num_samps = int(le8)
resample up = 2
resample down = 3

a8
a8

gx = cp.linspace(start, stop, num samps, endpoint=False)
gy = cp.cos(-cx**2/6.8)
gf = cusignal.resample poly(gy, resample up, resample down, window=('kalser', 8.5))

This code executes on an NVIDIA P100 in 258 ms.

CASE STUDY - POLYPHASE RESAMPLING

cuSignal with Data Generated on the CPU and Copied to GPU [AVOID THIS FOR ONLINE SIGNAL PROCESSING]

import cupy as cp
import numpy as np
import cusignal

start = @

stop = 18

num_samps = int({leg)
resample up = 2
resample down = 3

Generate Data on CPU

cx = np.linspace(start, stop, num samps, endpoint=False)
€y = np.cos(-cx**2/6.8)
gf = cusignal.resample poly(cp.asarray(cy), resample up, resample down, window=('kaiser', @.5))

This code executes on an NVIDIA P100 in 728 ms.

CASE STUDY - POLYPHASE RESAMPLING

cuSignal with Data Generated on the CPU with Mapped, Pinned (zero-copy) Memory

import cupy as cp
import numpy as np
import cusignal

start = @

stop = 18

num_samps = int({led)
resample up = 2
resample_down = 3

Generate Data on CPU

£x = np.linspace(start, stop, num_samps, endpoint=False)

cy = np.cos(-cx**2/6.8)

Create shared memory between CPU and GPU and load with CPU signal (cy)
gpu_signal = cusignal.get shared mem({num_samps, diype=np.complex128)
gpu_signall:] = cy

gf = cusignal.resample poly(gpu signal, resample up, resample down, window={'kaiser', 8.5))

This code executes on an NVIDIA P100 in 154 ms.

WHAT’S GOING ON HERE?

Software Defined Radios (SDR) often transfer a “small” number of samples
from the local buffer to host to avoid dropped packets

Frequent, small data copies will cripple GPU performance; the GPU will be
underutilized, and we’ll be handcuffed by CPU controlled data transfers
from SDR to CPU to GPU

S We are making use of pinned and mapped memory (zero-copy) from Numba
K‘_,/ to provide a dedicated memory space usable by both the CPU and GPU,
reducing the data copy overhead
« _arraytools.get_shared_mem - mapped, pinned memory, similar to
np.zeros
« _arraytools.get_shared_array - mapped, pinned memory loaded with
given data of a given type

FFT BENCHMARKING

FFT speed with NumPy:

FFT speed with CuPy and asarray call (CPU->GPU movement):

FFT speed with CuPy and memory already on GPU with CuPy:

FFT speed with mapped array and Numba (create array and load data):

FFT speed if context came in as mapped (just load data in zero-copy space):

We want to create some mapped, pinned memory space of a
given size and load data here.

-

*includes FFT plan creation that is ultimately cached; in an online signal processing application, you can do this before you start
executing streaming FFTs. More details 45 SANVIDIA.

https://docs-cupy.chainer.org/en/stable/reference/generated/cupyx.scipy.fftpack.fft.html#cupyx.scipy.fftpack.fft

FROM CUSIGNAL TO
APPLICATIONS OF Al

MARRIAGE OF DEEP LEARNING AND RF DATA

SIGNAL ANOMALY
IDENTIFICATION DETECTION
Learn features specific to Facilitates in discovery Automatic recognition of
a desired emitter free communication
Early warning system for channels
Fits into many existing RF defense and commercial
dataflows applications Provide a basis for
effective signal
Success in high noise, high Enforce FCC regulations transmission or reception

interference environments

MOVE SEAMLESSLY FROM CUSIGNAL TO
PYTHRCH

import numpy as np
import cupy as cp
from numba import cuda

N = 2**18

def get shared mem(shape, dtype=np.float32, strides=None, order='C', stream=0, portable=False, wc=True):
return cuda.mapped array(shape, dtype=dtype, strides=strides, order=order, stream=stream, portable=portable, wc=wc)

Allocate known memory size before processing. This is accessible to the CPU or GPU
shared sig = get shared mem(N, dtype=np.complex128)

print('CPU Pointer: ', shared sig. array interface ['data'l])

print('GPU Pointer: ', shared sig. cuda array interface ['data'])

CPU Pointer: (140400685744128, False)
GPU Pointer: (140400685744128, False)

%%time
shared sig[:] = np.random.rand(N) + 1j*np.random.rand(N)

CPU times: user 11.5 ms, sys: 2.91 ms, total: 14.4 ms
Wall time: 12.6 ms

MOVE SEAMLESSLY FROM CUSIGNAL TO
PYTORCH

sig value can be called by a CPU function or GPU one. Here's we'll take the mean via both NumPy and CuPy,
comparing performance

%%time
cpu fft = np.abs(np.fft.fft(shared sig))

CPU times: user 18.8 ms, sys: 4.68 ms, total: 23.5 ms
Wall time: 21.4 ms

%%time
gpu fft = cp.abs(cp.fft.fft(cp.asarray(shared sig)))

CPU times: user 2.63 ms, sys: 8.66 ms, total: 11.3 ms
Wall time: 9.86 ms

Prove cp.asarray() just gives cupy context - same pointer is used
shared sig. cuda array interface ['data']
cp.asarray(shared sig). cuda array interface ['data']

(140400685744128, False)

MOVE SEAMLESSLY FROM CUSIGNAL TO
PYTORCH

Move sig to PyTorch via DLPack

from torch.utils.dlpack import to dlpack
from torch.utils.dlpack import from dlpack

Enforce cupy array, still zero copy

sig = cp.asarray(gpu_fft).astype(cp.float64)
torch sig = from dlpack(sig.toDlpack(})
torch_sig

tensor([1.8519e+05, 9.9990e+01, 2.2987e+02, ..., 2.4414e+02, 2.2538e+02,
3.0817e+02], device='cuda:8', dtype=torch.floated)

n As of PyTorch 1.2, _ cuda_array_interface__ is officially supported,
—n and one no longer has to move data to PyTorch via DLPack

END-TO-END EXAMPLE

Predict the Number of Carriers in a Signal

Generate 2000 signals that are each 2715 samples in length; each signal has between 1 and 5
carriers spaced at one of 10 different center frequencies

Use polyphase resampler to upsample by 2
Run periodogram with flattop filter over each signal

Use a simple multi-layer linear neural network to train and predict the number of carriers in
an arbitrary signal

51 <ADVADbM

https://github.com/rapidsai/cusignal/blob/master/notebooks/E2E_Example.ipynb

WHERE-TO GO FROM
HERE?

WHAT’S NEXT FOR CUSIGNAL?

@ Integrate GPU CI/CD and add Conda packaging

" Add test scripts to ensure integrity of cuSignal functionality, especially compared with
/ SciPy Signal

| Please help profile performance, optimize the code, and add new features!

Further SDR integration via SoapySDR, pyrtlsdr, etc

-~ Examine GPU acceleration of common RF recording specifications (SigMF, MIDAS
L\ Blue/Platinum, Vita 49)

53 DVIDb.

ACKNOWLEDGEMENTS

SciPy Signal Core Development Team, Particularly Travis Oliphant
Matthew Nicely - NVIDIA - Numba/CUDA optimization

Ryan Crawford - Expedition Technology - API/Performance Feedback
Deepwave Digital - API/Performance Feedback, Online Signal Processing
John Murray - Fusion Data Science

Jeff Shultz - CACI

LPS/BAH

54

DVDbi.

R J

<SANVIDIA

N

\

&
i

|
:
! l |
4 / : A - | . i
/ N
A4 S X
\‘\ 4 7
h -
>
// '
4./ ““\(
’ ,
/
‘ ,
,
7,
| A/‘r-n —
»

