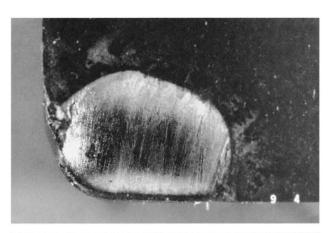
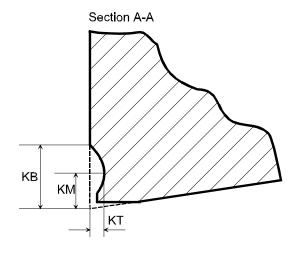
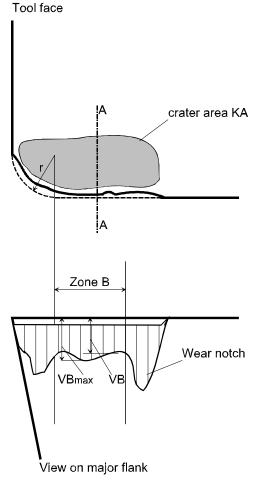
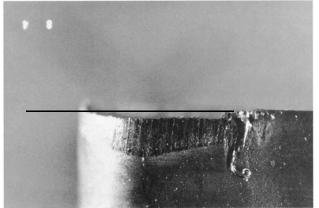
CUTTING TOOL TECHNOLOGY

- 1. Tool life
- 2. Tool Materials
- 3. Tool Geometry
 - 4. Cutting fluids

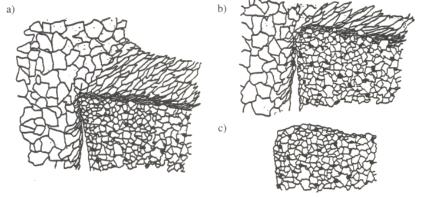

Introduction


- Machining is accomplished by cutting tools.
- Cutting tools undergo high force and temperature and temperature gradient.
- Tool life
- Two aspects of design
 - Tool Materials
 - Tool Geometry
- Cutting fluids


1. Tool life


- Three modes of failure
 - Premature Failure
 - Fracture failure Cutting force becomes excessive and/or dynamic, leading to brittle fracture
 - Thermal failure Cutting temperature is too high for the tool material
 - Gradual Wear
 - Gradual failure
- Tool wear: Gradual failure
 - Flank wear flank (side of tool)
 - Crater wear top rake face
 - Notch wear
 - Nose radius wear

Crater and Flank Wear

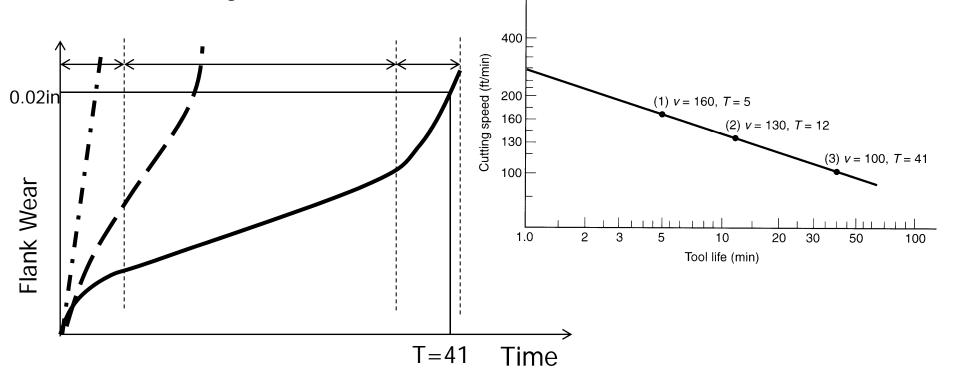


ISO Standard 3685-1977 (E)

KB= crater width
KM=crater centre distance
KT=crater depth
KA=crater area (self defined)
VB=average wear-land width
VB_{max}=maximum wear-land width
r=radius of cutting edge

Possible Wear Mechanisms

- Abrasion Flank and Crater wear
 - Hard Inclusions abrading Cutting tools
 - Hot Hardness Ratio
- Erosion
- Attrition
- Adhesion
 - Compatibility chart


Attrition Wear (from Tlusty, 2000)

- Diffusion/Dissolution Crater wear
 - Chemical solubility
 - Diamond dissolves into iron.
 - Oxide coating resists crater wear.
- Plastic deformation

Tool life

- Tool life the length of cutting time that the tool can be used
 - Break-in period
 - Steady-state wear region

- Failure region

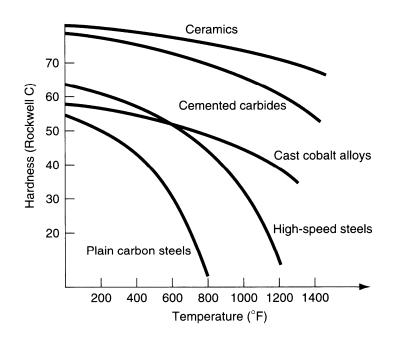
Taylor's Equation

- F. W. Taylor [1900]'s Equation $vT^n = C$
- Generalized Taylor's Equation $vT^n f^m d^p = C$
 - where v = cutting speed; T = tool life; and n and C depend on feed, depth of cut, work material and, tooling material
 - *n* is the slope of the plot
 - C is the intercept on the speed axis

Tool material	<u>n</u>	C (m/min)	C (ft/min)
High speed steel:			
Non-steel work	0.125	120	350
Steel work	0.125	70	200
Cemented carbide			
Non-steel work	0.25	900	2700
Steel work	0.25	500	1500
Ceramic			
Steel work	0.6	3000	10,000

Tool Life Criteria in practice

- 1. Complete failure of cutting edge
- 2. Visual inspection of flank wear (or crater wear) by the machine operator
- 3. Fingernail test across cutting edge
- 4. Changes in sound emitted from operation
- 5. Chips become ribbony, stringy, and difficult to dispose of
- 6. Degradation of surface finish
- 7. Increased power
- 8. Workpiece count
- 9. Cumulative cutting time


2. Tool Materials

Important properties

- Toughness avoid fracture
- Hot hardness resist abrasion
- Wear resistance solubility

Cutting tool materials

- Plain carbon and low alloy steels
- High-speed steels
- Cemented carbides, cermets and coated carbides
- Ceramics
- Synthetic diamond and CBN

Tool Materials

- Plain Carbon and Low Alloy Steels
 - Before High Speed Steels
 - Due to a high carbon content, heat treated to R_c =60
 - Poor hot hardness
- High-speed steels (HSSs)
 - tungsten type (T-grade)
 12-20% of W
 - molybdenum type (M-grade)- 6% W and 5% Mo
 - Other elements: Tungsten and/or Molybdenum,
 Chromium and Vanadium, Carbon, Cobalt in some grades
 - Typical composition: Grade T1: 18% W, 4% Cr, 1% V, and 0.9% C

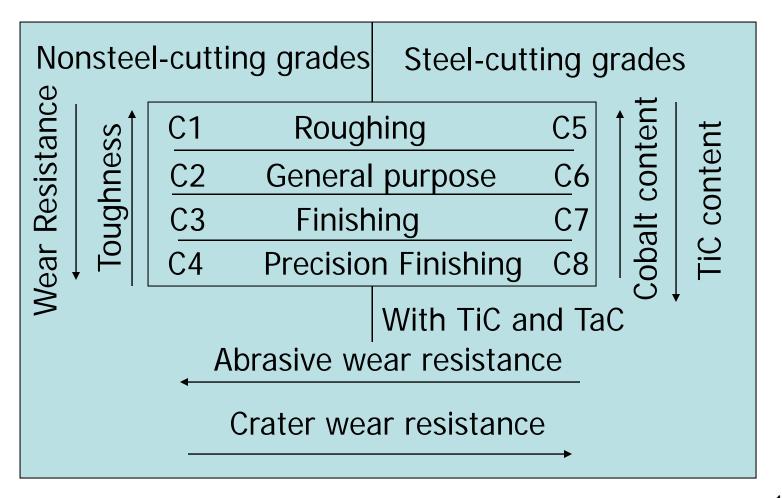
Tool Materials

HSSs

- Still used extensively for complex geometry such as drills
- Heat treated to R_c=65
- Re-grinded for reuse
- Thin coating

Cast Cobalt Alloys

- 40-50% Co, 25-35% W, 15-20% others
- Casting in a graphite mold and grind
- Toughness is not as good as HSS but hot hardness is better.
- Not so important


Cemented Carbides

- Advantages (Cemented Carbide, Cermets & Coated Carbides)
 - High compressive strength and modulus
 - High room and hot hardness
 - Good wear resistance
 - High thermal conductivity
 - Lower in toughness that HSSs

Grades

- Nonsteels grade WC-Co
- Steel grades add TiC and TaC due to the high solubility of WC into steels resulting in extensive crater wear
- Cemented Carbides Mainly WC-Co
 - As grain size is increased, hardness decreases but TRS increases.
 - As the content of cobalt increase, TRS increases but hardness decreases.
 - For roughing or milling, high cobalt is desirable
 - For finishing, low cobalt is desirable.

Classification of C-grade carbides

Cermets

- Cermets TiC, TiN and TiCN with Ni or Mo as binders
 - Applications: High speed finishing and semifinishing of steels, stainless steels and cast iron
 - Higher speeds than carbides
 - For better finish, low feed

Coated carbides

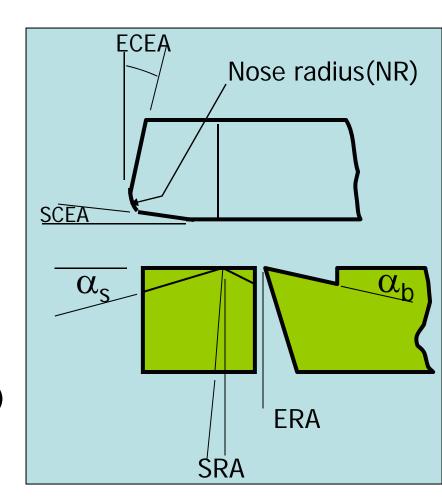
- Since 1970, they improve machinability.
- One or more layer of thin layers of wear resistance CVD or PVD coating such as TiC, TiN, Al₂O₃, ZrN, CrC or Diamond.
- Coating thickness = $2.5 13 \mu m$ (0.0001 to 0.0005 in)
- Applications: cast irons and steels in turning and milling operations
- Best applied at high speeds where dynamic force and thermal shock are minimal

Ceramics, Synthetic diamond and CBN

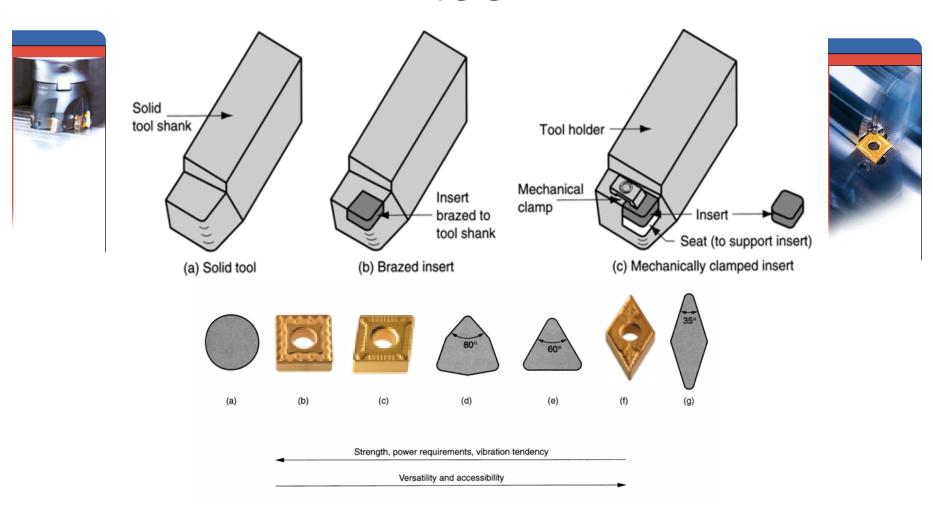
Ceramics

- Fine alumina powder is pressed and sintered at High pressure and temperature.
- Other oxide such ZrO₂ are added.
- Used in finishing of harden steels, high v, low d and f and rigid work setup.
- Not for heavy interrupted cutting
- Other ceramic tools: Si₃N₄, sialon(Si₃N₄-Al₂O₃), Alumina and TiC and SiC whiskers-reinforced alumina.

Diamond – the hardest material.


- Usually applied as coating (0.5 mm thick) on WC-Co insert
- Sintered polycrystalline diamond
- Applications: high speed cutting of nonferrous metals

Cubic Boron Nitrides (CBN)

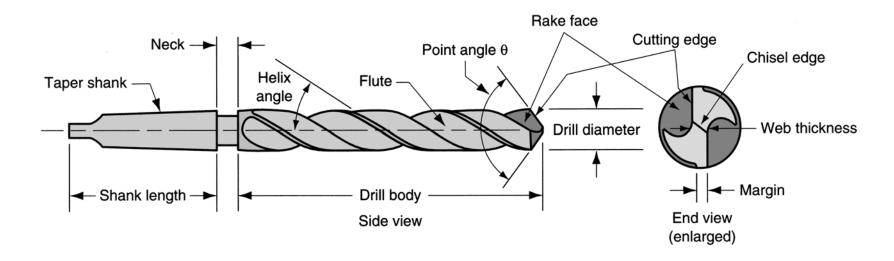

- For steels and Nickel alloys
- Expensive

3. Tool Geometry

- Single-point Tool geometry
 - Back rake angle (α_h)
 - Side rake angle (α_s)
 - End relief angle (ERA)
 - Side relief angle (SRA)
 - Side cutting edge angle (SCEA)
 - Nose radius (NR)
 - End cutting edge angle(ECEA)

Cutting edge for a single-point tool

Tool geometry


Chip Breakers

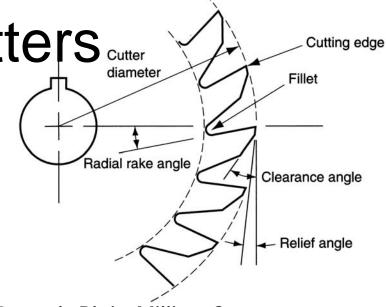
- For single-point tools, chip breaker forces the chip to curl so that it fractures
- Groove and obstruction types

Effect of Tool Material

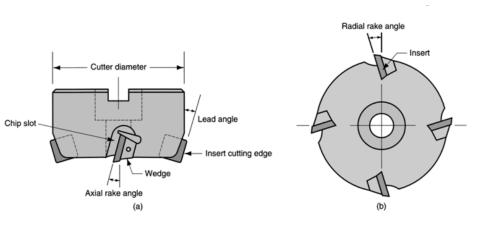
- Positive rake angle -> reduce cutting force, temp.
 and power consumption
- HSS: +5°< rake angle<+20°
- Carbides: -5°< rake angle <+10°
- Ceramics: -5°< rake angle <-15°
- The cutting edge: solid, brazed insert and clamped insert.

Twist Drills

The most common cutting tools for hole-making Usually made of high speed steel


Twist Drill Operation

- Rotation and feeding result in relative motion between cutting edges and workpiece
 - Cutting speed varies along cutting edges as a function of distance from axis of rotation
 - Zero Relative velocity at drill point (no cutting)
 - A large thrust force to drive the drill forward
- Chip removal
 - Flutes allow chips to be extracted
- Friction makes matters worse
 - Rubbing between outside diameter and wall
 - Delivery of cutting fluid to drill point


Milling Cutters Cutter diamet

Principal types:

- Plain milling cutter Peripheral or slab milling (can be Helical)
- Form milling cutter -Peripheral milling cutter in which cutting edges have special profile to be imparted to work
 - Important application gear-making, in which the forn milling cutter is shaped to cut the slots between adjacent geteeth
- Face milling cutter
- End milling cutter

18-teeth Plain Milling Cutter Used for Peripheral or Slab Milling

End Milling Cutter

- Looks like a drill bit but designed for primary cutting with its peripheral teeth
- Applications:
 - Face milling
 - Profile milling and pocketing
 - Cutting slots
 - Engraving
 - Surface contouring
 - Die sinking

Milling Cutter

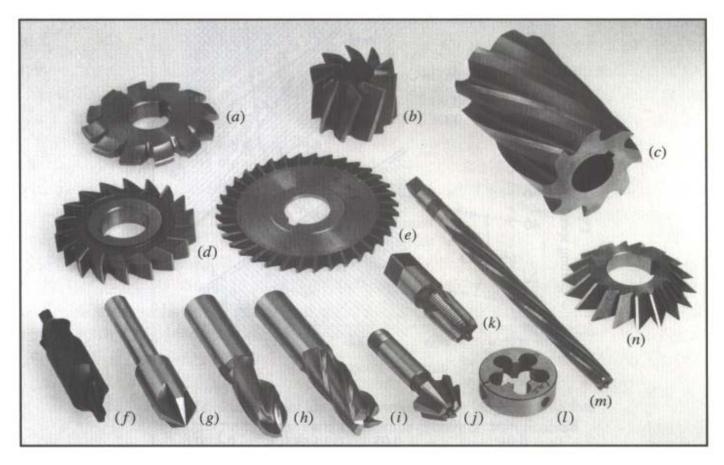
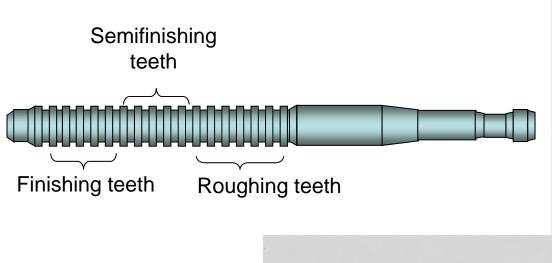
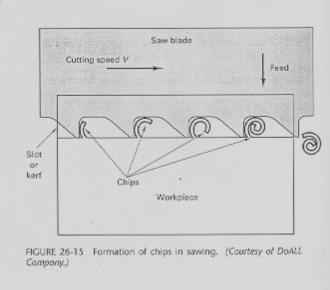
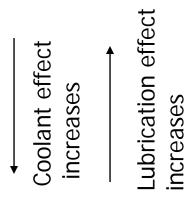




Figure 16–18 Some high-speed steel (HSS) tools commonly encountered: (a) gear-tooth cutter, (b) shell-end mill, (c) slab mill, (d) side mill, (e) slotting mill, (f) combined drill and countersink, (g) countersink, (h) ball-end mill, (i) square-end mill, (j) single-angle cutter, (k) tap, (l) thread-cutting die, (m) reamer, and (n) angular cutter.

From Schey [2000]

Broaches and Saw Blades


Saw Blade (Straight & Undercut tooth or Straight & Raker sets)

4. Cutting fluids

- Reduces heat generation at shear zone and friction zone (coolants)
 - High specific heat and thermal conductivity (waterbased coolants)
 - Effective at high cutting speeds
- Reduces friction between tool and chip (lubricants)
 - Effective at low cutting speeds
 - Oil-based lubricants
 - Low friction means low friction angle, which means shear angle decreases, which reduces heat.

Cutting fluids

- Chemical formulation
 - Cutting oils
 - Emulsified oils
 - Chemical fluids
- Application Methods
 - Flooding
 - Mist
 - Manual
- Filtration
- Dry machining for Green Manufacturing

