Cycling and Biogeochemical Transformations of N, P, S, and K

OCN 401 - Biogeochemical Systems 20 September 2016

Reading: Schlesinger & Bernhardt, Chapter 6

© 2016 Frank Sansone

Outline

- 1. Nitrogen cycle
 - · Soil nitrogen cycle
 - Nitrification
 - · Emissions of N gases from soils
 - Global N₂O emissions
 - Atmospheric N deposition
- 2. Phosphorus cycle
 - Importance of P transformations
 - Phosphorus cycling
 - Soil P transformations
 - Phosphorus pools
- 3. Sulfur cycle
 - The importance of sulfur cycling
 - Sulfur cycling
 - Atmospheric sulfate deposition
- 4. Potassium cycle

Soil Nitrogen Cycle

ALL OF THESE PROCESSES

ARE MICROBIALLY MEDIATED

How to Measure the Soil N Cycle

- Changes in N concentrations in plastic "litter bags" measured over time
- Changes in N concentrations in trenched plots (lined with plastic sides and bottoms) with plants removed
- Changes in ¹⁵NH₄ and ¹⁵NO₃ with and without inhibitors for specific processes
- Acetylene reduction measurement of nitrogen fixation
- Acetylene block specific inhibitor of N₂0 → N₂ during denitrification (discussed later)

Nitrification

$$\mathrm{NH_4^+} + \mathrm{O_2} \rightarrow \rightarrow \mathrm{NO_3^-} + \mathrm{H^+}$$

- · Lower rates under these conditions:
 - low O₂
 - low pH
 - low soil moisture (can also be inhibited by too much water)
 - high litterfall C:N (slow mineralization of N due to increased immobilization of NH₄⁺ by microbes)
- Higher rates in soils with high [NH₄], but generally not responsive to other nutrients
- · Usually higher after disturbances such as fires

Emissions of N Gases From Soils

- Emitted gases include:
 - Ammonia (NH₃)
 - Nitric oxide (NO)
 - Nitrous oxide (N₂O)
 - Dinitrogen (N₂)
- Emissions are important because they remove nitrogen available for uptake by plants
- N₂O flux is also important because N₂O is a "greenhouse gas"

Processes of Nitrogen Gas Emissions

 Rapid conversion of NH₄⁺ to NH₃ occurs at high pH and low soil moisture, and results in gas loss to the atmosphere:

$$NH_4^+ + OH^- \rightarrow NH_3^+ + H_2O$$

- High organic waste loads (e.g., feedlots) promote NH₃ production
- NO and N₂O are byproducts (intermediates) of nitrification and denitrification:

 Controls: N availability (esp NH₄⁺ or NO₃⁻ fertilizer!), organic matter content, O₂ levels, soil moisture, pH and temperature

Atmospheric N Deposition

- · An important source of nitrogen cycling in many systems
 - Mostly in the form of acidic wet and dry deposition originating from fossil-fuel and plant combustion (NO_x)
 - Some areas also have significant deposition of ammonium, largely originating from livestock organic waste (~85% of US ammonia emissions are from the agricultural sector)

Importance of P Transformations

The level of available P during soil development may be the primary determinant of terrestrial NPP:

- P is present in low concentrations in rocks, whereas
- N is abundant in the atmosphere
- Bacteria that fix N₂ gas to biologically available N require P
- Other essential plant nutrients (e.g., S, K, Ca, Mg) are more abundant than P

Phosphorus Cycling

- Unlike N, P cycling includes significant inorganic (mineral) reactions that make it much more difficult to study
 - These reactions tend to interfere with the availability of P
 - They also complicate the measurement of various forms of P
 - Use sequential extractions to determine P-mineral binding
- Unlike N, gaseous P (phosphine, PH₃) is negligible in biogeochemical cycles and can be ignored
- Unlike N, P does not have multiple oxidation states (no redox reactions)

Soil Phosphorus Pools

- 1) Organic matter P
 - · P in live plants and animals
 - · P in microbes
 - P in dead organic matter
- 2) Soluble P (P in dissolved form)
- 3) *Labile* P (P readily released into solution)
- 4) P in minerals and occluded P (tightly adsorbed or absorbed)
 - Igneous apatite (Ca₅FP₃O₁₂)
 - · Biological forms of apatite
 - P co-precipitated with CaCO₃
 - Fe- and Al-bound P, etc.

The Importance of Sulfur Cycling

- S, along with C, H, O, N, and P, is one of the major constituents of living tissue
- · While essential to life, S is also relatively abundant
- It is therefore an essential plant nutrient, but not ordinarily a limiting plant nutrient
- Plants take up SO₄²⁻ by reduction and incorporation into amino acids
- S is released in many forms during decomposition

Sulfur Cycling

- Like P, sulfur undergoes important geochemical, as well as biological, cycling
- · Like N, and unlike P, sulfur occurs in multiple oxidation states
- SO₄²⁻ [sulfate] is abundant in seawater (28 mM)
- Like N and unlike P, sulfur has significant gas phases:
 - H₂S [hydrogen sulfide]
 - Organic gases
 - · COS [carbonyl sulfide]
 - (CH₃)₂S [dimethylsulfide]
- A locally important S source is H₂SO₄ [sulfuric acid] in acid rain

Potassium Cycling

- The potassium (K) cycle is almost entirely inorganic
- The major role of K in living organisms is osmotic control
- K is taken up, retained and excreted in ionic form (K⁺)
- The amount of K in soil solution is relatively small but is in near equilibrium with the much larger amount of readily exchangeable K, from which it is replenished
- Soils also contain K in more slowly exchangeable forms (fixed K) which act as sources for crops
- K present in clay minerals becomes available as these minerals weather

Lecture Summary

- Nitrogen cycling is biologically mediated among soil pools (organic N, NH₄, NO₃), with important shunts to gaseous forms
- Unlike N, phosphorus is also involved in geochemical (mineral) reactions that may make P less available for biotic cycling
- Sulfur has important analogies with both N and P, including both biological and geochemical reactions, and gas-phase reactions
- Potassium is a required nutrient with a variety of possible inorganic sources