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Abstract—This paper introduces a new, efficient technique for
analyzing noise in large RF circuits subjected to true multitone
excitations. Noise statistics in such circuits are time-varying,
hence cyclostationary stochastic processes, characterized byhar-
monic power spectral densities(HPSD’s), are used to describe
noise. HPSD’s are used to devise a harmonic-balance-based
noise algorithm with the property that required computational
resources grow almost linearly with circuit size and nonlinearity.
Device noises with arbitrary spectra (including thermal, shot, and
flicker noises) are handled, and input and output correlations, as
well as individual device contributions, can be calculated.

HPSD-based analysis is also used to establish the nonintuitive
result that bandpass filtering of cyclostationary noise can result
in stationary noise.

Results from the new method are validated against Monte
Carlo simulations. A large RF integrated circuit (>300 nodes)
driven by a local oscillator (LO) tone and a strong RF signal is
analyzed in less than two hours. The analysis predicts correctly
that the presence of the RF tone leads to noise folding, affecting
the circuit’s noise performance significantly.

Index Terms—Cyclostationary noise, harmonic balance, har-
monic power spectral density, HPSD, mixer noise, nonlinear noise
analysis, RF noise.

I. INTRODUCTION

PREDICTING noise in RF circuits is a more complex
task than in linear circuitry, because the former typically

undergo large-signal (quasi-)periodic variations in their op-
eration, unlike the latter. Therefore the statistics of the RF
circuit’s noise also vary (quasi-)periodically in time, leading
to important effects such as up- and down-conversion of
noise spectra. Such effects cannot be predicted by traditional
SPICE-like noise simulations, which are based on linear-time-
invariant (LTI) analysis of stationary noise. In order to address
such effects, the time-varying nature of noise, as well as the
variations of the circuit due to its large signal swings, must be
considered. In this paper, a new RF noise formulation and
algorithm is presented which uses cyclostationary stochas-
tic process and linear-time-varying concepts to capture time
variation.

Most previous algorithms [1]–[3] that model time-varying
noise are limited to designs containing relatively few nonlinear
elements, characteristic of microwave circuits. These methods
are impractical for integrated RF circuits where nonlinear de-
vices are numerous. Recently, an algorithm [4] was proposed
that can analyze large circuits efficiently, but it is limited
to single-tone excitations only. The technique presented in
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this paper can analyze noise efficiently in large circuits with
multitone large-signal inputs.

Being periodic or quasi-periodic, the statistics of cyclo-
stationary processes can be expressed in Fourier series. The
present technique is formulated in terms of the coefficients
of the Fourier series, termedcyclostationary components.
The cyclostationary components, which the new algorithm
computes efficiently, are useful in system-level analysis as
equivalent noise models of RF circuit blocks. They also
provide an intuitive yet mathematically rigorous visualization
of RF noise propagation, which can contribute to design
insight.

The algorithm, an extension of the approach of Ström
and Signell [5], is based on a novel block-matrix relation
between the cyclostationary components of noise within a
circuit. The algorithm can be used to compute the total noise
at a specific output, correlations between noise at different
outputs, and also individual contributions from each noise
generator to a specific output. Moreover, bias-dependent white
and colored noise sources (e.g., thermal, shot, and flicker
noises) are treated naturally, even when they are correlated. All
computations are performed efficiently, i.e., the algorithm can
handle large circuits with many nonlinearities with reasonable
time and memory requirements. Efficiency is maintained under
multitone large-signal excitations. A two-tone+noise analysis
of an RF mixer circuit with more than 300 nodes is presented,
predicting noise folding due to the strong RF input tone.

In a separate application of the block-matrix relation, it is
shown that one-sided (or single-sideband) filtering of cyclo-
stationary noise removes cyclostationary components to leave
stationary noise. This nonintuitive result is confirmed using
the new algorithm and also through extensive Monte Carlo
simulations.

The remainder of the paper is organized as follows. In
Section II, the need for cyclostationary analysis is motivated
with a simple example, and the concept of harmonic power
spectral densities introduced. The cyclostationary formulation,
block-matrix relation, and algorithm for large circuits are then
presented in Section III. In Section IV, the effect of single-
sideband filtering of cyclostationary noise is investigated. In
Section V, the new algorithm is verified against Monte Carlo
simulations, and circuit examples presented.

II. CYCLOSTATIONARY NOISE AND HPSD’S

The circuit of Fig. 1 consists of a mixer, followed by a band-
pass filter, followed by another mixer. This is a simplification
of, e.g., the bias-dependent noise generation mechanism in
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Fig. 1. Mixer-filter-mixer circuit: na¨ıve analysis.

semiconductor devices [6]. Both mixers multiply their inputs
by a local oscillator (LO) of frequency , i.e., by .
The bandpass filter is centered aroundand has a bandwidth
of . The circuit itself is noiseless, but the input to
the first mixer is stationary band-limited noise with two-sided
bandwidth .

A näıve attempt to determine the output noise power would
consist of the following analysis, illustrated in Fig. 1. The first
mixer shifts the input noise spectrum by and scales it
by 1/4. The resulting spectrum is multiplied by the squared
magnitude of the filter’s transfer function. Since this spectrum
falls within the passband of the filter, it is not modified. Finally,
the second mixer shifts the spectrum again by and scales
it by 1/4, resulting in the spectrum with three components
shown in the figure. The total noise power at the output, i.e.,
the area under the spectrum, is 1/4 that at the input.

This common but simplistic analysis is inconsistent with
the following alternative argument. Note that the bandpass
filter, which does not modify the spectrum of its input, can
be ignored. The input then passes through only the two
successive mixers, resulting in the output noise voltage

. The output power is

The average output power consists of only the term,
since the cosine terms time-average to zero. Hence, the average
output power is 3/8 of the input power, 50% more than that
predicted by the previous naı̈ve analysis. This is, however, the
correct result.

The contradiction between the arguments above underscores
the need for a more rigorous analysis. Modeling circuit noises
as stochastic processes provides the required generality and
rigor. Since the local oscillator is periodic, the processes are
cyclostationary[5], [7], i.e., their statistics vary periodically
with time. The autocorrelation function of any cyclostationary
process (defined as , with
denoting expectation) can be expanded in a Fourier series in

(1)

are termedharmonic autocorrelation functions. The
periodically time-varying power of is its autocorrelation
function evaluated at , i.e., . The quantities

represent the harmonic components of the periodically
varying power. The average power is simply the value of the
dc or stationary component .1 The frequency-domain
representation of the harmonic autocorrelations are termed
harmonic power spectral densities(HPSD’s) of ,
defined as the Fourier transforms

(2)

Equations can be derived that relate the HPSD’s at the
inputs and outputs of various circuit blocks. By solving these
equations, any HPSD’s in the circuit can be determined.

Consider, for example, the circuit in Fig. 1. The input and
output HPSD’s of a perfect cosine mixer with unit amplitude
can be shown [8] to be related by

(3)

( and denoting the input and output, respectively). The
HPSD relation for a filter with transfer function is [8]

(4)

The HPSD’s of the circuit are illustrated in Fig. 2. Since
the input noise is stationary, its only nonzero HPSD is
the stationary component , assumed to be unity in the
frequency band , as shown. From (3) applied to
the first mixer,three nonzero HPSD’s ( and ,
shown in the figure) are obtained for . These are generated
by shifting the input PSD by and scaling by 1/4; in
contrast to the naı̈ve analysis, the stationary HPSD is not
the only spectrum used to describe the upconverted noise.
From (4), it is seen that the ideal bandpass filter propagates
the three HPSD’s of unchanged to . Through (3),
the second mixer generates five nonzero HPSD’s, of which
only the stationary component is shown in the figure.
This is obtained by scaling and shifting not only the stationary
HPSD of , but also the cyclostationary HPSD’s, which in
fact contribute an extra 1/4 to the lobe centered at zero. The
average output noise (the shaded area under ) equals
3/8 of the input noise.

This simple example illustrates how the HPSD approach
can be used to analyze RF noise rigorously yet conveniently.
HPSD’s are in fact a powerful tool: incorporating a nonideal
filter in Fig. 1 is simple using (4), and noise propagation
through circuits is easy to visualize; this can result in insights
that are otherwise difficult to obtain (e.g., see Section IV). The
formulation is useful not only for hand calculations and proofs,
but also for simulating large circuits, since the HPSD’s of
circuit unknowns obey a block-matrix relation. This equation,
together with an efficient algorithm to compute it for large
circuits, is described in Section III.

1 Stationaryprocesses are a special case of cyclostationary processes, where
the autocorrelation function (hence the power) is independent of the timet;
it follows thatRz (�) � 0 if i 6= 0.
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Fig. 2. HPSD’s of mixer-filter-mixer circuit.

III. EFFICIENT CYCLOSTATIONARY

NOISE COMPUTATION ALGORITHM

The equations of any nonlinear circuit can be expressed in
the form

(5)

where are the time-domain circuit variables or unknowns,
is a vector of large-signal excitations, and and

represent the “resistive” and “dynamic” elements of the circuit,
respectively. The last term represents “small” perturba-
tions to the system, e.g., from noise sources in devices. All
these quantities are vectors of dimension. has dimension

, representing the number of noise sources in the circuit.
is an incidence matrix of size which describes how
these noise sources are connected to the circuit.

Since the noise sources are small, their effects can be
analyzed by perturbing the noise-free solution of the circuit.
Let represent the large signal solution of (5) with set
to zero. Performing a time-varying linearization of (5) about

, the following linearized small-signal differential equation
is obtained:

(6)

in (6) now represents the small-signal deviations of the
perturbed solution of (5) from the noise-free solution.
and are the derivative matrices of and .

Equation (6) is a linear differential equation with time-
varying coefficients. It therefore describes a linear time-
varying (LTV) system with input and output . The
LTV system is characterized completely by its time-varying
impulse response (or kernel) , an matrix. The
dependence of on and will be examined in
Section III-B; the propagation of noise through LTV systems
is analyzed next.

A. Propagation of Noise Through a Linear
Time-Varying (LTV) System

The input–output relation of the LTV system described by
(6) is

(7)

The objective of this section is to obtain a relation between
the statistics of and if they are stochastic processes. As-
suming that they are nonstationary processes, their covariance
matrices are defined as [5], [7], [9]

(8)

where is or . A straightforward analysis establishes the
following relation between and :

(9)
Most nonlinear systems of interest involve periodic wave-

forms. If , the unperturbed solution of (5), is periodic with
period , then and of (6) are also -periodic. Hence

describes a linearperiodic time-varying (LPTV)
system, and is periodic with respect to displacements
of in both its arguments, i.e.,

(10)

The periodicity of implies that it can be expanded in a
Fourier series

(11)

in the above equation are functions of one variable and will
be referred to as theharmonic impulse responsesof the LPTV
system. Moreover, their Fourier transforms will be denoted by

and referred to as theharmonic transfer functionsof the
LPTV system, i.e.,

(12)

Next, two-dimensional power spectral densities are defined
by taking two-dimensional Fourier transforms of and
[5], [9]

(13)
By Fourier transforming (9) and using the definitions in

(12)–(13), an expression relating and is obtained

(14)

The assumption that both input and output noises arecyclo-
stationaryis now introduced. The cyclostationary assumption
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implies that and do not change if is added to both
arguments, i.e.,

(15)

Hence both can be expressed as Fourier series

(16)

and are functions of one variable and will be
referred to as theharmonic covariancesof the output and input
noise, respectively. Their (one-dimensional) Fourier trans-
forms will be denoted by and and referred to as
harmonic PSD’sor HPSD’s, i.e.,

(17)

The harmonic covariances and PSD’s have simple physical
interpretations. represents the time-varying power
of the cyclostationary noise; hence by (17), (the
harmonic covariances evaluated at zero) represent the Fourier
components of the periodically varying noise power. In partic-
ular, is the average value, or stationary component,
of the power. From the definition of the harmonic PSD’s, it
follows that the harmonic covariances evaluated at zero are
equal to the corresponding harmonic PSD’s integrated over
the entire frequency axis. Hence integrated equals
the stationary component of the output noise power. and

will be therefore be termedstationary PSD’s.
When the -periodic assumption of (15) and the definitions

of (16) and (17) are applied to (13), the following form is

obtained for the two-dimensional power spectral densities
and [5]:

(18)

Using (18), the relation between the two-dimensional power
spectral densities [(14)] is rewritten in terms of the (one-
dimensional) harmonic PSD’s and

(19)

Equation (19), relating the harmonic PSD’s of the input and
output noise, is an extension to cyclostationary noise inputs
of a similar equation by Ström and Signell [5]. An interesting
and useful observation about (19) is that the output harmonic

appears only in the last term . This suggests that
(19) can be written in block matrix form. It can be verified by
direct multiplication that (19) is equivalent to the following
block matrix equation:

(20)

where denotes the Hermitian of . and are
block matrices with an infinite number of blocks, shown at
the bottom of the page in (21)–(23) (denoting by
for conciseness).

Equation (20) expresses the relation between the output
and input harmonic PSD’s compactly using block matrices.
Note from (22) that the output harmonic PSD’s evaluated

...
...

...
...

...

...
...

...
...

...

(21)

...
...

...
...

...

...
...

...
...

...

(22)

...
...

...
...

...

...
...

...
...

...

(23)



328 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 3, MARCH 1998

at are given by the central block-row of . The
HPSD’s of the self- and cross-powers of theth output are
available in the th row of this block. Denote the transpose of
this row by ; this is obtained by transposing (20)

and postmultiplying by a unit block-vector followed by
the th unit vector

(24)

where
...

...

th block

...

...

...

st entry

th entry

th entry

(25)

where represents the identity matrix. Note that
is a vector. Hence the computation of

in (24) can be performed by matrix-vector products with the
block matrices and . Despite the fact that these
matrices are, in general, dense, products with them can be
performed efficiently, as discussed next in Sections III-B and
III-C.

B. Fast Application of and
Exploiting Harmonic Balance

To apply and efficiently to a vector, it is necessary to
represent in terms of and [refer to (6)]. Since

and are -periodic, they are expanded in Fourier
series

(26)

The Fourier coefficients and will be referred to as the
harmonics of and , respectively. It can be shown
[10] that can be expressed in terms of these harmonics as

(27)

where
...

...
...

...
...

...
...

...
...

...

(28)

...
...

...
...

...

...
...

...
...

...

(29)

...

...

(30)

...

...

(31)

is known as theconversion matrix[10] of the circuit;
is the Jacobian matrix of the harmonic balance equations

at the circuit’s steady state .
For numerical computation, the infinite block matrices in

(21)–(23) and (28)–(31) are truncated to a finite number of
blocks . is the largest positive harmonic
considered. For the purposes of the analysis, it is assumed
that no significant harmonic PSD of degree greater than
exists for the input noise or the output noise . Since
the energy content of theth harmonic is always a diminishing
function of in practical RF circuits, a value for can always
be found satisfying this assumption.

With this assumption, it can be shown that the Toeplitz
block structure in the above matrices can be approximated
by circulant block structure without loss of accuracy in the
matrix-vector product. For example, truncated to

blocks can be approximated by, given by

(32)

Note that the fourth, fifth, and sixth sub- and super-diagonals

of differ from those of truncated to seven blocks. Matrix-
vector products with and the truncated, however, produce
identical results up to the first harmonic location if the vector
being multiplied contains no significant components in the
second and third harmonic locations.

The utility of the circulant approximation is that it enables

and to be decomposed into products of sparse block-
diagonal matrices, permutations, and Fourier transform (DFT)
matrices [11]–[13]. This enables matrix-vector products with

and to be performed as a sequence of products with sparse
block-diagonal matrices ( operations), permutations
(no cost), and Fourier transforms ( operations);
hence the overall computation is . Further, since
only the sparse block-diagonal matrices need to be stored,
the memory requirement is . Note that is a
diagonal matrix witha priori known entries , hence its
application to a vector is in computational cost, with
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no memory required for its storage. The net effect of the
circulant approximation, therefore, is that can be applied
to a vector in computation and memory.

From (27), it follows that to obtain the required matrix-
vector product with , matrix-vector products with and

are necessary. Since is a sparse block-diagonal
matrix with identical blocks (the noise source incidence
matrix), it can be applied in time and memory.
Iterative linear solvers[14], [15] can obtain the matrix-vector
product with using only matrix-vector products with

. The use of iterative linear techniques, together with the
decomposition of allowing its application in
time, is the key to the fast harmonic balance algorithms of
Rösch [12], [13], [16] and Melvilleet al. [11]. With suitable
preconditioning included in the iterative solution, the number
of -vector products required to compute a -vector product
is small and approximately independent of the size of. Hence
the -vector product can be computed in approximately

time and memory, leading to the same
computation and memory requirements for the desired product
with .

From Section III-A, products are required with and
for cyclostationary noise computation. Application of

is carried out using the same decomposition and iterative
linear methods as for , but using transposes of the matrices
involved. The product with is carried out using the relation

.

C. Fast Application of

The principal sources of noise in circuits are thermal, shot,
and flicker noises from devices. When the linearized
small-signal circuit [(6)] is time-invariant (i.e., the circuit
is in dc steady state), these noise sources are stationary
stochastic processes with known power spectral densities.
Thermal and shot noises are white, i.e., their PSD values are
constant, independent of frequency; flicker noise PSD’s exhibit
a variation with frequency. The expressions for the power
spectral densities of these noise sources (see, e.g., Van der Ziel
[17]) typically involve some component of the dc solution;
for example, the PSD of the shot noise current across
a diode’s p-n junction is proportional to the dc current
through the junction, i.e.,

(33)

where is the (stationary) PSD of the shot noise and
is the electronic charge.
From the viewpoint of second-order statistics, the diode’s

shot noise is equivalent to the hypothetical process generated
by multiplying a white noise process of PSD value
by a constant factor of

(34)

For this reason, shot noise is often said, in a loose sense, to
be proportional to .

For circuits operating in dc steady state, expressions for
PSD’s of stationary noise generators are well established from
theoretical considerations and/or through measurement. For

circuits operating in time-varying steady state, unfortunately,
there are as yet no stochastic models for the nonstationary
noise generation process that are well established. Neverthe-
less, there is general consensus that for white processes like
shot and thermal noise, the time variation is generated by
modulating stationary white noise by the (deterministic) time-
varying large-signal steady state. For the diode shot noise
example above, (34) generalizes to

(35)

where is a time-varying waveform. Arguments sup-
porting this deterministic modulation model are based on the
short-term nature of the autocorrelations of thermal and shot
noise; see, e.g., [3], [18], and [19].

For noise with long-term correlations (notably flicker
noise), there is a general belief that the above deterministic-
modulation-of-stationary-noise model is inadequate (e.g.,
[20]). The physical processes responsible for generating long-
term noise correlations, it is argued, are themselves modified
by the large-signal waveforms which change on a relatively
faster scale. Unfortunately, neither theoretical analyses nor
experimental data are available at this time, to the authors’
knowledge, to aid in formulating a generation mechanism
for such noise. In the absence of an established alternative,
Demir [18] has used the modulated stationary noise model
for analyzing nonstationary flicker noise, and this approach
also appears common among designers of RF circuits. The
modulated stationary noise model is therefore reluctantly
adopted in this work for all cyclostationary noise generators.

Under this noise generation model, the noise input in
(6) can be expressed as

(36)

where is an -dimensional vector of stationary noise
sources and is an diagonal matrix of -periodic
deterministic modulations.

Equation (20) can be used to analyze the relation between
statistics of and by recognizing that (36) represents
an LTV system with input and output . The time-
varying impulse response of the LTV system is

(37)
where denote the Fourier coefficients of the periodic
modulation . The harmonic transfer functions are
independent of and simply equal to . Equation (20)
applied to this LTV system results in the following block-
matrix relation between the harmonic PSD’s of and :

(38)

where represents the block Toeplitz matrix of the
harmonic PSD’s of the stationary noise sources. Since the
sources are stationary, all their harmonic PSD’s are zero except
for the stationary PSD ; hence is block di-
agonal with diagonal entries
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. in (38)
is block Toeplitz with in the diagonals

...
...

...
...

...

...
...

...
...

...

(39)

Using (38), the product of with a vector can be
performed through matrix-vector products with the matri-
ces and . Products with the block-Toeplitz
matrices and can be performed in
time and memory, approximating by a block-
circulant matrix and applying the same decomposition as for

in Section III-B. Application of the block-diagonal matrix
is equivalent to matrix vector products with

. If the device noise generators are uncorrelated,
is diagonal; if correlations exist, they are usually

between small groups of noise generators, hence
is sparse. In either case, each product with is

in computation with no storage required. Hence matrix-
vector products with time and memory.
The overall matrix-vector product with can therefore be
performed in time and memory.

It should be noted that the noise modulation can be
absorbed into the circuit equations [(5)]. The noise inputs
to the circuit can then be assumed to be stationary without loss
of generality. This procedure, however, increases the size of
the harmonic balance system for obtaining the steady state.
To avoid this and to separate the implementation of the noise
algorithm from the harmonic balance steady state algorithm,
the formulation of this section is preferred.

IV. BANDPASS FILTERING OF CYCLOSTATIONARY NOISE

Ström and Signell [5] have shown that low-pass filtering
of cyclostationary noise results in stationary noise if the
bandwidth of the low-pass filter is less than half the frequency
of cyclostationarity . This result has been used by Hull
and Meyer [21] to simplify their analysis. In this section, the
effect of LTI bandpass filtering on cyclostationary noise is
considered. It is shown that if cyclostationary noise is passed
through a one-sided (i.e., single-sideband) bandpass filter of
bandwidth less than , the output noise is stationary.
This result is obtained using a simple visualization of the
propagation of harmonic PSD’s.

Denote the input noise to a bandpass filter by and
the output noise by . Assume that the input is
cyclostationary with period . Denote the transfer
function of the bandpass filter by . The relationship
between the harmonic PSD’s of and , derived from
(24) by using the fact that is block diagonal for an LTI
network, is

(40)

Fig. 3. H(!) overlaid withH(! + i!0) for i = 2; 1;�1 and�2.

Fig. 4. One-sidedH(!) overlaid withH(! + i!0) for i = 2 and�2.

Note that the th harmonic PSD of the output is determined
completely by the corresponding harmonic PSD of the input,
shaped by the product of the filter function with a shifted
version of itself . For the scalar input–output case
under consideration, the relation simplifies to

(41)

Since the magnitude of for a real filter is symmetric
about zero, has the same magnitude characteristic as

. By overlaying the magnitudes of and
for different values of (illustrated in Fig. 3), it can be
seen that the product is nonzero only for

and if the bandwidth of is less than .
For all other values of, there is no frequency at which
and are both nonzero, hence their product is
identically zero.

This immediately implies the following.
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Fig. 5. Mixer and bandpass filter.

Fig. 6. Bandpass filter characteristic.

Result 1: Bandpass filtering with bandwidth less than
eliminates all harmonic PSD’s except the stationary and sec-
ond harmonic PSD’s.

Moreover, if the bandpass filter is one-sided with respect
to , then the product is identically zero
also for and , as illustrated in Fig. 4. In this case, the
bandwidth of the filter can be greater than but should be
less than . The only nonzero PSD of the output is then the
stationary PSD. This implies Result 2.

Result 2: One-sided (or single-sideband) bandpass filtering
(with bandwidth less than ) of cyclostationary noise results
in stationary output noise.

V. RESULTS

The fast cyclostationary noise algorithm of Section III has
been prototyped in a Bell Labs internal simulator. In this
section, the algorithm and the single-sideband-filtering results
of Section IV are first verified against Monte Carlo noise
simulations with 60 000 sample waveforms, to an accuracy of
within 2%. Noise analysis results from two circuits are then
presented—a mixer excited by a single LO tone, and a large

Fig. 7. Syy (f) with f0 = 1:592 MHz (double-sideband filtering).

circuit, consisting of an I-channel buffer and mixer, driven by
two strong tones (a signal and an LO).

A. Mixer and Bandpass Filter

Motivated by the result of Section IV, a mixer and bandpass
filter circuit (Fig. 5) is analyzed for cyclostationary noise
propagation. The mixer is an ideal multiplier that modulates
the incoming stationary noise with a deterministic LO os-
cillator signal . The filter has a high- bandpass
characteristic (illustrated in Fig. 6) with a center frequency of
approximately 1.592 MHz and a bandwidth of about 50 kHz.
The stationary input noise is bandlimited with double-sided
bandwidth of about 200 kHz.

Two simulations are carried out, with set to 1.592 MHz
and 1.5 MHz, respectively. In the first situation, the bandpass
filter is centered at the LO frequency; in the second, the
filter characteristic is offset to the right of the LO frequency,
strongly attenuating the lower sideband with respect to
while passing the upper sideband. Harmonic PSD’s at all nodes
in the circuit were computed over frequencies from 1 MHz to
2 MHz.
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Fig. 8. Syy (f) with f0 = 1:592 MHz (double-sideband filtering).

Fig. 9. Syy (f) with f0 = 1:5 MHz (single-sideband filtering).

Using the results of Section III-A, it can be shown that only
the stationary and second harmonic PSD’s of the mixer output

are nonzero, related to the PSD of the stationary input by

The stationary and second harmonic PSD’s of the filter
output for MHz (double-sideband filtering)
are shown in Figs. 7 and 8. It can be seen that both PSD’s

Fig. 10. Syy (f) with f0 = 1:5 MHz (single-sideband filtering).

Fig. 11. Time-varying filtered noise power from Monte Carlo:
f0 = 1:592 MHz (double sideband).

have the same magnitude, hence there is a large cyclostationary
component in the noise. The same PSD’s for the MHz
case (single-sideband filtering) are shown in Figs. 9 and 10.
The second harmonic PSD can be seen to be about two orders
of magnitude smaller than the stationary PSD. Hence the
filtered noise is virtually stationary, as predicted in Section IV.
The second harmonic PSD is not identically zero because the
nonideal single-sideband filter does not perfectly eliminate the
lower sideband.
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Fig. 12. Time-varying filtered noise power from Monte Carlo:
f0 = 1:5 MHz (single sideband).

Fig. 13. Mixer cell.

The above results were also verified by simulations using
the Monte Carlo method. The nonlinear differential equations
of the circuit in Fig. 5 were solved numerically with 60 000
samples of the input noise [22]. The input noise PSD
was normalized to one to avoid corruption of the results
by numerical noise generated during differential equation
solution. The 60 000 samples of the mixed and filtered noise

were squared and averaged, on a per-timepoint basis, to
obtain the noise power at the output as a function of time.
The variation of noise power with time is shown in Figs. 11
and 12 for the double-sideband and single-sideband cases.
When analyzed in the time domain, the circuit requires some
time to reach large-signal steady state, hence the steady state
noise power is approached toward ms; in contrast,
harmonic balance calculates this steady state directly. The

cyclostationarity of the noise in the double-sideband case can
be seen from the variation of the power between zero and its
maximum value of about 0.0022. In the single-sideband case,
the power approaches a steady value of about 13010 ,
with a cyclostationary variation of about 10%. Accounting
for the normalization of the input PSD, these values are in
excellent agreement with the total integrated noise of
and (Figs. 9 and 10); Monte Carlo simulation results
are within 2% of the results produced by the new algorithm.

B. Mixer Analysis

The mixer in Fig. 13 was analyzed for cyclostationary noise
to investigate the effect of large-signal LO variations on the
output noise. The LO signal of amplitude 1.5 V is applied at
the base of the first transistor, as shown. The RF input signal
is applied through the current source, which is held at a dc
value of 2 mA (i.e., no RF signal) for the noise analysis.

Two simulations were performed: a stationary analysis with
no LO present to obtain the noise of the quiescent circuit, and
a cyclostationary analysis with the LO amplitude at 1.5 V. The
former simulation took a few seconds and the latter (with 25
large-signal harmonics) 40 seconds per frequency point. The
stationary PSD is shown in Fig. 14, and some nonstationary
HPSD’s in Fig. 15.

From Fig. 14, it can be seen that the presence of a large
LO signal reduces the average noise power at the output. This
is a known property of switching mixers. Fig. 15 shows the
first six harmonic PSD’s of the noise at the output when the
LO is 1.5 V.

From a knowledge of the HPSD’s, it is possible to create
system-level macromodels for functional blocks like the mixer.
All the noise of the circuit can then be concentrated in an
equivalent noise source with the same HPSD’s. While only
the stationary PSD determines the average noise power, the
nonstationary HPSD’s must be included because they can
contribute to the stationary component of some other block,
as discussed in Section II.

C. I-Channel Buffer and Mixer Circuit

The next example is a portion of the W2013 RFIC, con-
sisting of an I-channel buffer feeding a mixer. The circuit
consisted of about 360 nodes and was excited by two tones—a
local oscillator at 178 MHz driving the mixer and a strong RF
signal tone at 80 kHz feeding into the I-channel buffer. Two
noise analyzes were performed. The first analysis included
both LO and RF tones (sometimes called a three-tone noise
analysis). The circuit was also analyzed with only the LO tone
to determine if the RF signal affects the noise significantly.
The two-tone noise simulation, using a total of 525 large-
signal mix components, required 300 MB of memory and
for each frequency point, took 40 min on an SGI machine
(200-MHz R10000 CPU). The one-tone noise simulation,
using 45 harmonics, needed 70 MB of memory and took 2 min
per point.

The stationary PSD’s of the mixer output noise for the
two simulations are shown in Fig. 16. It can be seen that
the presence of the large RF signal increases the noise by
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Fig. 14. Mixer: stationary PSD at output.

Fig. 15. Mixer: harmonic PSD’s at output.



ROYCHOWDHURY et al.: CYCLOSTATIONARY NOISE ANALYSIS OF LARGE RF CIRCUITS WITH MULTITONE EXCITATIONS 335

Fig. 16. Stationary PSD’s for the I-Q mixer/buffer circuit.

about 1/3. This is due tonoise folding, the result of devices
being driven into nonlinear regions by the strong RF input
tone. This effect is difficult to predict with the technique of,
e.g., [4]. The peaks in the two waveforms, located at the LO
frequency, are due to up- and down-conversion of noise from
other frequencies.

VI. CONCLUSION

A frequency-domain formulation and algorithm has been
presented for computing noise in nonlinear circuits. The
method uses cyclostationary components and harmonic PSD’s
in its formulation to capture time-varying noise statistics. A
block-structured matrix equation for the output noise statistics
is the central result enabling fast computation. The algorithm
is efficient for large circuits with several large tones and can
generate information useful for noise macromodels.

The new formulation has been used to prove that one-sided
bandpass filtering of cyclostationary noise produces stationary
noise. This extends a previously known result for low-pass
filtering.

The algorithm been verified against Monte Carlo simu-
lations. Results from a mixer cell and a large I-channel
buffer and mixer RF integrated circuit have been presented,
predicting the fact that the presence of multiple tones can
significantly affect the noise performance of a circuit.
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