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ABSTRACT 

Historically, new geometries have developed by making changes to current axiom 

systems and then developing a model that illustrates the new geometry. The most classic 

example of this is the development of hyperbolic geometry, which came from negating 

Euclid's fifth postulate. This project inverts the process: we start with a geometric object 

and attempt to find a set of axioms that characterizes the geometry modeled by the object. 

This project investigates the infinite cylinder and develops an axiom system that captures 

the geometry on the surface of an infinite cylinder. This paper sets up a logical system 

which describes this geometry and which is used to prove theorems about the geometry. 

 

1.  INTRODUCTION 

Historically, new geometries have developed by making changes to current axiom 

systems and then developing a model that illustrates the new geometry. The most classic 

example of this is the development of hyperbolic geometry.  Before hyperbolic geometry 

developed, the mathematical community was attempting to prove that Euclid’s fifth 

postulate was actually derivable from the other four postulates; Saccheri made the most 

rigorous effort at this in 1733 [5].   

The founders of non-euclidean geometry took the view that the fifth postulate was 

actually an independent postulate and attempted to form a geometric system with 

Euclid’s first four postulates and a negation of the fifth postulate, G.S. Klugel was the 

first person to publish that he believed that the fifth postulate was independent of the 

other four. He published this in 1763 [6].  In 1766, Lambert started considering what 

geometries would result by replacing the fifth postulate with one of its alternatives. He 
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discovered another form of non-euclidean geometry called elliptic geometry, but he did 

not discover hyperbolic geometry [5].  Carl Friedrich Gauss and his associates worked on 

discovering hyperbolic geometry at the beginning of the 19th century.  It is believed from 

his correspondence that Gauss had the main ideas of hyperbolic geometry sometime near 

1813 but he never published them [6]. 

The discovery of hyperbolic geometry was first published independently by both 

Janos Bolyai (1832) and Nikolai Ivanovich Lobachevsky (1829) [5].  It was later proven 

by Bolyai and Lobachevsky that hyperbolic geometry was logically as consistent as real 

analysis [6].  This means that hyperbolic geometry is exactly as consistent as Euclidean 

geometry.   

The new geometry was named “hyperbolic” by Felix Klein in 1871 [6].  It now is 

modeled most often by the hyperbolic plane, an infinite surface with constant negative 

curvature.  Studies in non-euclidean geometry, especially hyperbolic geometry, have 

become very interesting recently because the field of astronomy has realized that 

Einstein’s space-time continuum is not necessarily Euclidean; the theory of relativity is 

inconsistent with Euclidean geometry.  [4]   

This project inverts the process historically used to discover new geometries; we 

start with a geometric object and attempt to find a set of axioms that characterizes the 

geometry modeled by the object.  In this case, we chose the infinite cylinder to serve as 

our model and interpreted "straight" lines to be geodesics (lines which would feel straight 

to a creature living on the surface) on the cylinder.  We describe the thirty-seven axioms 

that compose cylindrical geometry as well as the necessary definitions.  We model our 
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axioms off of Hilbert’s Axioms of Euclidean geometry [3].  We also discuss and prove 

several theorems within cylindrical geometry.   

Thus, in the following sections of this paper, we will give the thirty-three axioms 

for cylindrical geometry divided into six sections based on content; required definitions 

will be interspersed as necessary.  After some sections of axioms, we will give some 

theorems in cylindrical geometry that follow from those axioms and demonstrate their 

power.  The conclusion of this paper gives information about the overall geometry and 

poses open problems in cylindrical geometry as well as ideas for other geometries that 

could be formed. 

 

2. UNDEFINED TERMS AND MODELS 

All logical systems must begin with primitive undefined terms.  Primitive terms 

prevent a logical infinite regression caused by words within definitions being defined in 

terms of other new words. The primitive terms in cylindrical geometry are: "Point", 

"Line", "Between", "Lies on", "Separate", "Measure", and "Union".   

While these terms cannot be rigorously defined within the 

geometric system that we are developing, they do correspond to 

certain aspects of the infinite cylinder we are using as our model.  

Given an infinite cylinder in Euclidean 3-space, a "point" refers to a 

Euclidean point on the surface of the cylinder.  A "line" refers to a 

geodesic on the cylinder.  Intuitively, the geodesics on the cylinder can be found by 

drawing straight lines on a piece of transparency paper and then rolling that piece of 

paper into a cylinder.  Anyone who tries this will find that a horizontal line becomes a 

 

 
 

Figure 1 
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horizontal circle, a vertical line stays a vertical line, and that a diagonal line becomes a 

helix (See Figure 1).  These three kinds of lines are the straight lines on an infinite 

cylinder.  Because of shared properties between them, the author clusters vertical lines 

and helixes into one group, which is called open lines, and calls the group containing the 

horizontal circles closed lines. 

The following undefined words have a specific syntax.  "Between" is used in 

contexts such as, "Point B is between points A and C."  The properties of betweenness are 

given as axioms.  "Lies on" is used to say, "Point A lies on line m."  "Separate" is used in 

sentences such as, "Points A and B separate points C and D."  This is similar to how this 

term is used in elliptic geometry.  The "measure" of a line segment is its length and the 

"measure" of an angle is the degrees it encompasses.   

There is an alternative way of visualizing this geometry; the axioms and theorems 

proved in this paper will hold equally well on both models.  The second model we call 

the periodic model.  In this model, the Euclidean plane is broken into vertical “stripes” 

and the content of each stripe in terms of points and lines is identical.  On Figure 2, this 

separation is represented by the pink dotted lines.  Thus, a dot made in the middle panel 

of Figure 2 would also appear simultaneously in the same place on the left and right 

panels and every other 

panel on the Euclidean 

plane.  Thus, this model is 

called the periodic model 

because the pattern repeats 

with a fixed period.  Under 
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the periodic model, lines are the same as straight lines on the standard Euclidean plane. 

It is easy to see that the cylindrical and periodic models represent the same 

geometry.  An isomorphism can be created from the periodic model to the cylindrical 

model by considering only one panel from the periodic model and then gluing opposite 

horizontal edges of the panel together to form the cylinder.  Then, horizontal lines 

become equatorial circles, diagonal lines become helices, and vertical lines remain 

vertical lines (See Figure 2). 

 

3.  AXIOMS OF ORDER 

The first collection of axioms are the Axioms of Order.  These axioms concern 

where points lie along a line in relation to one another.  These concepts are needed to 

define the different types of lines that are found on the infinite cylinder. The first four 

axioms formalize our intuitions about what it means for a point to be between two others 

on a line.  The next six axioms give the properties of the separation relation.  The last 

axiom concerns triangles on the infinite cylinder.  The axioms will be enumerated with a 

letter and then a number.  The letter will represent which section the axiom is from, and 

the number will tell where in the section the axiom is located.   

If point B were between points A and C, then we would also want point B to be 

between points C and A.  Axiom A-1 formalizes this notion. 

 

For axiom A-2 to read nicely, we will now have to make our first definition: 

A-1:      If point B is between points A and C (we will denote this by A-B-C), then A, 

B, and C are distinct points on the same line and C-B-A. 
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Axiom A-2 allows us to establish the existence of points other than our given 

points on a line.  It intuitively allows us to assume that point B on a line has a point to its 

left and to its right.   

 

Axiom A-3 formalizes an intuitive idea about how betweenness carries from one 

line to another: 

 

As an example, imagine that A, B, and C all lie on a vertical line on our vertical cylinder 

such that B is between A and C and A, B, and C are equally spaced.  Now imagine a spiral 

(helix) that spirals around once from A to B and then one more time from B to C.  B is 

still between A and C on that helix.  Note that without the hypothesis that A, B, and C all 

lie on both lines, there is no reason to believe that if mAB  and nAB  with a point C lying 

on the line segment mAB  that the point C lies on the line segment nAB ; C may not lie 

on  line n.   

 Now that there is a notion of betweenness we can formally distinguish among, 

and thus define, open and closed lines as they were used in Section 2: 

Definition 1:  A line contains a point A if A lies on that that line.  If a line l contains a 

point A, we write A ∈ l.  If l does not contain A, we write A ∉ l.   

A-2:       Given any two distinct points B and D, there exist distinct points A, C, and E 

lying on each line that contains B and D such that A-B-D, B-C-D, and B-D-E. 

A-3       If m and n are two lines containing the same points A, B, and C, and A-B-C 

on line m, then A-B-C on line n. 
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The next axiom ensures that, given three collinear points, there is some 

betweenness relationship concerning them.  It also ensures that all the betweenness 

relationships are satisfied (a closed line) or that one element is exclusively between the 

other two (open line): 

 

Note that a line cannot be both open and closed because the definitions of open lines and 

closed lines are mutually exclusive. 

At this time it seems appropriate to make some other definitions about lines that 

will be useful throughout this project: 

 

Definition 2:  A line is closed if for all distinct points A, B, and C on the line, A-B-C, 

B-C-A and C-A-B. 

Definition 3:  A line is open if, for all points A, B and C on the line, there is some 

betweenness relationship between A, B and C, without loss of generality, say A-B-C, 

and A-B-C precludes all other orderings of A, B, and C except C-B-A. 

A-4   A line is either open or closed. 

Definition 4:  Two lines intersect if they contain a common point. 

Definition 5:  Two or more points are collinear if they all lie on the same line. 
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Separation: A and C separate B and D 
AA B C D A D 

B C 

 
Figure 3 

The next six axioms in the Axioms of Order concern the undefined term 

“separate”.    The idea for this term was taken 

from the standard axiomatization of elliptic 

geometry.  This order term can be used for any 

line in this geometry, but it is especially useful for closed lines because betweenness does 

not give any point-location information on closed lines.  It is necessary to have four 

points to talk about order of points on a closed line.  For the intuitive idea of separation, 

see Figure 3. 

The next few axioms will seem very similar to the previous axioms.  Axiom A-5 

is analogous to Axiom A-1: 

 

Axiom A-6 is the separation version of the second part of Axiom A-1: 

 

Axiom A-7 guarantees that separation divides point positions into more than one 

equivalence class.  The definition of open lines provides this role for betweenness.  This 

is not a property of betweenness and closed lines: 

 

Axiom A-8 is similar to axiom A-5: 

A-5    If points A and B separate points C and D (we denote this (A,B|C,D)), then 

points A, B, C, and D are collinear and distinct. 

A-6 If (A,B|C,D), then (C,D|A,B) and (B,A|C,D). 

A-7       If (A,B|C,D), then A and C do not separate B and D. 

A-8      If points A, B, C, and D are collinear and distinct, then (A,B|C,D), 

(A,C|B,D), or (A,D|B,C). 
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Axiom A-9 gives the possible relationships between four points with a specified 

separation relationship and a fifth point: 

 

Axiom A-10 gives the association connecting betweenness and separation.  This 

axiom is very important so that a problem phrased in one order relation can be solved 

using properties of the other order relation.  Any four points must have both a 

betweenness ordering and a separation equivalance class.  Intuitively, we know this 

relationship but it needs to be formalized in the geometry so that it can be used in proving 

theorems.  First, we need to define what a betweenness ordering on four points is: 

 

For Axiom A-11, we must first define line segments.  The intuitive definition of 

line segments given the machinery we have already set up would be to call a line segment 

from A to B the points A, B, and all points between A and B.   

A-9 For five distinct collinear points A,B,C,D, and E, if (A,B|D,E), then (A,B|C,D) 

or (A,B|C,E). 

Definition 6: A betweenness ordering on four points, A-B-C-D means A-B-C, B-C-

D, A-B-D, and A-C-D.    

A-10 If (A,C|B,D), then A-B-C-D, A-D-C-B, C-D-A-B, or C-B-A-D. 

Definition 7:  An open line segment, AB, is the points A, B and all points C on a 

specified open line that contains A and B such that A-C-B is true.  We call A and B 

endpoints of AB. 
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While this definition works for open lines, it fails to uniquely 

determine a line segment on a closed line (See Figure 4).  Thus, it 

actually takes three points to uniquely determine a line segment on a 

closed line and to do this we use the separation relation. 

 

Note that if A and B do not separate D and some point E on the same closed line, then 

DAB  and EAB contain the same points. Closed line segments generate equivalence 

classes based on their exclusion points; this will be formalized in theorem 1.  Since every 

segment in the same equivalence class contains exactly the same points, we represent the 

equivalence class by any element in it.  

Now we define a line segment in general. 

 

Next, we want to state the cylindrical axiom that is equivalent to the Euclidean 

axiom that guarantees that a triangle has a definite inside and outside.  The problem is 

that the question of "What is a triangle?" is not as easy to answer in cylindrical geometry.  

If a triangle is defined as the union of any three line segments with pairwise common 

endpoints (our intuitive notion of a triangle), this leads to many strange formations that 

 C???

B
C???

A 

Is AB the blue segment 
or the green segment?

 
Figure 4 

Definition 8:  For points A, B, and D on a closed line, a closed line segment, DAB , is 

the points A, B and all points C on the specified closed line such that (A,B|C,D) is true.  

We call A and B endpoints of DAB  and we call D the exclusion point for DAB .   

Definition 9:  In general, a line segment, AB , refers to an open line segment with 

endpoints A and B or a specific closed line segment with endpoints A and B. 
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would not obey the premise that a triangle must have an inside and an outside (See Figure 

5); this premise is similar to the Jordan Curve Theorem of differential geometry (which 

would not be true in general in cylindrical 

geometry).  Ensuring that a triangle has an inside 

and an outside enables us to state axiom A-11, 

that a line that passes through one side of the 

triangle must pass through another as well.  This 

guarantees that the lines that make up the edges of 

any triangle, and thus any line, must be solid and not dashed or broken. 

Thus, we need a more complicated concept for a triangle.  To solve this problem, 

we need to ensure that the triangle does not completely encircle the cylinder or overlap 

itself and that it contains an inside and outside.  To do this, we will determine that there 

must exist an open line that does not hit any segment whose union defines the triangle.  

Definition 10 formalizes this idea: 

 

 

Figure 5 
 

not a triangle triangle

Definition 10:  A triangle, denoted ΔABC is the union of line segments AB , AC , 

and BC  such that these segments do not intersect except at points A, 

B, or C and such that there exists an open line n that does not 

intersect AB , AC , or BC .  We call AB , AC , and BC  the sides of 

the triangle.  
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Axiom A-11 states that a triangle has an inside and an outside.  This is because if line n 

crosses one side of the triangle, it must cross one of the other two as well. 

These axioms appear to give every desirable property of the order relations.  

Axioms A-1 through A-4 are modeled after Hilbert’s axioms of betweenness for 

Euclidean geometry [3].  Axioms A-5 through A-9 are modeled after the separation 

axioms for elliptic geometry [1].   

 

4. THEOREMS CONCERNING THE AXIOMS OF ORDER 

The following theorems show that some other desirable and intuitive notions of 

ordering follow from these axioms.  The proofs also give a good example of the use of 

the interaction between separation and betweenness.  This interaction is new in 

cylindrical geometry because neither the Euclidean, nor hyperbolic, nor elliptic 

geometries have both open and closed lines. 

 

Theorem 1: Given a closed line, m, and two points, A and B, on m, then the line 

segments AB  on m can be partitioned into two sets based on their exclusion points 

and these partitions form two equivalence classes of line segments with every line 

segment in the same equivalence class containing the same points. 

A-11 Let ΔABC  be a triangle.  Then if line m contains a point on the segment AB , 

then m will also contain a point on the segment AC  or BC .  
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Proof:  Let A, B, and D be distinct points on the closed line m.  Then DAB  is a 

specific closed line segment on m.  Let C be a point on DAB .  Let E be a point such that 

(A,B|C,E).  Note that by axiom A-9, E does not lie on DAB  since A and B do not separate 

D and E.  Let F be any point on the line segment DAB .  Then, (A,B|D,F).  By axiom A-9, 

either (A,B|E,F) or (A,B|D,E).  Since we know that A and B do not separate D and E, this 

implies that (A,B|E,F).  Therefore, any point on DAB  is also on EAB by definition.  

Similarly, if G is any point on EAB , G will also be on DAB .   

Consider CAB .  Note that D and E are on CAB .  Since E could be any point on 

CAB , every point on CAB , if used as an exclusion point for endpoints A and B creates a 

line segment that contains the same points as DAB .  Note that by applying the reasoning 

in the paragraph above, any point not on CAB  which lies on line m can be used as an 

exclusion point with the endpoint A and B to create a line segment that contains the same 

points as CAB .  Therefore, it is possible to use the exclusion points of segments to 

classify the closed line segments on m into two partitions with every member of the 

partition containing exactly the same points.   

All that is left is to show that this partition creates an equivalence class.  Let 

DAB ◙ EAB  indicate that EAB  and DAB  are members of the same element of the 

partition.  Then DAB ◙ DAB  so ◙ is reflexive.  If DAB ◙ EAB , then EAB ◙ DAB  by the 

above paragraphs so ◙ is symmetric.  If DAB ◙ EAB  and EAB ◙ GAB , then A and B do  

not separate D and E and A and B do not separate E and G.  Then, by the contrapositive 

of axiom A-9, A and B do not separate D and G.  Therefore, DAB ◙ GAB .  Thus, ◙ is 

transitive so ◙ is an equivalence relation.  ٱ 
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Theorem 2: Given A-B-C and A-C-D on an open line m, A-B-C-D on m.  

Proof:  A-B-C and A-C-D on an open line m.  By Axiom A-1, A, B, C, and D are 

all distinct points on the line m with the exception that B may equal D.  For the sake of 

contradiction, assume that B equals D.  Then, by substitution of D into A-B-C, we get A-

D-C, which is a contradiction of A-C-D because the line m is open.  Thus, A, B, C, and D 

are all distinct points.  Thus, (A,B|C,D), (A,C|B,D), or (A,D|B,C) by axiom A-8.   

Case 1:  If (A,B|C,D), then A-C-B-D, A-D-B-C, B-D-A-C, or B-C-A-D by A-10.  

A-C-B-D implies A-C-B by definition 6, which is a contradiction of A-B-C by the 

definition of open. A-D-B-C implies A-D-C by definition 6, which is a contradiction of A-

C-D because the line m is open.  B-D-A-C implies B-A-C by definition 6, which is a 

contradiction of A-B-C because the line m is open.  B-C-A-D implies B-C-A by definition 

6, which is a contradiction of A-B-C by the definition of open.  Thus, A and B do not 

separate C and D. 

Case 2:  If (A,D|B,C), then A-B-D-C, A-C-D-B, D-C-A-B, or D-B-A-C.   A-B-D-C 

implies A-D-C by definition 6, which is a contradiction of A-C-D because the line m is 

open.  A-C-D-B implies A-C-B by definition 6, which is a contradiction of A-B-C by the 

definition of open.  D-C-A-B implies C-A-B by definition 6, which is a contradiction of 

A-B-C because the line m is open.  D-B-A-C implies B-A-C by definition 6, which is a 

contradiction of A-B-C by the definition of open.  Thus, A and D do not separate B and C. 

Case 3:  If (A,C|B,D), then A-B-C-D, A-D-C-B, C-D-A-B, or C-B-A-D.  A-D-C-B 

implies A-C-B by definition 6, which is a contradiction of A-B-C because the line m is 

open.  C-D-A-B implies C-A-B by definition 6, which is a contradiction of A-B-C by the 



 17

definition of open.  C-B-A-D implies C-A-D by definition 6, which is a contradiction of 

A-C-D because the line m is open.  Thus, A-B-C and A-C-D imply A-B-C-D because A-B-

C-D is the only option that does not lead to a contradiction.  ٱ 

 

Theorem 3: Let A,B,C, and D be points such that A-B-D and A-C-D on an open line 

m.  Then either A-B-C-D, A-C-B-D, or B=C.  Moreover, exactly one of the relations 

holds. 

Proof:  If B = C, then we are done so assume that B ≠ C.  Thus, A, B, C, and D are 

all distinct points on the line m.  Thus, (A,B|C,D), (A,C|B,D), or (A,D|B,C) by axiom A-8.   

Case 1:  If (A,B|C,D), then A-C-B-D, A-D-B-C, B-D-A-C, or B-C-A-D.  A-D-B-C 

implies A-D-C by definition 6, which is a contradiction of A-C-D by the definition of 

open.  B-D-A-C implies D-A-C by definition 6, which is a contradiction of A-C-D 

because the line m is open.  B-C-A-D implies C-A-D by definition 6, which is a 

contradiction of A-C-D because the line m is open. A-C-B-D implies A-B-D and A-C-D 

by definition 6, so A-C-B-D is possible. 

Case 2:  If (A,D|B,C), then A-B-D-C, A-C-D-B, D-C-A-B, or D-B-A-C.   A-B-D-C 

implies A-D-C by definition 6, which is a contradiction of A-C-D by the definition of 

open.  A-C-D-B implies A-D-B by definition 6, which is a contradiction of A-B-D because 

the line m is open.  D-C-A-B implies D-A-B by definition 6, which is a contradiction of A-

B-D because the line m is open.  D-B-A-C implies D-B-A by definition 6, which is a 

contradiction of A-B-D by the definition of open.   

Case 3:  If (A,C|B,D), then A-B-C-D, A-D-C-B, C-D-A-B, or C-B-A-D.  A-D-C-B 

implies A-D-C by definition 6, which is a contradiction of A-C-D by the definition of 
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open.  C-D-A-B implies C-D-A by definition 6, which is a contradiction of A-C-D 

because the line m is open.  C-B-A-D implies C-A-D by definition 6, which is a 

contradiction of A-C-D because the line m is open.  A-B-C-D implies A-B-D and A-C-D 

by definition 6, so A-B-C-D is possible.  Thus, we have eliminated all possibilities but A-

B-C-D or A-C-B-D in the case where B ≠ C. 

If B=C, A-B-C-D and A-C-B-D are not possible because the betweenness relation 

implies that all points are distinct.  Likewise, if one of the betweenness relations holds, B 

≠ C.   A-B-C-D implies A-B-C and A-C-B-D implies A-C-B.  Since A-B-C and A-C-B are 

mutually exclusive, so are A-B-C-D and A-C-B-D.  ٱ 

 

We would now like to generalize the notion of betweenness by defining a 

betweenness relation on n points. 

 

We would like n-betweenness to give us a linear ordering of these n points on a 

given line; that is, we would like to be able to talk about the order the points appear on 

the line.  Thus, we prove the following lemma and theorem. 

 

Lemma 4: Given 3 points on a line, there is a betweenness relationship among them. 

Proof:   There are three distinct points A, B, and C on line m.  By A-2, there exists 

points D,E, and F such that D-A-E-B-F.  Since all five of these points, A, B,D,E, and F, 

are distinct, C can equal at most one of these points.  Thus, there are at least five distinct 

Definition 11: A n-betweenness relationship, A1- A2-A3-…- An, among n points 

means that Ai- Aj-Ak whenever i < j < k.   
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points on line m including points A, B, and C.  Let X be a point distinct from A, B, and C.  

Then there exists a separation relationship between points A, B, C, and X by A-8.  But 

then there exists a 4-betweeness relationship between A, B, C, and X by A-10.  But then, 

there is a betweenness relationship among A, B, and C.  It is unique by the definition of 

an open line.  ٱ 

 

Theorem 5:  Given n points, A1 … An, on an open line, there exists a betweenness 

relationship among them which is unique up to reversal. 

Proof:  Assume that there is a unique (up to reversal) (n–1)-betweenness 

relationship on any (n-1) distinct points A1 … An-1.   Consider the n distinct points A1 … 

An-1 and Q.  Given any two distinct points in Ai, Aj  {A1 … An-1}, there is a distinct 

betweenness relationship on Ai, Aj, and Q.  Without loss of generality, assume that A1-A2-

 … - An-1 (if not, re-label).  If Ai-Aj-Q for all Ai and Aj in {A1 … An-1} with i < j, then A1-

A2- … - An-1-Q by definition.  If Ai-Aj-Q for all Ai and Aj in {A1 … An-1} with i > j, then Q- 

A1-A2- … - An-1 by definition.  Assume for the sake of contradiction, that Ai-Aj-Q for all Ai 

and Aj in {A1 … An-1} and there exists w,x,y,z such that Aw-Ax-Q, w < x and Az-Ay-Q, y < z.  

Then there is a separation relationship between Aw, Ax, Q, and Ay by axiom A-8.  Thus, 

(Aw,Ax|Q,Ay), (Aw,Q|Ax,Ay), or (Aw,Ay|Ax,Q).   

Case 1:  (Aw,Ax|Q,Ay).  Therefore, by axiom A-10, Aw-Q-Ax-Ay,  Ax-Ay-Aw-Q,  Aw-Ay 

-Q-Ax, or Ax-Q-Aw-Ay.  But Aw-Ax-Q, so this implies that none of these choices are possible.   

Case 2:  (Aw,Q|Ax,Ay).  Therefore, by axiom A-10, Aw-Ax-Q-Ay, Aw-Ay-Q-Ax, Q-Ay-

Aw-Ax, or Ax-Q-Aw-Ay.   But Aw-Ax-Q, so this implies Aw-Ax-Q-Ay.  But Az-Ay-Q so Aw-Ax-Az-
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Ay-Q.  Thus, Aw-Ax-Az-Ay. But Aw-Ax-Ay-Az. by the induction hypothesis which is a 

contradiction since all these points are being considered on an open line. 

Case 3:  (Aw,Ay|Ax,Q).  Therefore, by axiom A-10, Aw-Ax-Ay-Q, Aw-Ax-Ay-Q, or Ay-

Q-Aw-Ax, Ay-Ax-Aw-Q. But Aw-Ax-Q, so this implies Aw-Ax-Ay-Q or Aw-Ay-Ax-Q.  Assume 

Aw-Ax-Ay-Q.  But Az-Ay-Q so Aw-Ax-Az-Ay-Q, Aw-Az-Ax -Ay-Q, or Az-Aw-Ax-Ay-Q.  Each of 

these possibilities contradicts Aw-Ax-Ay-Az,.which is true by the induction hypothesis. Now 

consider Aw-Ay-Ax-Q.  But Az-Ay-Q.  Then, Aw-Az-Ay-Ax-Q or Az-Aw- Ay-Ax-Q.  Both of 

these contradict Aw-Ax-Ay-Az,.which is true by the induction hypothesis. 

Therefore, we are done or there exists two points Ai, Aj  {A1 … An-1} such that Ai 

-Q-Aj.. We want to show that there exist two points Ak, Ak+1 such that Ak-Q-Ak+1.  If we 

could do that, it would be straightforward to establish the n-betweenness relation on Q 

and A1 … An-1.    

Let Ai-Q-Aj. with i<j.  If j=i+1, we are done.  Assume by induction that an n-

betweenness relationship exists if j=i+p.  Let j=i+p+1.  Then, if Q is between Ai and 

Ai+1… Ai+p, we are done.  Thus, Ai+p-Q-Aj.  But Ai+p = Aj-1 so Aj-1 -Q-Aj.  ٱ 

 

Since, given two endpoints, we cannot assume that there is only one line segment 

between them, we need to make the following notational definition so that we know 

along which line our line segment lies. 

 

Definition 12:  Let mAB  represent the line segment with endpoints A and B such that 

the points contained in mAB  that are not A or B lie on line m between points A and B. 
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We would now like to argue that mAB  is unique if m is an open line.  If m is a 

closed line, we would like to show that mAB  has exactly two possibilities and that if 

mAB  has a given exclusion point, then mAB  is unique.     

 

Theorem 6: mAB  is unique if m is an open line. 

 Proof:  mAB  represents the open line segment with endpoints A and B such that 

the points contained in mAB  that are not A or B lie on line m between points A and B by 

definition.  Yet, an open line segment, AB, is the points A, B and all points C on a 

specified open line that contains A and B such that A-C-B is true.  We have already 

specified the line, and the points C such that A-C-B in line m is a well-defined set.  Since 

mAB  is the union of all such points, mAB  is unique. ٱ 

 

Theorem 7: If m is a closed line, mAB  has exactly two possibilities and if mAB  has a 

given exclusion point, D, then mDAB  is unique.     

 Proof:  mAB  represents the open line segment with endpoints A and B such that 

the points contained in mAB  that are not A or B lie on line m between points A and B by 

definition.  Every closed line segment has an exclusion point.  Let us call the exclusion 

point of our line segment D.  Then mDAB , is the points A, B and all points C on the 

specified closed line such that (A,B|C,D) is true by definition.  We have already specified 

the line, and the points C such that (A,B|C,D) in line m is a well-defined set.  Since mDAB  

is the union of all such points, mDAB  is unique.   
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Now, we show that if an exclusion point is not given, there are only too possible 

line segments.  Let D be a point on the closed line m.  Let C be a point on the segment 

mAB .  Let F be the exclusion point for mAB .  Then (A,B|C,F) by definition.  But then by 

A-9, (A,B|C,D) or (A,B|D,F).  If  (A,B|C,D), then D is also an exclusion point for mFAB  

and mDAB  is one possibility for the line segment mAB .  If (A,B|D,F), then D lies on 

mFAB .  But if D lies on line F, then if E is any point such that (A,B|E,D), then E lies on 

mDAB  and does not lie on mFAB .  Thus, mDAB  is the other option for segment mAB  ٱ .

 

Theorem 8:  Given A-B-C along an open line m, then mAC = mAB U mBC  where 

mAC  is the shortest line along m that has A and C as its endpoints and contains B, 

and B is the only point common to the segments mAB  and mBC . 

Proof: Consider mAC , , andm mAB BC  as sets of the points they contain.  Then, 

mAC = mAB U mBC  means that (a) any point in mAC  is in either mAB  or mBC  and that 

(b) any point in mAB  or mBC  is in mAC . 

(a) By definition of an open line segment, mAC  is the points A, C and all points D 

on m such that A-D-C is true.  Since B is on mAC , then A-B-C on m.  Let E be some other 

point on mAC .  By definition, A-E-C.  By Theorem 2, either A-B-E-C, A-E-B-C, or B=E.  

If A-B-E-C, then B-E-C so E is in mBC .  If A-E-B-C, then A-E-B so E is in mAB .  If B=E, 

E is in both mBC  and mAB .  Therefore, mAC is a subset of mAB U mBC . 

(b)  Let F be a point on mAB .  Then A-F-B by the definition of an open line 

segment.  Since A-F-B and A-B-C, then A-F-B-C by Theorem 1.  Thus, A-F-C by 
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definition 7.  Thus, F is on mAC  by the definition of an open line segment.  Let G be a 

point on mBC .  Then B-G-C by the definition of an open line segment.  Since A-B-C and 

B-G-C, then C-G-B and C-B-A by Axiom A-1.  Thus C-G-B-A by Theorem 1.  Thus, C-

G-A by definition 6.  Therefore, A-G-C by Axiom A-1.  Thus, G is on mAC  by the 

definition of an open line segment.  Therefore, mAB U mBC  is a subset of mAC .  Thus, 

mAC = mAB U mBC  ٱ  .

 

Theorem 9:  Given (A,C |B,D) along a closed line m, then DAC = DAB U DBC and B 

is the only point common to the segments DAB  and DBC . 

Proof:  Consider DAC , , andD DAB BC  as sets of the points they contain.  Then, 

DAC = DAB U DBC  means that (a) any point in DAC  is in either DAB  or DBC  and 

that (b) any point in DAB  or DBC is in DAC .  

(a) By definition, DAC  is the points A, C and all points X on the specified closed 

line such that (A,C|X,D) is true.  Let E be some point on DAC .  If B = E then E is 

contained in andD DAB BC  as an endpoint.  Assume E ≠ B.  Then A, B, C, D, and E are 

all distinct points on the same closed line.  Since E is on DAC , (A,C|E,D) by the 

definition of a closed line segment.  Since (A,C|E,D), (E,D|A,C) by axiom A-6.  By 

axiom A-9, since (E,D|A,C), either (E,D|B,A) or (E,D|B,C).  If (E,D|B,A), then (B,A|E,D) 

by axiom A-6.  Thus, also by axiom A-6, (A,B|E,D) which means that E is on DAB  by 

the definition of a closed line segment.  If (E,D|B,C), then (B,C |E,D) by axiom A-6.  
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Thus, E is on DBC  by the definition of a closed line segment.  Thus, DAC  is a subset of 

DAB U DBC . 

(b) Let F be a point on DAB .  If F equals A or B then F is on DAC  by the 

hypothesis, so assume that F ≠ A and F ≠ B.  Then, (A,B|F,D) by the definition of a 

closed line segment.  (A,B|F,D) = (F,D|A,B) by axiom A-6.  Since A, B, C, D, and F are 

all distinct points on a closed line segment, (F,D|A,B) implies (F,D|C,B)  or (F,D|C,A)  

by axiom A-9.  (A,C|B,D) implies (B,D|A,C) by axiom A-6.  (B,D|A,C) implies (B,D|F,A) 

or (B,D|F,C).  (B,D|F,A) = (F,A|B,D) = (A,F|B,D) by axiom A-6 which contradicts 

(A,B|F,D) by axiom A-7.  Thus, (B,D|F,C).  But (B,D|F,C) = (D,B|F,C) = (F,C|D,B) 

which contradicts (F,D|C,B) by axiom A-7.  Thus, (F,D|C,A).  (F,D|C,A) = (C,A|F,D) = 

(A,C|F,D) by axiom A-6.  Thus, F is on DAC  by the definition of a closed line segment.  

Thus, DAB  is a subset of DAC . 

Let G be a point on DBC .  If G equals B or C then G is on DAC  by the 

hypothesis, so assume that G ≠ B and G ≠ C.  Then, (B,C|G,D) by the definition of a 

closed line segment.  (B,C|G,D) = (G,D|B,C) by axiom A-6.  Since A, B, C, D, and F are 

all distinct points on a closed line segment, (G,D|B,C) implies (G,D|A,B)  or (G,D|A,C)  

by axiom A-9.  (A,C|B,D) implies (B,D|A,C) by axiom A-6.  (B,D|A,C) implies (B,D|G,A) 

or (B,D|G,C).  (B,D|G,C) = (G,C|B,D) = (C,G|B,D) by axiom A-6 which contradicts 

(C,B|G,D) by axiom A-7 and (C,B|G,D) = (B,C|G,D) by axiom A-6.  Thus, (B,D|G,A).  

But (B,D|G,A) = (D,B|G,A) = (G,A|D,B) which contradicts (G,D|A,B) by axiom A-7.  

Thus, (G,D|G,C).  (G,D|A,C) = (A,C|G,D) by axiom A-6.  Thus, G is on DAC  by the 

definition of a closed line segment.  Thus, DBC  is a subset of  DAC .  Therefore, 
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DAB U DBC  is a subset of DAC .  But DAC  is also a subset of DAB U DBC  so DAC  = 

DAB U DBC  ٱ  .

 

5. AXIOMS OF CONNECTION 

 The axioms of connection are the axioms concerning the interaction between 

points and lines.  While these axioms come first in Hilbert’s axioms of Euclidean 

geometry, it was necessary for us to first develop our Axioms of Order because the 

relations between points and open lines are not always the same as the relationship 

between points and closed lines. 

 It is clear in the first two axioms of this section that cylindrical geometry and the 

proofs and the foundation of cylindrical geometry will be significantly different from 

those in Euclidean geometry.  While the first axiom of Euclidean geometry given by both 

Euclid and Hilbert reads, “Between two points there is one and only one straight line,” 

the related axioms (yes, multiple axioms) in cylindrical geometry read as follows: 

  

B-1     Through any point A there is always one and only one closed line.  We denote it 

A .   

B-2     Through any two distinct points A and B, exactly one of the following occurs: 

(i) A and B lie on a countably infinite number of open lines. 

(ii) A and B lie on the same closed line and there is no open line 

that contains both A and B. 
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 In terms of the cylindrical model axiom B-1 states that for any given point on the 

cylinder, there is exactly one horizontal circle on which that point lies.  Axiom B-2 is less 

intuitive.  On the infinite cylinder, picture two points that are not at the same height (i.e. 

not on the same closed line) and lie on the same vertical line.  These two points are also 

connected by the helix that twists up and right and rotates 360, the helix that twists up 

and left 360, the helix that twists up and right 720, the helix that twists up and left 720, 

etc.  Continuing this pattern, we can see that this would identify a countable number of 

lines connecting our two points.  Yet, these are the only possible lines because only 

helices with regular spacing are allowed as straight lines in our model.  It is then easy to 

see that this concept generalizes to two points that are not on the same closed circle or on 

the same vertical line. 

 The following definition allows us to talk about the segment(s) with the shortest 

length between points A and B.   This concept is particularly useful since line segments 

are not unique.   Many proofs from Euclidean geometry that use Axiom 1 can only be 

phrased in terms of the shortest segment in cylindrical geometry. 

  

Now we are in a position to state axiom B-3. 

Definition 13:  The line segment(s) from A to B with minimal measure are called 

0AB . 
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One shortest  Two shortest       
segment   segments 

Figure 6 

Definition 14:  The shortest line(s) from A to B is the line(s) that contains all the 

points of the shortest segment. 

 

On the model of the cylinder, two points have two shortest segments between them if 

they are diametrically opposed.  That is, if the straight line that passes through them in 

three-space intersects the axis of the infinite cylinder.  See Figure 6. 

   

Now we can define the shortest line(s) between two points.   

 

 

B-3     Through any two points A and B there exist 1 (or 2) line segments m (and n) 

such that A and B are the endpoints of m (and n) and the length of m (and n) is less 

than the length of any other line segment with points A and B as its endpoints.  If there 

are two such lines m and n, then mAB  has the same measure as nAB .  We call )(nmAB  

the shortest segment from A to B and denote it 0AB . 
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Now we need to establish that our geometry is not the empty set.  In particular, we 

need to make sure that our geometry contains at least enough points and lines to create a 

full geometry such as the one on the model.  These axioms are necessary for the 

completeness of the axiom system. 

 

 

6. THEOREMS BASED ON THE AXIOMS OF CONNECTION 

The following theorems flesh out the existence theorems and establish basic facts 

of cylindrical geometry that we would certainly like to be true.  

 

Theorem 10: For every point there is at least one open line that does not contain it. 

Proof:  Let A be a point (B-6).  Let a be the closed line through A (B-1).  Let B be 

another point on a (B-4).  Let C be a point not on a (B-5).  There exists a line through B 

and C (B-2).  Call it x.  x is either open or closed.  x is not closed because x is clearly 

distinct from a and if x were closed, point B would lie on two distinct closed lines which 

violates axiom B-1.  Therefore, x is open.  If  x contained point A, then points A and B 

would both be contained in both an open line and a closed line which violates axiom B-2.  

 ٱ

 

B-4    On every line there exists at least two distinct points.   

B-5     Given any line, there exists a point that is not on that line. 

B-6     There exists a point. 
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Theorem 12: For every point there exists at least one open line and one closed line 

that contain it. 

Proof:  Let A be a point (B-6).  Let a be the closed line through A (B-1).  Let B be 

another point on a (B-4).  Let C be a point not on a (B-5).  There exists a line through A 

and C (B-2).  Call it m.  m ¹ a because C is on m and C is not on a.  m is an open line 

because there is only one closed line through the point by axiom B-1 and every line is 

either open or closed by axiom A-4.  ٱ 

 

Theorem 13:  There are an infinite number of points on an open line. 

 Proof:  Let m be an open line.  Suppose, for the sake of contradiction, that m 

contains only n points.  By axiom B-4, n  2.  If n=2, let the points be A and B.  Then, by 

axiom A-2 there exist distinct points C,D, and E such that C-A-D-B-E so there are more 

than 2 distinct points which is a contradiction.  Assume n > 2.  Let the points be named 

A1 … An such that A1- A2-A3-…- An by theorem 5.  By axiom A-4, there exists a point Q 

such that Q- A1- A2.  By the openness of the line m, Q cannot be any of n points given 

which is a contradiction.  Therefore, there are an infinite number of points on an open 

line.  ٱ 

 

Corollary 14:  There are an infinite number of closed lines. 

 Proof:  There exists an open line, m, with an infinite number of points by theorem 

13.  Each of those points lies on exactly one closed line.  For the sake of contradiction, 

assume that there are two points, A and B, on m that both lie on the same closed line, c.   
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That would contradict axiom B-2.  Therefore, all points on the open line lie on different 

closed lines.  Thus, there are an infinite number of closed lines.  ٱ  

 

Corollary 15:  All points on the open line lie on distinct closed lines. 

 

Theorem 16:  There are an infinite number of open lines. 

  Proof:  Let A be a point (B-6).  Let a be the closed line through A (B-1).  Let B be 

another point on a (B-1).  Let C be a point not on a (B-5).  Through A and C there exists a 

countably infinite number of open lines by axiom B-2.  ٱ 

 

Before our next existence theorem, we need a preliminary theorem telling that all 

closed lines are parallel.  Thus, we define parallel. 

 

Theorem 17:  All closed lines are parallel. 

Proof:  Let c and d be two distinct closed lines.  Assume c and d intersect at a point A.  

Then there are two closed lines through A.  This contradicts axiom B-1.  Thus, all closed 

lines are parallel.  ٱ 

 

Theorem 18: There exist three distinct lines that are not concurrent. 

Proof:  Let A be a point (B-6).  There exists an open line, o, and a closed line, c, 

through A by theorem 12.  There exists a second point C on o by axiom B-4.  C is not on 

Definition 15: Two lines m and n are parallel if there exists no point, A, that is 

on both line m and line n. 
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c by corollary 15.  There exists a closed line, c2, through C by axiom B-1.  c2 does not 

intersect c by theorem 17.  ٱ 

 

Theorem 19:  Let A and B be distinct points and let m be an open line.  

Then m mAB BA . 

Proof:  Suppose that mAB  is an open line segment.  Then, by definition, mAB  is 

the points A, B and all points C on the open line m such that A-C-B is true.  Let D be any 

of the points C so A-D-B.  By axiom A-1, B-D-A on the same line m.  Thus, D is on 

segment mBA  by definition of open line segment.  But D could be any of the points C, 

and the endpoints of mAB  and mBA  are the same, so m mAB BA .  By a similar argument, 

m mBA AB .  Thus, m mAB BA  if mAB is an open line segment.  ٱ 

 

Theorem 20:  Let A and B be distinct points and let m be a closed line.  

Then m D mDAB BA . 

Proof:  Suppose that mDAB  is a closed line segment.  (Definition of line segment).  

Then, by definition, there exists a point D collinear to points A and B on a specific closed 

line m such that mDAB  is the points A, B and all points C on the specified closed line such 

that (A,B|C,D) is true.  Let E be any of the points C so (A,B|E,D).  By axiom A-6, 

(B,A|E,D) on the same line.  Thus, E is on segment mDBA  by definition of closed line 

segment.  But E could be any of the points C, and the endpoints of mDAB  and mDBA  are 

the same, so mD mDAB BA .  By a similar argument, mD mDBA AB .  Thus, 

mD mDAB BA  if mDAB is a closed line segment.  ٱ 
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Theorem 21:  If AB CD , then CD AB . 

Proof:  Let nmAB CD .  CD CD  by axiom B-2.  Then CD AB  by axiom B-

 ٱ  .2

 

7.  METRIC AXIOMS FOR ANGLES AND SEGMENTS 

 The metric axioms of a geometry establish the structure necessary to make 

measurements in a geometry.  These metric axioms will establish a measuring system for 

the length of segments and for the width of an angle.  The first metric axiom establishes 

the concept of the measure of a line segment as a positive real number. 

 

 C-2 states a property of the measure of a segment that we would certainly want to 

be true.  Before we can state axiom C-2, we need to specify what we mean by a “certain 

direction” on a line.  Thus, we make the following definitions.  To do this, we start with 

defining a ray. 

 

 We proceed from here to make a series of definitions which culminates with the 

definition of a direction on a line.  Because a ray on a closed line would be all of the 

C-1     The measure of a segment AB is denoted m(AB).  Given a segment AB , 

m(AB) assigns one and only one real number to AB . 

Definition 16:  A ray, AB , is the points A, B, and all points C on a line such that A-

C-B or A-B-C is true.  
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closed line, it is necessary to be able to restrict a ray to a local area.  Thus, we define a 

local ray. 

 

 

 

 

 

We are now ready for axiom C-2. 

 

C-2 is necessary to ensure the continuity of the measures of segments.  That is, axiom E-2 

ensures that if we fix one point, A, and vary a second point, B, then as the point B slides 

back and forth, the measure of AB varies in a continuous way.   

 Since the length of a closed line is finite, it is necessary to establish a fixed value 

for the length of a closed line. 

C-2     Let m be an open line.  Let A be a point on m.  For every real number α, there 

exists one and only one point B in a given direction on m so that m(AB) = α. 

Definition 17:  A local ray (or a ray locally), AB , along line m, is the union of 

the line segment AB  and all points D on the segment mEC , 

where E and C are both   away from B along m and E ≠ C for 

any real number  .    

Definition 18:  Let the shortest ray from A to B be the ray AB


 along the line that 

contains 0AB .  Denote this 0AB


. 

Definition 19:  To specify a line, m, in a certain direction from point A means to 

choose between local rays AB  and AC  where B-A-C on m. 
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Be careful to note that 180 is the measure of half of the length of a closed line.  This is 

because the measure of the shortest segment between A and B is between 0 and 180.  

Thus, the total length of a closed line is 360.  Therefore, the length of a closed line 

segment AB is the same as the degree measure of the angle AOB in Euclidean 3-space 

where O is the point on the axis of the infinite cylinder which lies in the same plane as 

the closed circle. 

Axiom C-4 is the equivalent of axiom C-2 for closed lines. 

 

C-5 provides the additivity of the measure of segments. 

 

We now define inequality relations on segments. 

 

C-3     Let m be a closed line and let points A and B lie on m.   Then, 0 < m(AB0) ≤ 180. 
 

C-4     Let m be any closed line.  Let A be a point on m.  For every real number α 

between 0 and 180, there exists one and only one point B in a given direction 

on m so that m(AB0) = α. 

C-5     If A-B-C on line m, then m(ACm) = m(ABm) + m(BCm). 

Definition 20:  mCDAB   ( mAB CDless than ) means that there exists a point E on 

segment mCD  such that m(AB)=m(CEm).    

Definition 21:  ABCD m   ( mCD ABgreater than ) means mCDAB  . 
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We now give similar axioms for how measure acts on angles.  First we have to define 

what we mean by an angle.   

 

Definition 22:  mAB CD ( mAB CDless than or equal to ) means mCDAB   or 

m(AB)=m(CDm).   

Definition 23:  mCD AB  ( mCD ABgreater than or equal to ) means mCDAB   or 

m(AB)=m(CDm).   

Definition 24:  Let AB  and AC be two rays such that A is the only point they have in 

common.  Then AB  AC  is an angle.  We denote this angle 

BAC  or CAB .  The rays AB  and AC  are called the sides of the 

angle and the point A is called the vertex of the angle.   

Definition 25:  The interior of the angle is the set of points that lie on a ray 0AZ


 

such that X-Z-Y on 0XY  where X is   away from A along AB


 and Y 

is   away from A along AC


 (See Figure 7).   and   must be 

chosen small enough that the interior determined by  and   is equal 

to the interior determined by 1 and 1  where  1 <  and 1 <  .  

The exterior of the angle is the set of points that are not in the interior 

of the angle or the sides of the angle.   
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This definition of the interior of an angle is 

different from the standard definition in Euclidean 

geometry.  The standard Euclidean definition states, “If 

X is a point on ray AB  and Y is a point on ray AC , and 

Z is a point on the line segment XY , then Z is in the 

interior of angle BAC .”  This definition is not adequate in cylindrical geometry for 

many reasons.  A line segment XY  in cylindrical geometry is not unique.  The obvious 

solution to this problem would be only to consider the shortest segment between X and Y.  

This is not adequate, though, because at some point the interior of the angle BAC  will 

become wider than the longest possible shortest line segment 

(see Figure 8).  Thus, some sections that we would like to 

consider to be the interior of the angle would no longer be in 

the interior of the angle.  For example, in Figure 8, we would 

like the entire cylinder above point D to be in the interior of 

the angle, but it would not be under the shortest-segment 

definition of the interior of an angle.   

The definition of interior of an angle that is used in this paper ensures that the 

points X and Y are chosen close enough to the vertex of angle BAC that the surface that 

angle XAY will be considered on will be locally flat.  This local definition is then 

extended to the entire cylinder by considering the rays 0AZ


.  Visually, as Z moves along 

segment 0XY , these rays will scan the intended interior of our angle like a laser beam. 

 We can now state our first axiom concerning the measure of angles. 
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Axiom C-7 sets the scale for angle measurements.  It causes the measure of an 

angle to be given in degrees. 

 

Axiom C-8 is similar to axiom C-2 in regard to angles instead of segments.  

Therefore we need a similar concept to the direction on a line that is applicable for angles.  

Therefore, we need to define a given side of a line or ray.  That is, our first axiom 

concerning congruent angles will be concerned with the halves of the surface that are 

created by a line.  To do this, it is necessary to be able to find a point X specific given line 

such that X is the closest possible point to a given point A.  To do this, it is of course 

necessary to define perpendicular lines on the infinite cylinder. Thus, we make the 

following definitions.   

 

Note that choosing a direction on a line means choosing between two local,  

opposite rays. 

C-6     The measure of an angle ABC is denoted ACB.  Given an angle ABC,  

assigns one and only one real number to ABC. 

C-7     For every angle ABC,   is between 0 and 180. 

Definition 26:  Two rays are opposite rays if they lie on the same line and locally 

have only their vertex in common for some choice of  . 

Definition 27:  Two angles are supplementary angles if they have a common vertex, 

have exactly one common side, and their non-common sides are 

opposite rays. 
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 Therefore, if we are given an angle ABC that we know is a right angle, than we 

know that if we consider the line along the ray

BA  and any point D on that line such that 

D-B-A, then angle DBC has the same measure as ABC. 

 

 

 

 

Thus, given a line m and a point A, the closest point to A that lies on line m is the “nearest 

point” of m and A.   

 

Thus, the partner of an open line will be the line that has the same slope and is 

evenly spaced from the first open line.  (See Figure 9: The green line and blue line are 

partner lines).  Now, we are ready to define whether two points are on the same side of an 

open line.  Notice that an open line and its partner divide the surface of the cylinder into 

Definition 28:  An angle is called a right angle if it is the member of a pair of 

supplementary angles that have the same measure. 

Definition 29:  Two rays are perpendicular rays if their union is a right angle.

Definition 30:  Two lines, m and n, are perpendicular lines if they contain a pair of 

perpendicular rays.  We denote this n  m. 

Definition 31:  A nearest point on a line m to a point A (not necessarily on line m) is 

a point, X, on line m such that line a through A perpendicular to m 

contains X and, for any point Y on both m and a, AX AY .  

Definition 32:  The partner of an open line, m, is the set of all points, A, such that A 

has exactly two nearest points with regard to line m. 



 39

two sets.  In Figure 9, these two sets would be the strip 

of cylinder which had the blue line on top and the green 

line on the bottom and the strip of cylinder with the 

green line on the top and the blue line on the bottom.  

Intuitively, two points are on the same side of an open 

line if they are in the same set of the partition created by 

an open line and its partner.  Technically, the definition 

looks a little different. 

 

It is easy to see that this definition, while easier to word in a technically precise way, is 

equivalent to the partition definition given in the paragraph above. 

We now consider what it means for two points to be on the same side of a closed 

line.  Intuitively, it is easy to see that a closed line divides the cylinder into two subsets, 

the top and the bottom.  We would like two points to be on the same side of a closed line 

if they are both in the same subset.  Thus, we make the following definition. 

 

 

 

Definition 33:  Let m be an open line and let A and B be any points that do not lie on 

m.  If A=B or if the 0AB  contains no point lying on m or the partner 

of m, we say that A and B lie on the same side of m.  If BA   and 

if 0AB  contains a point on m or the partner of m, we say that A and 

B are on opposite sides of m. 

 

 

 
Figure 9 

x 

x 
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Once again, it is easy to see that this technical definition gives us exactly what we want. 

We are now ready to state axiom C-8. 

 

Axiom C-9 ensures the additivity of the measure of angles. 

 

Axiom C-10 establishes that the measure of the angle formed by three points on 

the same line is 180. 

 

Definition 34:  Let m be a closed line and let A and B be any points that do not lie on 

m.  If A=B or if the 0AB contains no points lying on m, we say that A 

and B lie on the same side of m.  If A ≠ B and if 0AB  contains a point 

on m, we say that A and B are on opposite sides of m. 

C-8     (Angle Construction Axiom)  Let mAB


 be a ray.  For every real number α 

between 0 and 180, there is exactly one ray 0AC


 where C is on a given side of 

m such that CAB = α. 

C-9     (Angle Addition Postulate)  If D is in the interior of ABC and we consider 

ray 0BD


, then ABC = ABD + DBC. 

C-10     ABC and ABD are supplementary angles if and only if ABC + ABD = 

180. 
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Definition 36:  ABC DEF  ( ABC DEF greater than ) means 

DEF ABC  . 

Definition 35:  ABC DEF  ( ABC DEF less than ) means that there exists a 

ray EG


 between ED


 and EF


so that ABC = DEG. 

Definition 37:  ABC DEF  ( ABC DEF less than or equal to ) means 

ABC DEF  or ABC = DEF. 

Definition 38:   ABC DEF  ( ABC DEF greater than or equal to ) means 

ABC DEF  or ABC = DEF. 

We now define inequality relations on angles. 

 

 

8.  AXIOM OF CONGRUENCE 

We define congruence for segments and angles. 

 

Axiom D-1 is the Side-Angle-Side (SAS) property of congruent triangles.  To 

prepare for this, we define congruent triangles. 

Definition 39:  Two segments AB  and BA   are congruent ( AB  BA  ) if 

m(AB)=m(AB). 

Definition 40:  Two angles ABC and DEF are congruent if ABC = DEF. 
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9.  THEOREMS OF CONGRUENCE 

The first theorem determines that the congruence relation on line segments is an 

equivalence relation. 

 

Theorem 22:  If a segment BA   and a segment BA   are congruent to the same 

segment AB  then BA   is congruent to the segment BA  .  Every segment is 

congruent to itself.  Segment AB  is congruent to segment BA . 

Proof:  If BA   is congruent to AB , then m(AB)=m(AB).  Similarly, since BA   is 

congruent to AB , then m(AB)=m(AB).  Thus, m(AB)=m(AB).  Therefore, by 

definition, BA   BA  .  For all segments, AB , m(AB)= m(AB).  Thus, AB  AB .  Also, 

by theorems 19 and 20, AB  = BA  setwise.  Thus, AB  and BA  are two different names 

for the same set of points.  Therefore, by axiom C-1, m(AB)=m(BA).  Thus, AB BA .  

Thus,  is an equivalence relation. ٱ 

Definition 33:  Two triangles are congruent triangles if there exists a one-to-one 

correspondence between their vertices so that the corresponding 

sides and corresponding angles are congruent. 

D-1 If, in the two triangles ABC and CBA  , AB  is congruent to BA  , 

AC  is congruent to CA  , and BAC  is congruent to   B A C , then 

CBA   is congruent to the angle, ABC  and ACB  is congruent to 

BCA  , and BC  is congruent to  B C .   
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The next theorem solidifies the additive property of line segments. 

Theorem 23:  On the line m, let AB  and BC  be two line segments which, except for 

B, have no point in common.  Furthermore, on the same or another line m , let BA   

and CB   be two segments which except for B  have no point in common.  In that 

case, if AB  is congruent to BA   and BC  is congruent to CB  , then AC  is 

congruent to CA  . 

Proof:  By the definition of congruence, m(AB)= m(AB) and m(BC)=m(BC).  By 

Theorem 2, A-B-C on line m and A-B-C on line m.  Therefore, by axiom C-5, 

m(AC)=m(AB)+m(BC)= m(AB)+m(BC)= m(AC).  Thus, by definition, AC  CA  .  

 ٱ

 

The next theorem determines that the congruence relation on angles is an equivalence 

relation.                          

Theorem 24:    If an angle ABC and an angle DEF are congruent to the same 

segment GHI then ABC is congruent to DEF.  Every angle is congruent to itself.  

Angle ABC is congruent to angle CBA. 

Proof:  If ABC is congruent to GHI, then ABC = GHI.  Similarly, since DEF is 

congruent to GHI, then DEF= GHI.  Thus, ABC = DEF.  Therefore, by definition, 

ABC   DEF.  For all angles, ABC, ABC = ABC.  Thus, ABC   ABC.  By 
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definition, ABC  = AB  AC  = AC  AB  = CBA.  Therefore, ABC = CBA.  Thus, 

 is an equivalence relation. ٱ 

 

Theorem 25:  All right angles have a measure of 90 and thus are congruent. 

 Proof:  Let ABC be a right angle.  Therefore, ABC is a member of a pair of 

supplementary angles whose measures are equal.  Without loss of generality, let ABD 

be the other angle in that pair.  Since ABC and ABD are supplementary, ABC + 

ABD = 180.  Since ABC and ABD have the same measure, ABC = ABD.  

Therefore, 2   ABC = 180 so ABC = 90.  ٱ 

 

10.  AXIOM OF PARALLELS 

 The axiom of parallels for a geometry is dependent on the Gaussian curvature of 

the surface of the model the geometry describes.  An infinite cylinder has the same 

Gaussian curvature as the Euclidean plane.  Recall that a second model for cylindrical 

geometry is a periodic Euclidean plane.  Therefore, the axiom of parallels for cylindrical 

geometry is the same as the parallel axiom for Euclidean geometry.    

 

 

 

E-1     Given a line m and a point A that is not on line m, then there is one and only 

one line that can be drawn through point A that is parallel to line m. 
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11.  THEOREMS CONCERNING THE AXIOM OF PARALLELS 

 The axiom of parallels enables us to prove the transitivity of parallelism.   

 

Theorem 26:  If line a is parallel to line b and line b is parallel to line c, then line a is 

parallel to line c or line a is line c.   

 Proof:  Assume line a is distinct from line c; if not, we are done.  Assume line a is 

not parallel to line c.  Then line a and line c intersect in a point.  Call it Q.  Consider the 

line b and the point Q.  There are two lines, namely a and c, through point Q that do not 

intersect with line B.  This contradicts the parallel axiom.  Thus, a and c are parallel.  ٱ 

 

Theorem 27:  Given an open line and a closed line, they intersect exactly once. 

 Proof:  Let o be an open line and let c be a closed line.  Assume o and c intersect 

more than once.  Say they intersect at points A and B.  Then A and B both lie on the same 

closed line and A and B both lie on the same open line.  This violates axiom B-2.  Thus, o 

and c intersect at most at one point.  Assume that o and c do not intersect.  Therefore, 

they are parallel.  There exists a point, A, on o by axiom B-4.  There exists a closed line, 

a, through A by axiom B-1.   a is parallel to c by theorem 17.  But c is parallel to o so a is 

parallel to o by theorem 25.  But this is a contradiction so o and c intersect exactly once. ٱ 

 

12.  AXIOMS OF CONTINUITY 

The first axiom of continuity is Dedekind’s Axiom.  
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Note that the hypothesis of Dedekind’s Axiom will never hold for points on a 

closed line; every point is between every other.  Therefore, it is necessary to have another 

axiom to ensure the continuity of closed lines. 

   

The third axiom of continuity is unique to Cylindrical Geometry.   

 

Axiom F-2 ensures that the infinite cylinder which is the model for cylindrical 

geometry does not have infinite diameter.  This is because, given the diameter of the 

infinite cylinder, it is pretty straightforward to calculate, in Euclidean 3-space, the value 

F-1    Axiom of Continuity for Open Lines (Dedekind’s Axiom): Suppose that the set 

of points of a line m is a disjoint union of two non-empty subsets S and T such 

that no point of either subset is between two points of the other.  Let Ss  and 

Tt be points.  Then there is a unique point O on m such that S is equal to a 

ray Os - O, and T is equal to Ot - O. 

F-3    Given a line m, there exists a number  m such that, given points A and B on m, 

if the length of the segment mAB   is less than  m , then m is the shortest line 

from A to B.

F-2 Axiom of Continuity for Closed Lines:  Suppose that the set of points of a closed 

line m is a disjoint union of two non-empty subsets S and T such that no two 

points of one subset are separated by two points of the other.  Then there are 

unique points O and P on m such that for all sS and for all tT, (O,P|s,t). 
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of  .  If we consider the periodic model of cylindrical geometry, an infinite diameter in 

the cylindrical model would translate to a period of infinite width in the periodic model.  

Thus, axiom F-2 ensures that the Euclidean plane cannot be a model for cylindrical 

geometry. 

 The final axiom of continuity will ensure that the only open lines allowed in 

cylindrical geometry fit with our conception of open lines by ensuring that all open lines 

have a constant slope.  First, though, we need to define slope and prove that it is well 

defined.   

 

 

The existence of a unique point C is guaranteed by theorem 26.  Thus, the only thing that 

it is necessary to show to show that rise is well defined is to make sure that there is 

exactly one vertical line through B.  That result will be a corollary of the next theorem. 

 

Theorem 28:  Given a point A, and a line m through A, there is exactly one line 

perpendicular to m that contains A. 

 Proof:  Let A be a point.  Let m be the line through A (B-1). Let B be a second 

point on m (B-4).  Consider the ray 


mAB  By axiom C-8, it is possible to find exactly one 

Definition 43:  If m is a non-vertical open line, and A and B are two distinct points 

on m with m( mAB ) <  m , then the rise from A to B can be found by drawing the 

closed line, c, through A and the vertical line, v, through B.  The rise from A to B is 

measure along v from B to C, where C is the intersection point of v and c. 

Definition 42:  Lines perpendicular to closed lines are called vertical lines. 
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ray on each side of m such that the measure of the angle formed by 


mAB  and that ray is 

90.  Let 

AD  and


AE  be these two rays.  Then DAB + BAE = 90 + 90 = 180.  

Therefore, DAB and BAE are supplementary angles.  Therefore, by definition, rays 


AD  and 


AE  lie on the same line.  Say line n.  Since 


AD  and 


AE  are also congruent, 

they are right angles and so lines n and m are perpendicular by definition.  Therefore, 

there exists a line through A perpendicular to m.  Assume there exists two such lines.  

Call them n and p.  Then p would contain two rays, say 

AF and 


AG  with F on the same 

side of m as D and G on the same side of m as E, that are perpendicular to 


mAB .  

Therefore, FAB  and GAB  are right angles.  Therefore, FAB = GAB = 90 by 

theorem 25.  But by axiom C-8, 

AD  in the only ray on its side of m such that the angle 

formed by the ray and 


mAB  has the measure of 90.  Thus, 

AD = 


AF .  Similarly, 


 
AE AG .  Thus, n = p.  Thus, there is only one line perpendicular to m through A.  ٱ 

 

 

 

Definition 44:  If m is a non-vertical open line, and A and B are two distinct points 

on m with m( mAB ) <  m , then the run from A to B can be found by drawing the 

closed line, c, through A and the vertical line, v, through B.  The run from A to B is 

m( 0cAC ), the measure of the shortest line from A to C along c, where C is the 

intersection point of v and c. 
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F-4    If m is a line, then there will exists a constant, slp(m), such that for any two 

distinct points A and B on m (If m is a non-vertical open line, then for A and 

B with m( mAB ) <  m ), the slope from A to B will equal slp(m). 

 

We can now state the final axiom of cylindrical geometry. 

 

 

13.  AN ADDITIONAL TOPIC IN CYLINDRICAL GEOMETRY: SENSE 

 There is one more topic in cylindrical geometry that should be covered in this 

paper since this paper sets up the machinery for working in cylindrical geometry.  

Throughout the development of this paper, the author often wanted to consider whether 

two open lines were twisting in the same or opposite directions or whether the ray from A 

to B pointed in the same direction as the ray from A to C.  In short, the author was 

looking for a way to formally define clockwise and counterclockwise within cylindrical 

geometry.  The problem with defining the problem this way is that it is impossible to 

define the concepts of clockwise and counterclockwise on the cylinder because these 

Definition 45:  Let m be a line.  If m is closed, define m to have a slope of zero 

everywhere.   If m is vertical, define m to have an infinite slope everywhere.  If m is 

a non-vertical open line, and A and B are two distinct points on m with m( mAB ) < 

 m , then the slope from A to B along m is equal to the rise from A to B divided by 

the run from A to B 
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Figure 10 

classifications are dependent on the viewpoint of the viewer.  Thus, the best we can do is 

determine if two lines twist in the same or opposite directions. 

 This issue is addressed in cylindrical geometry by comparing the relative 

direction of a sequence of three points on a given line to another sequence of three points 

on a line using the notion of “sense” as described by Coxeter in reference to projective 

geometry [2].  This notion requires a lot of machinery to be built in the system of 

cylindrical geometry before it can be made rigorous.   

 

 

Thus, it is possible to visualize a halfplane by visualizing a 

vertical plane cutting the infinite cylinder and considering the 

section of the cylinder visible on one side of the plane. (See 

Figure 10). 

 

 

 

 

Therefore, C is a point on the small section of the local ray that is not on the line segment.  

C is called a direction point because since C is on the section of the ray which is not the 

line segment, the position of C distinguishes between AB


 and BA


.  Therefore, C 

distinguishes the direction of the ray. 

Definition 47:  Let A and B be two points on the same halfplane.  Consider the local 

ray 0AB


.  Let C be a point that is on 0AB


 but not 0AB .  C is called 

a direction point of the ray 0AB


. 

Definition 46:  The set of all points on the same side of a vertical line m is called a 

halfplane with respect to m.   We denote this m. 
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In this way, we can determine if two rays are pointing in the same rotational direction on 

a closed line.   

To be able to apply this notion in a more general fashion, we use the concept of a 

nearest point.  If {A,B,C} and {D,E,F} are two sets of distinct points along the same line 

or two separate lines, then let {A,B,C} and {D,E,F} be the nearest points of {A,B,C} 

Definition 48:  Let the direction number, n, of a point C with respect to a point A 

along a ray AB


 be the length of 0AC  along the local ray AB


.  We 

will denote this Cn. 

Definition 49:  Let {A,B,C} and {D,E,F} be two sets of distinct points along a closed 

line m.  Let the direction number of each of these points be 

determined with respect to A along ray 0AB


 (Aa,Bb,Cc,Dd,Ee,Ff ).  If 

A and B do not lie in the same halfplane for any vertical line, re-label 

A to B, B to C, and C to A so that they do.  Then, {A,B,C} and 

{D,E,F} have the same sense if d <e<f, e<f<d, or f<d<e.  We 

denote this s{A,B,C} = s{D,E,F}.  Otherwise, {A,B,C} and {D,E,F} 

have opposite sense.  We denote this s{A,B,C} ≠ s{D,E,F}.  (See 

Figure 11)
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and {D,E,F} on the closed line through point A.  Then, s{A,B,C} = s{D,E,F} if 

s{A,B,C}= s{D,E,F} and s{A,B,C} ≠ s{D,E,F} if s{A,B,C}≠ s{D,E,F}.  Since 

both nearest points and halfplanes depend on vertical lines, it is quite easy to see that this 

generalization is the result that we want. 

 

14.  CONCLUSION 

 Cylindrical geometry has two types of lines that are distinctly different.  Open 

lines extend forever and closed lines have finite length, wrapping back on themselves.  

This difference causes the axiomatization of cylindrical geometry to be distinct from 

elliptic or Euclidean geometry since Euclidean geometry contains lines that are all 

infinitely extendable and elliptic geometry contains all finite lines.  As expected, some 

axioms in cylindrical geometry resemble axioms from Euclidean geometry and some 

axioms from cylindrical geometry resemble axioms from elliptic geometry.   

The two axioms in the Axioms of Order that do not resemble axioms from 

Euclidean or elliptic geometry are Axioms A-10 and A-11. Axiom A-10 clarifies the 

relationship between the notions of betweenness and separation.  Since Euclidean 

geometry relies on betweenness and elliptic geometry relies on separation, the need for 

both these terms is new in cylindrical geometry.  Axiom A-11 guarantees that triangles 

have both an inside and an outside.  There is an axiom that guarantees this in Hilbert’s 

axiomatization of Euclidean geometry [3], but it is much less complicated than the axiom 

for cylindrical geometry.  This is because, on the infinite cylinder, not all unions of three 

line segments with common endpoints have an inside and an outside.   
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 The impact of having both open and closed lines in the same geometry becomes 

even clearer as we look at the remaining groups of axioms.  One rather remarkable result, 

which forms the basis for the first two axioms of the Axioms of Connection, is the 

observation that unlike Euclidean geometry, where two points uniquely determine a line, 

one point uniquely determines a closed line in cylindrical geometry and two points not on 

the same closed line do not uniquely determine a line; in fact, two such points determine 

a countably infinite number of lines.  They determine the shortest line (or lines) from one 

point to the other, but there is also a helix with each orientation (think clockwise versus 

counterclockwise) that rotates around once, twice, or n times before connecting the first 

point to the second.    

 Since lines are not unique, the Axioms of Connection also establish the concept of 

the shortest line between two points, which is unique except for when the two points are 

diametrically opposed; then there are two shortest lines.  This concept helps make up for 

the lack of unique lines in cylindrical geometry.  The Axioms of Connection section also 

contains enough existence axioms to ensure that cylindrical geometry is a flushed out 

geometry. 

 The Metric Axioms of Segments and Angles ensures that there is enough structure 

within cylindrical geometry to take measurements of the lengths of segments and the 

degrees of angles.  Congruence is defined based on the undefined term measure.  

Theorems prove that congruence is an equivalence relation.  As in Hilbert’s axioms of 

Euclidean Geometry, Side-Angle-Side is an axiom.   

 Cylindrical geometry has the same Gaussian curvature and the same parallel 

axiom as Euclidean geometry; recall the periodic model.   Cylindrical geometry has four 
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axioms of continuity.  There is the standard Dedekind axiom to ensure that each open line 

has the structure of the real numbers as well as a modified version of Dedekind’s axiom 

which insures the structure of closed lines. The third axiom ensures that the cylinder 

which models cylindrical geometry does not have an infinite diameter.  The fourth axiom 

ensures that every line has a constant slope.  Lastly, the direction that a line twists can be 

determined relative to another line by the notion of sense, a relationship on six points. 

It is easy to see that the axioms of cylindrical geometry are as consistent as 

Euclidean geometry because of the natural map taking cylindrical geometry into three-

dimensional Euclidean space.  The completeness of these axioms has not been proven.  It 

is reasonable to believe that these axioms are complete or nearly complete because of 

their similarity to Hilbert’s axioms of Euclidean geometry, but rigorously proving the 

completeness of this axiom system is left as an open question by the author.  Other 

interesting surfaces to axiomatize include the cone, the cube, the donut-shaped torus, and 

the topological torus (flat square with the opposite edges glued together). 
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