Cylindrical Waves

Daniel S. Weile

Department of Electrical and Computer Engineering University of Delaware

ELEG 648—Waves in Cylindrical Coordinates

Outline

1 Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE₇ and TM₇ Modes

Outline

- Separation of Variables
- Bessel Functions
- TE_z and TM_z Modes

2 Guided Waves

- Cylindrical Waveguides
- Radial Waveguides
- Cavities

Separation of Variables Bessel Functions TE₂ and TM₂ Modes

Outline

Cylindrical Waves

Separation of Variables

- Bessel Functions
- TE_z and TM_z Modes

2 Guided Waves

- Cylindrical Waveguides
- Radial Waveguides
- Cavities

Separation of Variables Bessel Functions TE_z and TM_z Modes

The Scalar Helmholtz Equation

Just as in Cartesian coordinates, Maxwell's equations in cylindrical coordinates will give rise to a scalar Helmholtz Equation. We study it first.

$$\nabla^2 \psi + k^2 \psi = \mathbf{0}$$

In cylindrical coordinates, this becomes

$$\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\psi}{\partial\rho}\right) + \frac{1}{\rho^2}\frac{\partial^2\psi}{\partial\phi^2} + \frac{\partial^2\psi}{\partial z^2} + k^2\psi = 0$$

We will solve this by separating variables:

$$\psi = R(\rho)\Phi(\phi)Z(z)$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Separation of Variables

Substituting and dividing by $\psi,$ we find

$$\frac{1}{\rho R}\frac{\mathrm{d}}{\mathrm{d}\rho}\left(\rho\frac{\mathrm{d}R}{\mathrm{d}\rho}\right) + \frac{1}{\rho^{2}\Phi}\frac{\mathrm{d}^{2}\Phi}{\mathrm{d}\phi^{2}} + \frac{1}{Z}\frac{\mathrm{d}^{2}Z}{\mathrm{d}z^{2}} + k^{2} = 0$$

The third term is independent of ϕ and ρ , so it must be constant:

$$\frac{1}{Z}\frac{\mathrm{d}^2 Z}{\mathrm{d}z^2} = -k_z^2$$

This leaves

$$\frac{1}{\rho R}\frac{\mathrm{d}}{\mathrm{d}\rho}\left(\rho\frac{\mathrm{d}R}{\mathrm{d}\rho}\right) + \frac{1}{\rho^{2}\Phi}\frac{\mathrm{d}^{2}\Phi}{\mathrm{d}\phi^{2}} + k^{2} - k_{z}^{2} = 0$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Separation of Variables

Now define the

Radial Wavenumber

$$k_{\rho}^2 = k^2 - k_z^2$$

and multiply the resulting equation by $\rho^{\rm 2}$ to find

$$\frac{\rho}{R}\frac{\mathrm{d}}{\mathrm{d}\rho}\left(\rho\frac{\mathrm{d}R}{\mathrm{d}\rho}\right) + \frac{1}{\Phi}\frac{\mathrm{d}^{2}\Phi}{\mathrm{d}\phi^{2}} + k_{\rho}^{2}\rho^{2} = 0$$

The second term is independent of ρ and z, so we let

$$\frac{1}{\Phi}\frac{d^2\Phi}{d\phi^2}=-n^2$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Separation of Variables

This process leaves an ordinary differential equation in ρ alone. We thus have:

The Cylindrical Helmholtz Equation, Separated

$$\rho \frac{d}{d\rho} \left(\rho \frac{dR}{d\rho} \right) + \left[(k_{\rho}\rho)^2 - n^2 \right] R = 0$$
$$\frac{d^2 \Phi}{d\phi^2} + n^2 \Phi = 0$$
$$\frac{d^2 Z}{dz^2} + k_z^2 Z = 0$$
$$k_\rho^2 + k_z^2 = k^2$$

The first of these equations is called **Bessel's Equation**; the others are familiar.

Separation of Variables Bessel Functions TE_z and TM_z Modes

The Harmonic Equations

We have already seen equations like those in the z and ϕ directions; the solutions are

- trigonometric, or
- exponential.

The only novelty is that ϕ is periodic or finite; it therefore is always expanded in a series and not an integral. If there is no limit in the ϕ direction we find

The Periodic Boundary Condition

$$\Phi(\phi) = \Phi(\phi + 2\pi)$$

This implies that $n \in \mathbb{Z}$ if the entire range is included.

Separation of Variables Bessel Functions TE_z and TM_z Modes

Outline

Separation of Variables Bessel Functions TE_z and TM_z Modes

Bessel's Equation For Statics

- The remaining equation to be solved is the radial equation, i.e. Bessel's Equation.
- Note that the problem simplifies considerably if k_ρ = 0 (which would be the case if ρ = 0.

In this case, we have

Bessel's Equation for Statics

$$\rho \frac{\mathsf{d}}{\mathsf{d}\rho} \left(\rho \frac{\mathsf{d}R}{\mathsf{d}\rho} \right) - n^2 R = 0$$

To solve it, let

$$\rho = e^{x}$$

SO

$$\frac{\mathrm{d}\rho}{\mathrm{d}x} = \mathbf{e}^x = \rho.$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Bessel's Equation For Statics

This implies that

$$\frac{\mathrm{d}}{\mathrm{d}x} = \frac{\mathrm{d}\rho}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}\rho} = \rho\frac{\mathrm{d}}{\mathrm{d}\rho}$$

Our equation therefore becomes

$$\frac{\mathrm{d}^2 R}{\mathrm{d}x^2} - n^2 R = 0$$

The solutions to this are

$$R(x) = \left\{ egin{array}{cc} A+Bx & n=0\ Ae^{nx}+Be^{-nx} & n
eq 0 \end{array}
ight.$$

and thus the solutions really are

Static Solutions of Bessel's Equation

$$R(\rho) = \begin{cases} A + B \ln \rho & n = 0\\ A \rho^n + B \rho^{-n} & n \neq 0 \end{cases}$$

Cylindrical Waves Guided Waves TE₂ and TM₂ Modes

Bessel Functions

We are generally more interested in the dynamic case in which we must solve the full Bessel Equation:

$$\xi \frac{\mathrm{d}}{\mathrm{d}\xi} \left(\xi \frac{\mathrm{d}R}{\mathrm{d}\xi} \right) + \left[\xi^2 - n^2 \right] R = 0$$

(We normalize $k_{\rho} = 1$, and rewrite the equation in terms of ρ instead of ξ) To solve this equation, we suppose

$$R(\xi) = \xi^{\alpha} \sum_{m=0}^{\infty} c_m \xi^m$$

Now

$$\frac{\mathsf{d}R}{\mathsf{d}\xi} = \sum_{m=0}^{\infty} (\alpha + m) c_m \xi^{\alpha + m - 1}$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Bessel Functions

Thus

$$\xi \frac{\mathsf{d}R}{\mathsf{d}\xi} = \sum_{m=0}^{\infty} (\alpha + m) c_m \xi^{\alpha + m}$$

and

$$\frac{\mathsf{d}}{\mathsf{d}\xi}\left(\xi\frac{\mathsf{d}R}{\mathsf{d}\xi}\right) = \sum_{m=0}^{\infty} (\alpha+m)^2 c_m \xi^{\alpha+m-1}$$

so finally

$$\xi \frac{\mathsf{d}}{\mathsf{d}\xi} \left(\xi \frac{\mathsf{d}R}{\mathsf{d}\xi} \right) = \sum_{m=0}^{\infty} (\alpha + m)^2 c_m \xi^{\alpha + m}$$

Now, we can plug in...

$$\sum_{m=0}^{\infty} (\alpha+m)^2 c_m \xi^{\alpha+m} + \left[\xi^2 - n^2\right] \sum_{m=0}^{\infty} c_m \xi^{\alpha+m} = 0$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Bessel Functions

We now have

$$\sum_{m=0}^{\infty} \left[(\alpha+m)^2 - n^2 \right] c_m \xi^{\alpha+m} + \sum_{m=0}^{\infty} c_m \xi^{\alpha+m+2} = 0$$

or

$$\sum_{m=0}^{\infty} \left[(\alpha+m)^2 - n^2 \right] c_m \xi^{\alpha+m} + \sum_{m=2}^{\infty} c_{m-2} \xi^{\alpha+m} = 0$$

We can proceed by forcing the coefficients of each term to vanish. We fix $c_0 \neq 0$ because of the homogeneity of the equation.

Separation of Variables Bessel Functions TE_z and TM_z Modes

Bessel Functions

For ξ^{α} :

$$(\alpha^2 - n^2) = 0$$

since $c_0 \neq 0$ by assumption,

$$\alpha = \pm n.$$

For $\xi^{\alpha+1}$:

$$\left[(\alpha+1)^2-n^2\right]c_1=0$$

Thus

 $c_{1} = 0$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Bessel Functions

Finally, for all other $\xi^{\alpha+m}$:

$$\left[(\alpha+m)^2-n^2\right]c_m+c_{m-2}=0$$

Assuming $\alpha = n$,

$$c_m=\frac{-1}{m(m+2n)}c_{m-2}$$

Thus, immediately, for $p \in \mathbb{Z}$

$$c_{2p+1} = 0$$

Cylindrical Waves Guided Waves TE₂ and TM₂ Modes

Bessel Functions

Given that the odd coefficients vanish, we let m = 2p and let

$$a_p = c_{2p}$$

So...

$$a_p = c_{2p} = rac{-1}{4p(p+n)}c_{2p-2} = a_{p-1}$$

and

$$a_{1} = \frac{-1}{4(n+1)}a_{0}$$

$$a_{2} = \frac{-1}{4(n+2)(2)}\frac{-1}{4(n+1)}a_{0}$$

$$a_{3} = \frac{-1}{4(n+3)(3)}\frac{-1}{4(n+2)(2)}\frac{-1}{4(n+1)}a_{0}$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Bessel Functions

Thus, in general,

$$a_p = \frac{(-1)^p n!}{4^p p! (n+p)!} a_0$$

Thus, if we choose $2^{-n}n!a_0 = 1$, and recall

$$R(\xi) = \xi^{\alpha} \sum_{m=0}^{\infty} c_m \xi^m = \sum_{p=0}^{\infty} a_p \xi^{2p+n}$$

we can (finally!) define the

Bessel Function of Order n

$$J_n(\xi) = \sum_{p=0}^{\infty} \frac{(-1)^p}{p!(n+p)!} \left(\frac{\xi}{2}\right)^{2p+n}$$

Observations

• This function is entire; it exists and is differentiable for all *ξ*.

Separation of Variables

Bessel Functions

TE- and TM- Modes

- This is only one solution of the equation:
 - We will get to the other shortly.
 - The other solution is not regular at the origin since the coefficient of the second order derivative vanishes there.
- Note that the solution looks like the corresponding static (ρⁿ) solution at the origin.
- Note also that fractional orders are possible, but do not arise as commonly in applications (Why not?)

Separation of Variables Bessel Functions TE_z and TM_z Modes

The Other Solution

Our original equation (normalized) was

$$\xi \frac{\mathsf{d}}{\mathsf{d}\xi} \left(\xi \frac{\mathsf{d}u}{\mathsf{d}\xi} \right) + \left[\xi^2 - n^2 \right] u = 0$$

The other solution, v must solve

$$\xi \frac{\mathsf{d}}{\mathsf{d}\xi} \left(\xi \frac{\mathsf{d}\mathbf{v}}{\mathsf{d}\xi} \right) + \left[\xi^2 - n^2 \right] \mathbf{v} = 0$$

Multiply the first equation by v and the second by u, subtract, and divide by ξ :

$$v\frac{\mathsf{d}}{\mathsf{d}\xi}\left(\xi\frac{\mathsf{d}u}{\mathsf{d}\xi}\right) - u\frac{\mathsf{d}}{\mathsf{d}\xi}\left(\xi\frac{\mathsf{d}v}{\mathsf{d}\xi}\right) = \mathbf{0}$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

The Other Solution

Expanding this out

$$\xi(u''v-uv'')+u'v-uv'=0,$$

or

$$\frac{\mathsf{d}}{\mathsf{d}\xi}\left[\xi(u'v-uv')\right]=0$$

It therefore stands to reason that

$$\xi(u'v-uv')=C$$

or

$$\frac{u'v-uv'}{v^2}=\frac{C_2}{\xi v^2}$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

The Other Solution

This of course implies

$$\frac{\mathsf{d}}{\mathsf{d}\xi}\left(\frac{u}{v}\right) = \frac{C_2}{\xi v^2}$$

This can be integrated to give

$$\frac{u}{v} = C_1 + C_2 \int \frac{\mathrm{d}\xi}{\xi v^2}$$

or

$$u(\xi) = C_1 v(\xi) + C_2 v(\xi) \int \frac{\mathrm{d}\xi}{\xi v(\xi)^2}$$

Separation of Variables Bessel Functions TE_z and TM_z Modes

The Other Solution

Setting $C_1 = 0$, $v(\xi) = J_n(\xi)$, expanding the series and integrating gives rise to the

Neumann Function

$$Y_n(\xi) = J_n(\xi) \int \frac{\mathrm{d}\xi}{\xi J_n^2(\xi)}$$

This function

- This function is also called the "Bessel function of the second kind."
- It is sometimes denoted by $N_n(\xi)$.
- This function is not defined for $\xi = 0$.

Separation of Variables Bessel Functions TE_z and TM_z Modes

Graphs of $J_n(x)$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Graphs of $Y_n(x)$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Hankel Functions

- The J_n and Y_n are both real functions for real arguments.
- They must therefore represent standing waves (Why?).

Separation of Variables Bessel Functions TE_z and TM_z Modes

Hankel Functions

- The J_n and Y_n are both real functions for real arguments.
- They must therefore represent standing waves (Why?).
- Hankel functions represent traveling waves.

Traveling waves are represented by

Hankel Functions

$$H_n^{(1)}(x) = J_n(x) + jY_n(x) H_n^{(2)}(x) = J_n(x) - jY_n(x)$$

These are called Hankel functions of the first and second kind, respectively.

Separation of Variables Bessel Functions TE_z and TM_z Modes

Small Argument Behavior

- Suppose Re(ν) > 0.
- Let $\ln \gamma = 0.5772 \Rightarrow \gamma = 1.781$ (i.e. $\ln \gamma$ is "Euler's constant").

Consider the behavior of the Bessel and Neumann functions as $x \rightarrow 0$:

$$\begin{array}{rcl} J_0(x) & \to & 1 \\ Y_0(x) & \to & \frac{2}{\pi} \ln \frac{\gamma x}{2} \\ J_{\nu}(x) & \to & \frac{1}{\nu !} \left(\frac{x}{2}\right)^{\nu} \\ Y_{\nu}(x) & \to & -\frac{(\nu-1)!}{\pi} \left(\frac{2}{x}\right)^{\nu} \end{array}$$

The only Bessel functions finite at the origin are the $J_n(x)$.

Separation of Variables Bessel Functions TE_z and TM_z Modes

Large Argument Behavior

As $x \to \infty$:

$$J_{\nu}(x) \rightarrow \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\pi}{4} - \frac{\nu \pi}{2}\right)$$
$$Y_{\nu}(x) \rightarrow \sqrt{\frac{2}{\pi x}} \sin\left(x - \frac{\pi}{4} - \frac{\nu \pi}{2}\right)$$

Given the definition of Hankel functions, we must also have

$$\begin{array}{lll} H^{(1)}_{\nu}(x) & \rightarrow & \sqrt{\frac{2}{j\pi x}} j^{-\nu} e^{jx} \\ H^{(2)}_{\nu}(x) & \rightarrow & \sqrt{\frac{2j}{\pi x}} j^{\nu} e^{-jx} \end{array}$$

• The $H_{\nu}^{(2)}$ represent outward traveling waves.

• Why are these all proportional to $x^{-\frac{1}{2}}$?

Separation of Variables Bessel Functions TE_z and TM_z Modes

Imaginary Arguments

- In applications, we get Bessel functions of dimensionless quantities: B_n(k_ρρ).
- If k_ρ becomes imaginary, we have evanescence in the ρ direction.

For these applications, we define the

Modified Bessel Functions

$$I_n(x) = j^n J_n(-jx)$$

$$K_n(x) = \frac{\pi}{2} (-j)^{n+1} H_n^{(2)}(-jx)$$

These are real functions of real arguments.

Separation of Variables Bessel Functions TE_z and TM_z Modes

Graphs of $I_n(x)$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Graphs of $K_n(x)$

Separation of Variables Bessel Functions TE_z and TM_z Modes

Outline

- Separation of Variables
- Bessel Functions
- TE_z and TM_z Modes

2 Guided Waves

- Cylindrical Waveguides
- Radial Waveguides
- Cavities

Separation of Variables Bessel Functions TE_z and TM_z Modes

Transverse Magnetic Fields

Let

$$\frac{\mathbf{A}}{\mu} = \mathbf{u}_{z}\psi$$

for some solution of the Helmholtz equation $\psi.$ Then

$$\begin{split} H_{\rho} &= \frac{1}{\rho} \frac{\partial \psi}{\partial \phi} & E_{\rho} &= \frac{1}{\hat{y}} \frac{\partial^2 \psi}{\partial \rho \partial z} \\ H_{\phi} &= -\frac{\partial \psi}{\partial \rho} & E_{\phi} &= \frac{1}{\hat{y}\rho} \frac{\partial^2 \psi}{\partial \phi \partial z} \\ H_{z} &= 0 & E_{z} &= \frac{1}{\hat{y}} \left(\frac{\partial^2}{\partial z^2} + k^2 \right) \psi \end{split}$$

This is a general formula for a TM_z field; $H_z = 0$.

Separation of Variables Bessel Functions TE_z and TM_z Modes

Transverse Electric Fields

Let

$$\frac{\mathsf{F}}{\epsilon} = \mathsf{u}_{\mathsf{Z}}\psi$$

for some solution of the Helmholtz equation $\boldsymbol{\psi}.$ Then

$$\begin{split} E_{\rho} &= -\frac{1}{\rho} \frac{\partial \psi}{\partial \phi} & H_{\rho} &= \frac{1}{2} \frac{\partial^2 \psi}{\partial \rho \partial z} \\ E_{\phi} &= \frac{\partial \psi}{\partial \rho} & H_{\phi} &= \frac{1}{2\rho} \frac{\partial^2 \psi}{\partial \phi \partial z} \\ E_{z} &= 0 & H_{z} &= \frac{1}{2} \left(\frac{\partial^2}{\partial z^2} + k^2 \right) \psi \end{split}$$

This is a general formula for a TE_z field; $E_z = 0$.

Cylindrical Waveguides Radial Waveguides Cavities

Outline

Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_z and TM_z Modes

2 Guided Waves

- Cylindrical Waveguides
- Radial Waveguides
- Cavities

The Circular Waveguide

- A circular waveguide is a tube of (say) radius a.
- The field must be finite at $\rho = 0$, so only J_n are admissible.

Without further ado, the wave function for TM_z waves is

$$\psi = J_n(k_
ho
ho) \left\{ egin{array}{c} \sin n\phi \ \cos n\phi \end{array}
ight\} e^{-jk_z z}$$

- The azimuthal dependence keeps the transverse fields in phase; either sine or cosine can be chosen.
- For n = 0 we obviously choose the cosine.
- The restriction to n ∈ Z is required because of the periodic boundary condition. Other boundaries would lead to other results.

Cylindrical Waveguides Radial Waveguides Cavities

Boundary Conditions

Since

$$E_z = \frac{1}{\hat{y}}(k^2 - k_z^2)\psi$$

we need ψ to vanish on the walls. This implies

$$J_n(k_\rho a) = 0$$

giving the

Values for k_{ρ}

$$k_{
ho} = rac{\chi_{np}}{a}$$

where χ_{np} is the pth solution of

$$J_n(\chi_{np}) = 0.$$

Roots of Bessel Functions, χ_{np}

The roots of the Bessel functions are well tabulated.

	<i>n</i> = 0	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5
<i>p</i> = 1	2.405	3.832	5.136	6.380	7.588	8.771
<i>p</i> = 2	5.520	7.016	8.417	9.761	11.065	12.339
<i>p</i> = 3	8.654	10.173	11.620	13.015	14.732	
<i>p</i> = 4	11.792	13.324	14.796			

For TM_z modes, we have:

$$\psi_{np}^{\mathsf{TM}} = J_n\left(rac{\chi_{np}
ho}{a}
ight) \left\{ egin{array}{c} \sin n\phi \ \cos n\phi \end{array}
ight\} e^{-jk_z z}$$

with

$$\left(\frac{\chi_{np}}{a}\right)^2 + k_z^2 = k^2$$

Cylindrical Waveguides Radial Waveguides Cavities

The wave function for TE_z waves is

$$\psi = J_n(k_
ho
ho) \left\{ egin{array}{c} \sin n\phi \ \cos n\phi \end{array}
ight\} e^{-jk_z z}$$

just as for TM_z and for the same reasons. (Here, of course, $\mathbf{F} = \epsilon \psi \mathbf{u}_z$.) Now

$$\boldsymbol{E}_{\phi} = \frac{\partial \psi}{\partial \rho},$$

so we need

TE₇ Modes

$$J_n'(k_\rho a)=0.$$

Cylindrical Waveguides Radial Waveguides Cavities

We therefore find the radial wavenumber must be of the form

Values for $k_
ho$ $k_
ho = rac{\chi'_{np}}{a}$

where χ'_{np} is the pth solution of

TE₇ Modes

 $J_n'(\chi_{np}') = 0.$

Cylindrical Waveguides Radial Waveguides Cavities

Roots of Bessel Function Derivatives, $\overline{\chi'_{no}}$

The roots of the Bessel function derivatives are also well tabulated.

	<i>n</i> = 0	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5
<i>p</i> = 1	3.832	1.841	3.054	4.201	5.317	6.416
<i>p</i> = 2	7.016	5.331	6.706	87.015	9.282	10.520
<i>p</i> = 3	10.173	8.536	9.969	11.346	12.682	13.987
<i>p</i> = 4	13.324	11.706	13.170			

For TE_z modes, we have:

$$\psi_{n\rho}^{\mathsf{TE}} = J_n \left(\frac{\chi'_{n\rho}\rho}{a} \right) \left\{ \begin{array}{c} \sin n\phi \\ \cos n\phi \end{array} \right\} e^{-jk_z z}$$

with

$$\left(\frac{\chi'_{np}}{a}\right)^2 + k_z^2 = k^2$$

Cylindrical Waveguides Radial Waveguides Cavities

Cutoff

Cutoff occurs when $k_z = 0$ We can thus compute the

and the

Cutoff Frequencies $(f_c)_{np}^{TM} = \frac{\chi_{np}}{2\pi a \sqrt{\mu\epsilon}} \qquad (f_c)_{np}^{TE} = \frac{\chi'_{np}}{2\pi a \sqrt{\mu\epsilon}}$

- Cutoff frequency is thus proportional to the roots χ_{np} and χ'_{np} .
- The fundamental mode is TE₁₁.

Cylindrical Waveguides Radial Waveguides Cavities

Modal Impedance

The calculation of impedance is just like that in rectangular waveguides. The result is the same too:

$$Z_0^{\mathsf{TE}} = rac{E_
ho}{H_\phi} = -rac{E_\phi}{H_
ho} = rac{\omega\mu}{k_z}$$

and

$$Z_0^{\mathsf{TM}} = rac{E_{
ho}}{H_{\phi}} = -rac{E_{\phi}}{H_{
ho}} = rac{k_z}{\omega\epsilon}$$

Other cylindrical waveguides can be analyzed similarly; homework will contain examples.

Cylindrical Waveguides Radial Waveguides Cavities

Outline

Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_z and TM_z Modes

2 Guided Waves

- Cylindrical Waveguides
- Radial Waveguides
- Cavities

Radial Waveguides

- In addition to cylindrical waveguides, we can consider guides that carry waves radially.
- The simplest such guide is a parallel plate waveguide, analyzed to consider radial propagation.
- We call the distance between the plates (in the *z*-direction) *a*.

Radial Waveguides

- In addition to cylindrical waveguides, we can consider guides that carry waves radially.
- The simplest such guide is a parallel plate waveguide, analyzed to consider radial propagation.
- We call the distance between the plates (in the *z*-direction) *a*.
- For TM_z waves, we need $E_{\rho} = E_{\phi} = 0$.

Radial Waveguides

- In addition to cylindrical waveguides, we can consider guides that carry waves radially.
- The simplest such guide is a parallel plate waveguide, analyzed to consider radial propagation.
- We call the distance between the plates (in the *z*-direction) *a*.
- For TM_z waves, we need $E_{\rho} = E_{\phi} = 0$.
- Both components are proportional to a derivative of ψ in their respective directions, so the wave functions are

Radial Waveguides

- In addition to cylindrical waveguides, we can consider guides that carry waves radially.
- The simplest such guide is a parallel plate waveguide, analyzed to consider radial propagation.
- We call the distance between the plates (in the *z*-direction) *a*.
- For TM_z waves, we need $E_{\rho} = E_{\phi} = 0$.
- Both components are proportional to a derivative of ψ in their respective directions, so the wave functions are

TM_z Wavefunctions for Parallel Plate Guide

$$\psi_{mn}^{\mathsf{TM}} = \cos\left(rac{m\pi}{a}z
ight)\cos n\phi H_n^{(2)}(k_
ho
ho)$$

Radial Wavguides

- The solution on the previous slide chose cos nφ for simplicity; sin nφ is legal but gives no new information.
- The solution on the previous slide is for outgoing waves, incoming waves are proportional to $H_n^{(1)}(k_{\rho\rho})$.
- For TE_z waves, we need the same components to vanish. Here, they are directly proportional to the wavefunction so we find the

TE_z Wavefunctions for Parallel Plate Guide

$$\psi_{mn}^{\mathsf{TE}} = \sin\left(\frac{m\pi}{a}z\right)\cos n\phi H_n^{(2)}(k_\rho\rho)$$

In either case we find that

$$k_
ho = \sqrt{k^2 - \left(rac{m\pi}{a}
ight)^2}$$

Phase Constant and Velocity: An Aside

In general, any wave can be written in polar form

$$\psi(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{A}(\mathbf{x},\mathbf{y},\mathbf{z})\mathbf{e}^{j\Phi(\mathbf{x},\mathbf{y},\mathbf{z})}$$

where $A, \Phi \in \mathbb{R}$. In the time domain, this wave becomes

$$\mathsf{Re}\left\{A(x,y,z)e^{j\Phi(x,y,z)}e^{j\omega t}\right\}$$

A surface of constant phase thus has the form

$$\omega t + \Phi(x, y, z) = \text{constant}$$

Phase Constant and Velocity: An Aside

This equation can be differentiated with respect to t to give

$$\omega + \nabla \Phi \cdot \mathbf{v}_{\mathsf{p}} = \mathbf{0}$$

- This equation cannot be solved *per se*; it is one equation in three unknowns!
- If we choose a direction, we can solve it along that direction (i.e., we can find the speed we need to move to keep the phase fixed.)

Thus, we have the

Cylindrical Waveguides Radial Waveguides Cavities

Phase Constant and Velocity: An Aside

We can also define the

Phase Velocity in the Direction of Travel

$$v_{\rm p} = -rac{\omega}{|
abla \Phi|}$$

In any case, we have the

Wavevector

$$\boldsymbol{\beta} = -\nabla \Phi$$

We would like to see how these ideas apply to radial travel.

Cylindrical Waveguides Radial Waveguides Cavities

Phase Velocity of Radial Waves

From the above discussion, we can define

$$eta_
ho = -rac{\mathsf{d}}{\mathsf{d}
ho} an^{-1} rac{Y_n(k_
ho
ho)}{J_n(k_
ho
ho)}$$

Let us compute this:

$$-\frac{\mathrm{d}}{\mathrm{d}\rho} \tan^{-1} \frac{Y_n(k_\rho \rho)}{J_n(k_\rho \rho)} = -\frac{1}{1 + \left(\frac{Y_n(k_\rho \rho)}{J_n(k_\rho \rho)}\right)^2} \left[\frac{\mathrm{d}}{\mathrm{d}\rho} \frac{Y_n(k_\rho \rho)}{J_n(k_\rho \rho)}\right]$$
$$= -\frac{k_\rho}{1 + \left(\frac{Y_n(k_\rho \rho)}{J_n(k_\rho \rho)}\right)^2} \frac{Y'_n(k_\rho \rho) J_n(k_\rho \rho) - Y_n(k_\rho \rho) J'_n(k_\rho \rho)}{J_n^2(k_\rho \rho)}$$

Cylindrical Waveguides Radial Waveguides Cavities

Phase Velocity of Radial Waves

The Wronskian

$$J_n(x)Y'_n(x) - J'_n(x)Y_n(x) = \frac{2}{\pi x}$$

Thus

$$\beta_{\rho} = \frac{k_{\rho}}{1 + \left(\frac{Y_n(k_{\rho}\rho)}{J_n(k_{\rho}\rho)}\right)^2} \frac{1}{J_n^2(k_{\rho}\rho)} \frac{2}{\pi k_{\rho}\rho}$$
$$= \frac{2}{\pi \rho} \frac{1}{J_n^2(k_{\rho}\rho) + Y_n^2(k_{\rho}\rho)}$$

Cylindrical Waveguides Radial Waveguides Cavities

Phase Velocity of Radial Waves

Now, as $\rho \to \infty$, we can substitute the large argument approximations:

$$\beta_{\rho} = \frac{2}{\pi\rho} \frac{1}{J_{n}^{2}(k_{\rho}\rho) + Y_{n}^{2}(k_{\rho}\rho)}$$

$$\rightarrow \frac{2}{\pi\rho} \left\{ \left[\sqrt{\frac{2}{\pi k_{\rho}}} \cos\left(k_{\rho}\rho - \frac{\pi}{4} - \frac{n\pi}{2}\right) \right]^{2} + \left[\sqrt{\frac{2}{\pi k_{\rho}}} \sin\left(k_{\rho}\rho - \frac{\pi}{4} - \frac{n\pi}{2}\right) \right]^{2} \right\}^{-1} = k_{\rho}$$

Why would we expect this?

Cylindrical Waveguides Radial Waveguides Cavities

Modal Impedance and Cutoff

Impedance can be computed in the usual manner:

Outward-Travelling Modal Impedance

$$egin{aligned} Z_{+
ho^{ extsf{TM}}} &= & -rac{E_z}{H_{\phi}} = & rac{k_{
ho}}{j\omega\epsilon}rac{H_{n}^{(2)}(k_{
ho}
ho)}{H_{n}^{(2)\prime}(k_{
ho}
ho)} \ Z_{+
ho^{ extsf{TE}}} &= & rac{E_{\phi}}{H_z} = & rac{j\omega\mu}{k_{
ho}}rac{H_{n}^{(2)}(k_{
ho}
ho)}{H_{n}^{(2)\prime}(k_{
ho}
ho)} \end{aligned}$$

Note that this is not purely real. Now, it should be remembered that

$$k_
ho = \sqrt{k^2 - \left(rac{m\pi}{a}
ight)^2}$$

Modal Impedance and Cutoff

We thus have a purely imaginary radial wavenumber $(-j\alpha)$ if $ka < m\pi$. Recall

$$H_n^{(2)}(-j\alpha\rho) = \frac{2}{\pi}j^{n+1}K_n(\alpha\rho)$$

Plugging this in to our expression for TM impedance, we find

$$Z_{+\rho^{\mathsf{TM}}} = \frac{j\alpha}{\omega\epsilon} \frac{K_n(\alpha\rho)}{K'_n(\alpha\rho)}$$

Since the K_n are real functions of real arguments, this expression is purely imaginary and no energy propagates.

Cylindrical Waveguides Radial Waveguides Cavities

TM_{0n} Modes

lf

$$a < \frac{\lambda}{2}$$

only m = 0 modes propagate. (These are all TM_z.) In this case we have

TM_{0n} Wavefunctions

$$\psi_{0n}^{\mathsf{TM}} = \cos n\phi H_n^{(2)}(k\rho)$$

- How can large *n* modes propagate?
- Why is this cause for concern?

Impedance of TM_{0n} Modes

To understand what is happening, we look at the expression

$$Z_{+
ho}^{\mathsf{TM}} = -j\eta rac{H_n^{(2)}(k
ho)}{H_n^{(2)\prime}(k
ho)}$$

Using a well-known identity (obtained by differentiating and manipulating Bessel's equation) we can write

$$Z_{+\rho}^{\mathsf{TM}} = -j\eta \frac{H_n^{(2)}(k\rho)}{\frac{n}{x}H_n^{(2)}(k\rho) - H_{n+1}^{(2)}(k\rho)}$$

By examining the (absolute) phase angle of the impedance, we can see how efficiently each mode carries energy.

Cylindrical Waveguides Radial Waveguides Cavities

Absolute Impedance Phase vs. $k\rho$

Cylindrical Waveguides Radial Waveguides Cavities

Gradual Cutoff

- The last slide shows that as the frequency increases, each mode carries power more efficiently.
- The transition from storing energy to carrying it occurs at

$$k\rho = n$$

- This is exactly where the radial waveguide is *n* wavelengths in circumference.
- This phenomenon is called gradual cutoff and it is related to the poor radiation ability of small antennas.

The TM₀₀ mode

- The dominant mode in the radial parallel plate guide is the TM_{00} mode.
- The outwardly traveling fields are given by

$$E_z^+ = \frac{k^2}{j\omega\epsilon}H_0^{(2)}(k\rho)$$
$$H_{\phi}^+ = kH_1^{(2)}(k\rho)$$

- This is a TEM mode and can be analyzed with a transmission line analysis if desired.
- The inductance/capacitance per unit length change with distance.

Cylindrical Waveguides Radial Waveguides Cavities

Feynman's Analysis

- The Nobel Laureate Richard P. Feynman used a particularly simple approach to the analysis of cylindrical resonators.
- The approach also demonstrates the evolution from statics to dynamics.
- It also introduces Bessel Functions without partial (or even ordianary) differential equations!

So consider a circular capacitor with a static electric field E_0 . If the field begins to oscillate with frequency ω , a magnetic field is created.

Cylindrical Waves Guided Waves Cavities

Feynman's Analysis

To find the magnetic field, we can apply the Ampere-Maxwell law to a circle *C* of radius ρ centered on the axis:

$$\oint_{\partial C} \mathbf{H} \cdot d\mathbf{I} = j\omega\epsilon \iint_{C} \mathbf{E} \cdot d\mathbf{S}$$

$$2\pi\rho H_{\phi} = j\omega\epsilon\pi\rho^{2}E_{z}$$

$$H_{\phi} = \frac{j\omega\epsilon\rho}{2}E_{0}$$

$$= \frac{jk\rho}{2\eta}E_{0}$$

Feynman's Analysis

Now, this magnetic field is also oscillating, so the original electric field is also wrong.

- We will call the original field $E_1 = E_0$; the field at the center of the plate.
- The magnetic field we have found is H₁.
- It will give rise to an E₂.
- To find *E*₂ we use the surface *S* shown below.

Cylindrical Waves Guided Waves Cavities

Feynman's Analysis

To find the correction to E, we use Faraday's Law.

$$\oint_{\partial S} \mathbf{E} \cdot d\mathbf{I} = -j\omega\mu \iint_{S} \mathbf{H} \cdot d\mathbf{S}$$
$$-\int_{0}^{a} E_{2}dz = -j\omega\mu \int_{0}^{a} dz \int_{0}^{\rho} d\rho' H_{1}$$
$$E_{2} = j\omega\mu \int_{0}^{\rho} d\rho' \frac{jk\rho'}{2\eta} E_{0}$$
$$= -\frac{k^{2}\rho^{2}}{2^{2}} E_{0}$$

Thus, at the moment,

$$E_z = E_1 + E_2 = E_0 \left(1 - \frac{k^2 \rho^2}{2^2} \right)$$

Cylindrical Waveguides Radial Waveguides Cavities

Feynman's Analysis

We can now correct H again:

$$\begin{split} \oint_{\partial C} \mathbf{H} \cdot d\mathbf{I} &= j\omega\epsilon \iint_{C} \mathbf{E} \cdot d\mathbf{S} \\ 2\pi\rho H_{2} &= j\omega\epsilon \int_{0}^{2\pi} d\phi \int_{0}^{\rho} \rho d\rho E_{2} \\ H_{2} &= -\frac{j\omega\epsilon k^{2} E_{0}}{2^{2}\rho} \int_{0}^{\rho} d\rho\rho^{3} \\ &= -\frac{jk^{3}\rho^{3}}{2^{2}\cdot 4} \frac{E_{0}}{\eta} \end{split}$$

Cylindrical Waveguides Radial Waveguides Cavities

Feynman's Analysis

And, we can now correct E again:

$$\oint_{\partial S} \mathbf{E} \cdot d\mathbf{I} = -j\omega\mu \iint_{S} \mathbf{H} \cdot d\mathbf{S}$$
$$-\int_{0}^{a} E_{3} dz = -j\omega\mu \int_{0}^{a} dz \int_{0}^{\rho} d\rho' H_{2}$$
$$E_{3} = \omega\mu \int_{0}^{\rho} d\rho' \frac{k^{3} \rho'^{3}}{2^{2} \cdot 4} \frac{E_{0}}{\eta}$$
$$= \frac{k^{4} \rho^{4}}{2^{2} \cdot 4^{2}} E_{0}$$

Thus, at the moment,

$$E_z = E_1 + E_2 + E_3 = E_0 \left(1 - \frac{k^2 \rho^2}{2^2} + \frac{k^4 \rho^4}{2^2 \cdot 4^2} \right)$$

Cylindrical Waveguides Radial Waveguides Cavities

Feynman's Analysis

- The importance of these terms we keep adding is proportional to
 - Frequency
 - Plate size

In this way, we see how statics naturally morphs into dynamics.

 It is easy to see that the E-field found after continuing the process is

$$E = E_0 \left(1 - \frac{k^2 \rho^2}{2^2} + \frac{k^4 \rho^4}{2^2 \cdot 4^2} - \frac{k^4 \rho^4}{2^2 \cdot 4^2 \cdot 6^2} + \cdots \right)$$
$$= E_0 \sum_{\rho=0}^{\infty} \frac{(-1)^n}{(n!)^2} \left(\frac{k\rho}{2}\right)^2 = E_0 J_0(k\rho)$$

Cylindrical Waveguides Radial Waveguides Cavities

Wedge Waveguide

- A wedge guide is formed by two half-planes inclined at an angle φ₀.
- The problem is independent of z.
- For the TM_z mode, we must have $E_z = 0$ on the plates.

Thus

$$\psi \propto \sin\left(rac{\mathbf{p}\pi}{\phi_0}\phi
ight)$$

Cylindrical Waveguides Radial Waveguides Cavities

Wedge Waveguide Wavefunctions

Now, the order of the Bessel function equals the coefficient of $\phi.$ We thus have the

TM Outwardly Traveling Wavefunctions

$$\psi_{
ho}^{\mathsf{TM}} = \sin\left(rac{oldsymbol{p}\pi}{\phi_0}\phi
ight)H^{(2)}_{rac{oldsymbol{p}\pi}{\phi_0}}(oldsymbol{k}
ho)$$

By the same token, we have the

TE Outwardly Traveling Wavefunctions

$$\psi_{oldsymbol{
ho}}^{\mathsf{TE}} = \cos\left(rac{oldsymbol{
ho}\pi}{\phi_0}\phi
ight)H^{(2)}_{rac{D\pi}{\phi_0}}(k
ho)$$

Cylindrical Waveguides Radial Waveguides Cavities

Observations

- Most of the discussion of the radial parallel plate guide applies here:
 - Wave impedances are given by the same formulas (with fractional orders),
 - Gradual cutoff occurs when $\frac{p\pi}{\phi_0} = k\rho$. Why?
- The dominant mode is TE₀; it is a TEM mode derivable by transmission line theory. Its fields are

TE₀ Mode Fields

$$egin{array}{rcl} E_{\phi}^{+} &=& k H_{1}^{(2)}(k
ho) \ H_{Z}^{+} &=& rac{k^{2}}{j \omega \mu} H_{0}^{(2)}(k
ho) \end{array}$$

Cylindrical Waveguides Radial Waveguides Cavities

Outline

Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_z and TM_z Modes

2 Guided Waves

- Cylindrical Waveguides
- Radial Waveguides
- Cavities

Cylindrical Waveguides Radial Waveguides Cavities

The Circular Cavity

- The circular cavity is a circular waveguide shorted at both ends.
- We will assume the height of the cavity is denoted by *d*.
- For TM_z modes,

$${\sf E}_
ho \propto {\partial^2 \psi \over \partial
ho \partial z}$$

so we must have (assuming $\cos n\phi$ variation)

TM_z Modes

$$\psi_{\textit{npq}}^{\mathsf{TM}} = J_{\textit{n}}\left(\frac{\chi_{\textit{np}}\rho}{\textit{a}}\right)\cos\textit{n}\phi\cos\left(\frac{\textit{q}\pi\textit{z}}{\textit{d}}\right)$$

Cylindrical Waveguides Radial Waveguides Cavities

The Circular Cavity

By the same token

TE_z Modes

$$\psi_{npq}^{\mathsf{TE}} = J_n\left(\frac{\chi_{np}'\rho}{a}\right)\cos n\phi\sin\left(\frac{q\pi z}{d}\right)$$

We can also immediately write

Separation Equations

TM:
$$\left(\frac{\chi_{np}}{a}\right)^2 + \left(\frac{q\pi}{d}\right)^2 = k^2$$

TE: $\left(\frac{\chi'_{np}}{a}\right)^2 + \left(\frac{q\pi}{d}\right)^2 = k^2$

Cylindrical Waveguides Radial Waveguides Cavities

Resonant Frequencies

From these equations it is a simply matter to compute

Resonant Frequencies

$$(f_{\rm r})_{npq}^{\rm TM} = \frac{1}{2\pi\sqrt{\mu\epsilon}} \sqrt{\left(\frac{\chi_{np}}{a}\right)^2 + \left(\frac{q\pi}{d}\right)^2}$$

$$(f_{\rm r})_{npq}^{\rm TE} = \frac{1}{2\pi\sqrt{\mu\epsilon}} \sqrt{\left(\frac{\chi'_{np}}{a}\right)^2 + \left(\frac{q\pi}{d}\right)^2}$$

If d < 2a the TM₀₁₀ mode is dominant, otherwise the TE₁₁₁ mode is.

Cylindrical Waveguides Radial Waveguides Cavities

Quality Factor

- It is also straightforward to compute the Q of the circular cavity.
- We will do so only for the (usually dominant) TM₀₁₀ mode.

Given ψ , it is easy to show that the modal fields are

TM₀₁₀ Mode Fields

$$E_{z} = \frac{k^{2}}{j\omega\epsilon}J_{0}\left(\frac{\chi_{01}\rho}{a}\right)$$
$$H_{\phi} = \frac{\chi_{01}}{a}J_{1}\left(\frac{\chi_{01}\rho}{a}\right)$$

Cylindrical Waves Guided Waves Cavities

Quality Factor

Now, the total energy stored is

$$W = 2\overline{W_{e}} = \frac{\epsilon}{2} \int_{0}^{d} \int_{0}^{a} \int_{0}^{2\pi} |E|^{2} \rho d\phi d\rho dz$$
$$= \frac{k^{4}}{\omega^{2} \epsilon} \pi d \int_{0}^{a} \rho J_{0}^{2} \left(\frac{\chi_{01}\rho}{a}\right) d\rho = \frac{\pi k^{4} da^{2}}{2\omega^{2} \epsilon} J_{1}^{2}(\chi_{01})$$

To compute the energy absorbed by the walls, we appeal to the approximate formula

$$\overline{P_{\mathsf{d}}} = rac{\mathcal{R}}{2} \oint _{\mathsf{walls}} |H|^2 \mathsf{d}S$$

Quality Factor

On the cylindrical side wall of the cavity, the magnetic field is constant, so the value of this integral is

$$\overline{P_{\mathsf{d}}} = \pi a d \mathcal{R} J_1^2(\chi_{\mathsf{01}})$$

On the other two walls together we have

$$\overline{P_{d}} = \mathcal{R} \int_{0}^{a} \int_{0}^{2\pi} \left(\frac{\chi_{01}}{a}\right)^{2} J_{1}^{2} \left(\frac{\chi_{01}\rho}{a}\right) \rho d\phi d\rho$$
$$= 2\pi \mathcal{R} \left(\frac{\chi_{01}}{a}\right)^{2} \int_{0}^{a} J_{1}^{2} \left(\frac{\chi_{01}\rho}{a}\right) \rho d\rho$$
$$= \pi a^{2} \mathcal{R} \left(\frac{\chi_{01}}{a}\right)^{2} J_{1}^{2} (\chi_{01})$$

Cylindrical Waves Guided Waves Cavities

Quality Factor

Plugging into our formula for the quality factor we find

$$Q = \frac{\omega W}{\overline{P_{d}}} = \frac{dk^{4}a^{3}}{2\omega\epsilon \mathcal{R}\chi^{2}_{01}(d+a)}$$

Now, $ka = \chi_{01}$ and $\omega \epsilon = \frac{k}{\eta}$, so we find the final formula for

The Quality Factor

$$Q = \frac{\eta \chi_{01} d}{2 \mathcal{R} (a+d)}$$

