Cylindrical Waves

Daniel S. Weile

Department of Electrical and Computer Engineering
University of Delaware

ELEG 648-Waves in Cylindrical Coordinates

Outline

(1) Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_{z} and TM_{z} Modes

Outline

(1) Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_{z} and TM_{z} Modes
(2) Guided Waves
- Cylindrical Waveguides
- Radial Waveguides
- Cavities

Outline

(1) Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_{z} and TM_{z} Modes

2) Guided Waves

- Cylindrical Waveguides
- Radial Waveguides
- Cavities

The Scalar Helmholtz Equation

Just as in Cartesian coordinates, Maxwell's equations in cylindrical coordinates will give rise to a scalar Helmholtz Equation. We study it first.

$$
\nabla^{2} \psi+k^{2} \psi=0
$$

In cylindrical coordinates, this becomes

$$
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+k^{2} \psi=0
$$

We will solve this by separating variables:

$$
\psi=R(\rho) \Phi(\phi) Z(z)
$$

Separation of Variables

Substituting and dividing by ψ, we find

$$
\frac{1}{\rho R} \frac{\mathrm{~d}}{\mathrm{~d} \rho}\left(\rho \frac{\mathrm{~d} R}{\mathrm{~d} \rho}\right)+\frac{1}{\rho^{2} \Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}+\frac{1}{Z} \frac{\mathrm{~d}^{2} Z}{\mathrm{~d} z^{2}}+k^{2}=0
$$

The third term is independent of ϕ and ρ, so it must be constant:

$$
\frac{1}{Z} \frac{\mathrm{~d}^{2} Z}{\mathrm{~d} z^{2}}=-k_{z}^{2}
$$

This leaves

$$
\frac{1}{\rho R} \frac{\mathrm{~d}}{\mathrm{~d} \rho}\left(\rho \frac{\mathrm{~d} R}{\mathrm{~d} \rho}\right)+\frac{1}{\rho^{2} \Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}+k^{2}-k_{z}^{2}=0
$$

Separation of Variables

Now define the
Radial Wavenumber

$$
k_{\rho}^{2}=k^{2}-k_{z}^{2}
$$

and multiply the resulting equation by ρ^{2} to find

$$
\frac{\rho}{R} \frac{\mathrm{~d}}{\mathrm{~d} \rho}\left(\rho \frac{\mathrm{~d} R}{\mathrm{~d} \rho}\right)+\frac{1}{\Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}+k_{\rho}^{2} \rho^{2}=0
$$

The second term is independent of ρ and z, so we let

$$
\frac{1}{\Phi} \frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}=-n^{2}
$$

Separation of Variables

This process leaves an ordinary differential equation in ρ alone. We thus have:
The Cylindrical Helmholtz Equation, Separated

$$
\begin{aligned}
\rho \frac{\mathrm{d}}{\mathrm{~d} \rho}\left(\rho \frac{\mathrm{~d} R}{\mathrm{~d} \rho}\right)+\left[\left(k_{\rho} \rho\right)^{2}-n^{2}\right] R & =0 \\
\frac{\mathrm{~d}^{2} \Phi}{\mathrm{~d} \phi^{2}}+n^{2} \Phi & =0 \\
\frac{\mathrm{~d}^{2} Z}{\mathrm{~d} z^{2}}+k_{z}^{2} Z & =0 \\
k_{\rho}^{2}+k_{z}^{2} & =k^{2}
\end{aligned}
$$

The first of these equations is called Bessel's Equation; the others are familiar.

The Harmonic Equations

We have already seen equations like those in the z and ϕ directions; the solutions are

- trigonometric, or
- exponential.

The only novelty is that ϕ is periodic or finite; it therefore is always expanded in a series and not an integral.
If there is no limit in the ϕ direction we find

The Periodic Boundary Condition

$$
\Phi(\phi)=\Phi(\phi+2 \pi)
$$

This implies that $n \in \mathbb{Z}$ if the entire range is included.

Outline

(1) Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_{z} and TM_{z} Modes
(2) Guided Waves
- Cylindrical Waveguides
- Radial Waveguides
- Cavities

Bessel's Equation For Statics

- The remaining equation to be solved is the radial equation, i.e. Bessel's Equation.
- Note that the problem simplifies considerably if $k_{\rho}=0$ (which would be the case if $\rho=0$.
In this case, we have
Bessel's Equation for Statics

$$
\rho \frac{\mathrm{d}}{\mathrm{~d} \rho}\left(\rho \frac{\mathrm{~d} R}{\mathrm{~d} \rho}\right)-n^{2} R=0
$$

To solve it, let

$$
\rho=e^{x}
$$

so

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} x}=e^{x}=\rho
$$

Bessel's Equation For Statics

This implies that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}=\frac{\mathrm{d} \rho}{\mathrm{~d} x} \frac{\mathrm{~d}}{\mathrm{~d} \rho}=\rho \frac{\mathrm{d}}{\mathrm{~d} \rho}
$$

Our equation therefore becomes

$$
\frac{\mathrm{d}^{2} R}{\mathrm{~d} x^{2}}-n^{2} R=0
$$

The solutions to this are

$$
R(x)=\left\{\begin{array}{cc}
A+B x & n=0 \\
A e^{n x}+B e^{-n x} & n \neq 0
\end{array}\right.
$$

and thus the solutions really are

Static Solutions of Bessel's Equation

$$
R(\rho)=\left\{\begin{array}{cc}
A+B \ln \rho & n=0 \\
A \rho^{n}+B \rho^{-n} & n \neq 0
\end{array}\right.
$$

Bessel Functions

We are generally more interested in the dynamic case in which we must solve the full Bessel Equation:

$$
\xi \frac{\mathrm{d}}{\mathrm{~d} \xi}\left(\xi \frac{\mathrm{~d} R}{\mathrm{~d} \xi}\right)+\left[\xi^{2}-n^{2}\right] R=0
$$

(We normalize $k_{\rho}=1$, and rewrite the equation in terms of ρ instead of ξ) To solve this equation, we suppose

$$
R(\xi)=\xi^{\alpha} \sum_{m=0}^{\infty} c_{m} \xi^{m}
$$

Now

$$
\frac{\mathrm{d} R}{\mathrm{~d} \xi}=\sum_{m=0}^{\infty}(\alpha+m) c_{m} \xi^{\alpha+m-1}
$$

Bessel Functions

Thus

$$
\xi \frac{\mathrm{d} R}{\mathrm{~d} \xi}=\sum_{m=0}^{\infty}(\alpha+m) c_{m} \xi^{\alpha+m}
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} \xi}\left(\xi \frac{\mathrm{~d} R}{\mathrm{~d} \xi}\right)=\sum_{m=0}^{\infty}(\alpha+m)^{2} c_{m} \xi^{\alpha+m-1}
$$

so finally

$$
\xi \frac{\mathrm{d}}{\mathrm{~d} \xi}\left(\xi \frac{\mathrm{~d} R}{\mathrm{~d} \xi}\right)=\sum_{m=0}^{\infty}(\alpha+m)^{2} c_{m} \xi^{\alpha+m}
$$

Now, we can plug in...

$$
\sum_{m=0}^{\infty}(\alpha+m)^{2} c_{m} \xi^{\alpha+m}+\left[\xi^{2}-n^{2}\right] \sum_{m=0}^{\infty} c_{m} \xi^{\alpha+m}=0
$$

Bessel Functions

We now have

$$
\sum_{m=0}^{\infty}\left[(\alpha+m)^{2}-n^{2}\right] c_{m} \xi^{\alpha+m}+\sum_{m=0}^{\infty} c_{m} \xi^{\alpha+m+2}=0
$$

or

$$
\sum_{m=0}^{\infty}\left[(\alpha+m)^{2}-n^{2}\right] c_{m} \xi^{\alpha+m}+\sum_{m=2}^{\infty} c_{m-2} \xi^{\alpha+m}=0
$$

We can proceed by forcing the coefficients of each term to vanish. We fix $c_{0} \neq 0$ because of the homogeneity of the equation.

Bessel Functions

For ξ^{α} :

$$
\left(\alpha^{2}-n^{2}\right)=0
$$

since $c_{0} \neq 0$ by assumption,

$$
\alpha= \pm n .
$$

For $\xi^{\alpha+1}$:

$$
\left[(\alpha+1)^{2}-n^{2}\right] c_{1}=0
$$

Thus

$$
c_{1}=0
$$

Bessel Functions

Finally, for all other $\xi^{\alpha+m}$:

$$
\left[(\alpha+m)^{2}-n^{2}\right] c_{m}+c_{m-2}=0
$$

Assuming $\alpha=n$,

$$
c_{m}=\frac{-1}{m(m+2 n)} c_{m-2}
$$

Thus, immediately, for $p \in \mathbb{Z}$

$$
c_{2 p+1}=0
$$

Bessel Functions

Given that the odd coefficients vanish, we let $m=2 p$ and let

$$
a_{p}=c_{2 p}
$$

So...

$$
a_{p}=c_{2 p}=\frac{-1}{4 p(p+n)} c_{2 p-2}=a_{p-1}
$$

and

$$
\begin{aligned}
& a_{1}=\frac{-1}{4(n+1)} a_{0} \\
& a_{2}=\frac{-1}{4(n+2)(2)} \frac{-1}{4(n+1)} a_{0} \\
& a_{3}=\frac{-1}{4(n+3)(3)} \frac{-1}{4(n+2)(2)} \frac{-1}{4(n+1)} a_{0}
\end{aligned}
$$

Bessel Functions

Thus, in general,

$$
a_{p}=\frac{(-1)^{p} n!}{4^{p} p!(n+p)!} a_{0}
$$

Thus, if we choose $2^{-n} n!a_{0}=1$, and recall

$$
R(\xi)=\xi^{\alpha} \sum_{m=0}^{\infty} c_{m} \xi^{m}=\sum_{p=0}^{\infty} a_{p} \xi^{2 p+n}
$$

we can (finally!) define the

Bessel Function of Order n

$$
J_{n}(\xi)=\sum_{p=0}^{\infty} \frac{(-1)^{p}}{p!(n+p)!}\left(\frac{\xi}{2}\right)^{2 p+n}
$$

Observations

- This function is entire; it exists and is differentiable for all ξ.
- This is only one solution of the equation:
- We will get to the other shortly.
- The other solution is not regular at the origin since the coefficient of the second order derivative vanishes there.
- Note that the solution looks like the corresponding static (ρ^{n}) solution at the origin.
- Note also that fractional orders are possible, but do not arise as commonly in applications (Why not?)

The Other Solution

Our original equation (normalized) was

$$
\xi \frac{\mathrm{d}}{\mathrm{~d} \xi}\left(\xi \frac{\mathrm{~d} u}{\mathrm{~d} \xi}\right)+\left[\xi^{2}-n^{2}\right] u=0
$$

The other solution, v must solve

$$
\xi \frac{\mathrm{d}}{\mathrm{~d} \xi}\left(\xi \frac{\mathrm{~d} v}{\mathrm{~d} \xi}\right)+\left[\xi^{2}-n^{2}\right] v=0
$$

Multiply the first equation by v and the second by u, subtract, and divide by ξ :

$$
v \frac{\mathrm{~d}}{\mathrm{~d} \xi}\left(\xi \frac{\mathrm{~d} u}{\mathrm{~d} \xi}\right)-u \frac{\mathrm{~d}}{\mathrm{~d} \xi}\left(\xi \frac{\mathrm{~d} v}{\mathrm{~d} \xi}\right)=0
$$

The Other Solution

Expanding this out

$$
\xi\left(u^{\prime \prime} v-u v^{\prime \prime}\right)+u^{\prime} v-u v^{\prime}=0
$$

or

$$
\frac{\mathrm{d}}{\mathrm{~d} \xi}\left[\xi\left(u^{\prime} v-u v^{\prime}\right)\right]=0
$$

It therefore stands to reason that

$$
\xi\left(u^{\prime} v-u v^{\prime}\right)=C
$$

or

$$
\frac{u^{\prime} v-u v^{\prime}}{v^{2}}=\frac{C_{2}}{\xi v^{2}}
$$

The Other Solution

This of course implies

$$
\frac{\mathrm{d}}{\mathrm{~d} \xi}\left(\frac{u}{v}\right)=\frac{C_{2}}{\xi v^{2}}
$$

This can be integrated to give

$$
\frac{u}{v}=C_{1}+C_{2} \int \frac{\mathrm{~d} \xi}{\xi v^{2}}
$$

or

$$
u(\xi)=C_{1} v(\xi)+C_{2} v(\xi) \int \frac{\mathrm{d} \xi}{\xi v(\xi)^{2}}
$$

The Other Solution

Setting $C_{1}=0, v(\xi)=J_{n}(\xi)$, expanding the series and integrating gives rise to the

Neumann Function

$$
Y_{n}(\xi)=J_{n}(\xi) \int \frac{\mathrm{d} \xi}{\xi J_{n}^{2}(\xi)}
$$

This function

- This function is also called the "Bessel function of the second kind."
- It is sometimes denoted by $N_{n}(\xi)$.
- This function is not defined for $\xi=0$.

Graphs of $J_{n}(x)$

D. S. Weile

Cylindrical Waves

Graphs of $Y_{n}(x)$

Hankel Functions

- The J_{n} and Y_{n} are both real functions for real arguments.
- They must therefore represent standing waves (Why?).

Hankel Functions

- The J_{n} and Y_{n} are both real functions for real arguments.
- They must therefore represent standing waves (Why?).
- Hankel functions represent traveling waves.

Traveling waves are represented by

Hankel Functions

$$
\begin{aligned}
& H_{n}^{(1)}(x)=J_{n}(x)+j Y_{n}(x) \\
& H_{n}^{(2)}(x)=J_{n}(x)-j Y_{n}(x)
\end{aligned}
$$

These are called Hankel functions of the first and second kind, respectively.

Small Argument Behavior

- Suppose $\operatorname{Re}(\nu)>0$.
- Let $\ln \gamma=0.5772 \Rightarrow \gamma=1.781$ (i.e. $\ln \gamma$ is "Euler's constant").
Consider the behavior of the Bessel and Neumann functions as $x \rightarrow 0$:

$$
\begin{aligned}
& J_{0}(x) \rightarrow 1 \\
& Y_{0}(x) \rightarrow \frac{2}{\pi} \ln \frac{\gamma x}{2} \\
& J_{\nu}(x) \rightarrow \frac{1}{\nu!}\left(\frac{x}{2}\right)^{\nu} \\
& Y_{\nu}(x) \rightarrow-\frac{(\nu-1)!}{\pi}\left(\frac{2}{x}\right)^{\nu}
\end{aligned}
$$

The only Bessel functions finite at the origin are the $J_{n}(x)$.

Large Argument Behavior

As $x \rightarrow \infty$:

$$
\begin{aligned}
& J_{\nu}(x) \rightarrow \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi}{4}-\frac{\nu \pi}{2}\right) \\
& Y_{\nu}(x) \rightarrow \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{\pi}{4}-\frac{\nu \pi}{2}\right)
\end{aligned}
$$

Given the definition of Hankel functions, we must also have

$$
\begin{aligned}
& H_{\nu}^{(1)}(x) \rightarrow \sqrt{\frac{2}{j \pi x}} j^{-\nu} e^{j x} \\
& H_{\nu}^{(2)}(x) \rightarrow \sqrt{\frac{2 j}{\pi x}} j^{\nu} e^{-j x}
\end{aligned}
$$

- The $H_{\nu}^{(2)}$ represent outward traveling waves.
- Why are these all proportional to $x^{-\frac{1}{2}}$?

Imaginary Arguments

- In applications, we get Bessel functions of dimensionless quantities: $B_{n}\left(k_{\rho} \rho\right)$.
- If k_{ρ} becomes imaginary, we have evanescence in the ρ direction.

For these applications, we define the

Modified Bessel Functions

$$
\begin{aligned}
I_{n}(x) & =j^{n} J_{n}(-j x) \\
K_{n}(x) & =\frac{\pi}{2}(-j)^{n+1} H_{n}^{(2)}(-j x)
\end{aligned}
$$

These are real functions of real arguments.

Cylindrical Waves
Guided Waves

Separation of Variables
Bessel Functions
TE_{z} and TM_{z} Modes

Graphs of $I_{n}(x)$

Separation of Variables
Bessel Functions
TE_{z} and TM_{z} Modes

Graphs of $K_{n}(x)$

Outline

(1) Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_{z} and TM_{z} Modes

2) Guided Waves

- Cylindrical Waveguides
- Radial Waveguides
- Cavities

Transverse Magnetic Fields

Let

$$
\frac{\mathbf{A}}{\mu}=\mathbf{u}_{z} \psi
$$

for some solution of the Helmholtz equation ψ. Then

$$
\begin{array}{ll}
H_{\rho}=\frac{1}{\rho} \frac{\partial \psi}{\partial \phi} & E_{\rho}=\frac{1}{\hat{y}} \frac{\partial^{2} \psi}{\partial \rho \partial z} \\
H_{\phi}=-\frac{\partial \psi}{\partial \rho} & E_{\phi}=\frac{1}{\hat{y} \rho} \frac{\partial^{2} \psi}{\partial \phi \partial z} \\
H_{z}=0 & E_{z}=\frac{1}{\hat{y}}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi
\end{array}
$$

This is a general formula for a TM_{z} field; $H_{z}=0$.

Transverse Electric Fields

Let

$$
\frac{\mathbf{F}}{\epsilon}=\mathbf{u}_{z} \psi
$$

for some solution of the Helmholtz equation ψ. Then

$$
\begin{array}{ll}
E_{\rho}=-\frac{1}{\rho} \frac{\partial \psi}{\partial \phi} & H_{\rho}=\frac{1}{\hat{\Sigma}} \frac{\partial^{2} \psi}{\partial \rho \partial z} \\
E_{\phi}=\frac{\partial \psi}{\partial \rho} & H_{\phi}=\frac{1}{\hat{\Sigma} \rho} \frac{\partial^{2} \psi}{\partial \phi \partial z} \\
E_{z}=0 & H_{z}=\frac{1}{\hat{z}}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi
\end{array}
$$

This is a general formula for a TE_{z} field; $E_{z}=0$.

Outline

(1) Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_{z} and TM_{z} Modes
(2) Guided Waves
- Cylindrical Waveguides
- Radial Waveguides
- Cavities

The Circular Waveguide

- A circular waveguide is a tube of (say) radius a.
- The field must be finite at $\rho=0$, so only J_{n} are admissible.

Without further ado, the wave function for TM_{z} waves is

$$
\psi=J_{n}\left(k_{\rho} \rho\right)\left\{\begin{array}{c}
\sin n \phi \\
\cos n \phi
\end{array}\right\} e^{-j k_{z} z}
$$

- The azimuthal dependence keeps the transverse fields in phase; either sine or cosine can be chosen.
- For $n=0$ we obviously choose the cosine.
- The restriction to $n \in \mathbb{Z}$ is required because of the periodic boundary condition. Other boundaries would lead to other results.

Boundary Conditions

Since

$$
E_{z}=\frac{1}{\hat{y}}\left(k^{2}-k_{z}^{2}\right) \psi
$$

we need ψ to vanish on the walls. This implies

$$
J_{n}\left(k_{\rho} a\right)=0
$$

giving the
Values for k_{ρ}

$$
k_{\rho}=\frac{\chi_{n p}}{a}
$$

where $\chi_{n p}$ is the $p^{\text {th }}$ solution of

$$
J_{n}\left(\chi_{n p}\right)=0
$$

Roots of Bessel Functions, $\chi_{n p}$

The roots of the Bessel functions are well tabulated.

	$n=0$	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
$p=1$	2.405	3.832	5.136	6.380	7.588	8.771
$p=2$	5.520	7.016	8.417	9.761	11.065	12.339
$p=3$	8.654	10.173	11.620	13.015	14.732	
$p=4$	11.792	13.324	14.796			

For TM_{z} modes, we have:

$$
\psi_{n p}^{\mathrm{TM}}=J_{n}\left(\frac{\chi_{n p} \rho}{a}\right)\left\{\begin{array}{c}
\sin n \phi \\
\cos n \phi
\end{array}\right\} e^{-j k_{z} z}
$$

with

$$
\left(\frac{\chi_{n p}}{a}\right)^{2}+k_{z}^{2}=k^{2}
$$

$T E_{z}$ Modes

The wave function for TE_{z} waves is

$$
\psi=J_{n}\left(k_{\rho} \rho\right)\left\{\begin{array}{c}
\sin n \phi \\
\cos n \phi
\end{array}\right\} e^{-j k_{z} z}
$$

just as for TM_{z} and for the same reasons. (Here, of course, $\mathbf{F}=\epsilon \psi \mathbf{u}_{z}$.)
Now

$$
E_{\phi}=\frac{\partial \psi}{\partial \rho}
$$

so we need

$$
J_{n}^{\prime}\left(k_{\rho} a\right)=0
$$

TE z Modes

We therefore find the radial wavenumber must be of the form
Values for k_{ρ}

$$
k_{\rho}=\frac{\chi_{n p}^{\prime}}{a}
$$

where $\chi_{n p}^{\prime}$ is the $\mathrm{p}^{\text {th }}$ solution of

$$
J_{n}^{\prime}\left(\chi_{n p}^{\prime}\right)=0
$$

Roots of Bessel Function Derivatives, $\chi_{n p}^{\prime}$

The roots of the Bessel function derivatives are also well tabulated.

	$n=0$	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
$p=1$	3.832	1.841	3.054	4.201	5.317	6.416
$p=2$	7.016	5.331	6.706	87.015	9.282	10.520
$p=3$	10.173	8.536	9.969	11.346	12.682	13.987
$p=4$	13.324	11.706	13.170			

For TE_{z} modes, we have:

$$
\psi_{n p}^{\mathrm{TE}}=J_{n}\left(\frac{\chi_{n p}^{\prime} \rho}{a}\right)\left\{\begin{array}{c}
\sin n \phi \\
\cos n \phi
\end{array}\right\} e^{-j k_{z} z}
$$

with

$$
\left(\frac{\chi_{n p}^{\prime}}{a}\right)^{2}+k_{z}^{2}=k^{2}
$$

Cutoff

Cutoff occurs when $k_{z}=0$ We can thus compute the
Cutoff Wavenumber

$$
\left(k_{c}\right)_{n p}^{\mathrm{TM}}=\frac{\chi_{n p}}{a} \quad\left(k_{\mathrm{c}}\right)_{n p}^{\mathrm{TE}}=\frac{\chi_{n p}^{\prime}}{a}
$$

and the

Cutoff Frequencies

$$
\left(f_{\mathrm{c}}\right)_{n p}^{\mathrm{TM}}=\frac{\chi_{n p}}{2 \pi a \sqrt{\mu \epsilon}} \quad\left(f_{\mathrm{c}}\right)_{n p}^{\mathrm{TE}}=\frac{\chi_{n p}^{\prime}}{2 \pi a \sqrt{\mu \epsilon}}
$$

- Cutoff frequency is thus proportional to the roots $\chi_{n p}$ and $\chi_{n p}^{\prime}$.
- The fundamental mode is TE_{11}.

Modal Impedance

The calculation of impedance is just like that in rectangular waveguides. The result is the same too:

$$
Z_{0}^{\mathrm{TE}}=\frac{E_{\rho}}{H_{\phi}}=-\frac{E_{\phi}}{H_{\rho}}=\frac{\omega \mu}{k_{z}}
$$

and

$$
Z_{0}^{\mathrm{TM}}=\frac{E_{\rho}}{H_{\phi}}=-\frac{E_{\phi}}{H_{\rho}}=\frac{k_{z}}{\omega \epsilon}
$$

Other cylindrical waveguides can be analyzed similarly; homework will contain examples.

Outline

(1) Cylindrical Waves
 - Separation of Variables
 - Bessel Functions
 - TE_{z} and TM_{z} Modes

(2) Guided Waves

- Cylindrical Waveguides
- Radial Waveguides
- Cavities

Radial Waveguides

- In addition to cylindrical waveguides, we can consider guides that carry waves radially.
- The simplest such guide is a parallel plate waveguide, analyzed to consider radial propagation.
- We call the distance between the plates (in the z-direction) a.

Radial Waveguides

- In addition to cylindrical waveguides, we can consider guides that carry waves radially.
- The simplest such guide is a parallel plate waveguide, analyzed to consider radial propagation.
- We call the distance between the plates (in the z-direction) a.
- For TM_{z} waves, we need $E_{\rho}=E_{\phi}=0$.

Radial Waveguides

- In addition to cylindrical waveguides, we can consider guides that carry waves radially.
- The simplest such guide is a parallel plate waveguide, analyzed to consider radial propagation.
- We call the distance between the plates (in the z-direction) a.
- For TM_{z} waves, we need $E_{\rho}=E_{\phi}=0$.
- Both components are proportional to a derivative of ψ in their respective directions, so the wave functions are

Radial Waveguides

- In addition to cylindrical waveguides, we can consider guides that carry waves radially.
- The simplest such guide is a parallel plate waveguide, analyzed to consider radial propagation.
- We call the distance between the plates (in the z-direction) a.
- For TM_{z} waves, we need $E_{\rho}=E_{\phi}=0$.
- Both components are proportional to a derivative of ψ in their respective directions, so the wave functions are
TM_{z} Wavefunctions for Parallel Plate Guide

$$
\psi_{m n}^{\mathrm{TM}}=\cos \left(\frac{m \pi}{a} z\right) \cos n \phi H_{n}^{(2)}\left(k_{\rho} \rho\right)
$$

Radial Wavguides

- The solution on the previous slide chose $\cos n \phi$ for simplicity; $\sin n \phi$ is legal but gives no new information.
- The solution on the previous slide is for outgoing waves, incoming waves are proportional to $H_{n}^{(1)}\left(k_{\rho} \rho\right)$.
- For TE_{z} waves, we need the same components to vanish. Here, they are directly proportional to the wavefunction so we find the

TE_{z} Wavefunctions for Parallel Plate Guide

$$
\psi_{m n}^{\mathrm{TE}}=\sin \left(\frac{m \pi}{a} z\right) \cos n \phi H_{n}^{(2)}\left(k_{\rho} \rho\right)
$$

In either case we find that

$$
k_{\rho}=\sqrt{k^{2}-\left(\frac{m \pi}{a}\right)^{2}}
$$

Phase Constant and Velocity: An Aside

In general, any wave can be written in polar form

$$
\psi(x, y, z)=A(x, y, z) e^{j \Phi(x, y, z)}
$$

where $A, \Phi \in \mathbb{R}$. In the time domain, this wave becomes

$$
\operatorname{Re}\left\{A(x, y, z) e^{j \Phi(x, y, z)} e^{j \omega t}\right\}
$$

A surface of constant phase thus has the form

$$
\omega t+\Phi(x, y, z)=\text { constant }
$$

Phase Constant and Velocity: An Aside

This equation can be differentiated with respect to t to give

$$
\omega+\nabla \Phi \cdot \mathbf{v}_{\mathrm{p}}=0
$$

- This equation cannot be solved per se; it is one equation in three unknowns!
- If we choose a direction, we can solve it along that direction (i.e., we can find the speed we need to move to keep the phase fixed.)
Thus, we have the
Phase Velocity in the x-Direction

$$
v_{p x}=-\frac{\omega}{\frac{\partial \Phi}{\partial x}}
$$

Phase Constant and Velocity: An Aside

We can also define the
Phase Velocity in the Direction of Travel

$$
v_{p}=-\frac{\omega}{|\nabla \Phi|}
$$

In any case, we have the

Wavevector

$$
\boldsymbol{\beta}=-\nabla \Phi
$$

We would like to see how these ideas apply to radial travel.

Phase Velocity of Radial Waves

From the above discussion, we can define

$$
\beta_{\rho}=-\frac{\mathrm{d}}{\mathrm{~d} \rho} \tan ^{-1} \frac{Y_{n}\left(k_{\rho} \rho\right)}{J_{n}\left(k_{\rho} \rho\right)}
$$

Let us compute this:

$$
\begin{aligned}
-\frac{\mathrm{d}}{\mathrm{~d} \rho} \tan ^{-1} \frac{Y_{n}\left(k_{\rho} \rho\right)}{J_{n}\left(k_{\rho} \rho\right)} & =-\frac{1}{1+\left(\frac{Y_{n}\left(k_{\rho} \rho\right)}{J_{n}\left(k_{\rho} \rho\right)}\right)^{2}}\left[\frac{\mathrm{~d}}{\mathrm{~d} \rho} \frac{Y_{n}\left(k_{\rho} \rho\right)}{J_{n}\left(k_{\rho} \rho\right)}\right] \\
& =-\frac{k_{\rho}}{1+\left(\frac{Y_{n}\left(k_{\rho} \rho\right)}{J_{n}\left(k_{\rho} \rho\right)}\right)^{2}} \frac{Y_{n}^{\prime}\left(k_{\rho} \rho\right) J_{n}\left(k_{\rho} \rho\right)-Y_{n}\left(k_{\rho} \rho\right) J_{n}^{\prime}\left(k_{\rho} \rho\right)}{J_{n}^{2}\left(k_{\rho} \rho\right)}
\end{aligned}
$$

Phase Velocity of Radial Waves

The Wronskian

$$
J_{n}(x) Y_{n}^{\prime}(x)-J_{n}^{\prime}(x) Y_{n}(x)=\frac{2}{\pi x}
$$

Thus

$$
\begin{aligned}
\beta_{\rho} & =\frac{k_{\rho}}{1+\left(\frac{Y_{n}\left(k_{\rho} \rho\right)}{J_{n}\left(k_{\rho} \rho\right)}\right)^{2}} \frac{1}{J_{n}^{2}\left(k_{\rho} \rho\right)} \frac{2}{\pi k_{\rho} \rho} \\
& =\frac{2}{\pi \rho} \frac{1}{J_{n}^{2}\left(k_{\rho} \rho\right)+Y_{n}^{2}\left(k_{\rho} \rho\right)}
\end{aligned}
$$

Phase Velocity of Radial Waves

Now, as $\rho \rightarrow \infty$, we can substitute the large argument approximations:

$$
\begin{aligned}
& \beta_{\rho}=\frac{2}{\pi \rho} \frac{1}{J_{n}^{2}\left(k_{\rho} \rho\right)+Y_{n}^{2}\left(k_{\rho} \rho\right)} \\
& \rightarrow \frac{2}{\pi \rho}\{ \left\{\sqrt{\frac{2}{\pi k_{\rho}}} \cos \left(k_{\rho} \rho-\frac{\pi}{4}-\frac{n \pi}{2}\right)\right]^{2} \\
&+ {\left.\left[\sqrt{\frac{2}{\pi k_{\rho}}} \sin \left(k_{\rho} \rho-\frac{\pi}{4}-\frac{n \pi}{2}\right)\right]^{2}\right\}^{-1}=k_{\rho} }
\end{aligned}
$$

Why would we expect this?

Modal Impedance and Cutoff

Impedance can be computed in the usual manner:
Outward-Travelling Modal Impedance

$$
\begin{aligned}
& Z_{+\rho^{\mathrm{TM}}}=-\frac{E_{z}}{H_{\phi}}=\frac{k_{\rho}}{j \omega \epsilon} \frac{H_{n}^{(2)}\left(k_{\rho} \rho\right)}{H_{n}^{(2) \prime}\left(k_{\rho} \rho\right)} \\
& Z_{+\rho^{\mathrm{TE}}}=\frac{E_{\phi}}{H_{z}}=\frac{j \omega \mu}{k_{\rho}} \frac{H_{n}^{(2)}\left(k_{\rho} \rho\right)}{H_{n}^{(2) \prime}\left(k_{\rho} \rho\right)}
\end{aligned}
$$

Note that this is not purely real. Now, it should be remembered that

$$
k_{\rho}=\sqrt{k^{2}-\left(\frac{m \pi}{a}\right)^{2}}
$$

Modal Impedance and Cutoff

We thus have a purely imaginary radial wavenumber $(-j \alpha)$ if $k a<m \pi$. Recall

$$
H_{n}^{(2)}(-j \alpha \rho)=\frac{2}{\pi} j^{n+1} K_{n}(\alpha \rho)
$$

Plugging this in to our expression for TM impedance, we find

$$
Z_{+\rho^{\mathrm{TM}}}=\frac{j \alpha}{\omega \epsilon} \frac{K_{n}(\alpha \rho)}{K_{n}^{\prime}(\alpha \rho)}
$$

Since the K_{n} are real functions of real arguments, this expression is purely imaginary and no energy propagates.

TMon Modes

If

$$
a<\frac{\lambda}{2}
$$

only $m=0$ modes propagate. (These are all TMz.)
In this case we have
TM ${ }_{0 n}$ Wavefunctions

$$
\psi_{0 n}^{\mathrm{TM}}=\cos n \phi H_{n}^{(2)}(k \rho)
$$

- How can large n modes propagate?
- Why is this cause for concern?

Impedance of TMon Modes

To understand what is happening, we look at the expression

$$
Z_{+\rho}^{\mathrm{TM}}=-j \eta \frac{H_{n}^{(2)}(k \rho)}{H_{n}^{(2) \prime}(k \rho)}
$$

Using a well-known identity (obtained by differentiating and manipulating Bessel's equation) we can write

$$
Z_{+\rho}^{\text {TM }}=-j \eta \frac{H_{n}^{(2)}(k \rho)}{\frac{n}{x} H_{n}^{(2)}(k \rho)-H_{n+1}^{(2)}(k \rho)}
$$

By examining the (absolute) phase angle of the impedance, we can see how efficiently each mode carries energy.

Cylindrical Waves

Cylindrical Waveguides
Radial Waveguides
Cavities

Absolute Impedance Phase vs. k ρ

D. S. Weile

Cylindrical Waves

Gradual Cutoff

- The last slide shows that as the frequency increases, each mode carries power more efficiently.
- The transition from storing energy to carrying it occurs at

$$
k \rho=n
$$

- This is exactly where the radial waveguide is n wavelengths in circumference.
- This phenomenon is called gradual cutoff and it is related to the poor radiation ability of small antennas.

The TM ${ }_{00}$ mode

- The dominant mode in the radial parallel plate guide is the TM 00 mode.
- The outwardly traveling fields are given by

$$
\begin{aligned}
E_{z}^{+} & =\frac{k^{2}}{j \omega \epsilon} H_{0}^{(2)}(k \rho) \\
H_{\phi}^{+} & =k H_{1}^{(2)}(k \rho)
\end{aligned}
$$

- This is a TEM mode and can be analyzed with a transmission line analysis if desired.
- The inductance/capacitance per unit length change with distance.

Feynman's Analysis

- The Nobel Laureate Richard P. Feynman used a particularly simple approach to the analysis of cylindrical resonators.
- The approach also demonstrates the evolution from statics to dynamics.
- It also introduces Bessel Functions without partial (or even ordianary) differential equations!

So consider a circular capacitor with a static electric field E_{0}. If the field begins to oscillate with frequency ω, a magnetic field is created.

Feynman's Analysis

To find the magnetic field, we can apply the Ampere-Maxwell law to a circle C of radius ρ centered on the axis:

$$
\begin{aligned}
\oint_{\partial C} \mathbf{H} \cdot \mathrm{~d} \mathbf{I} & =j \omega \epsilon \iint_{C} \mathbf{E} \cdot \mathrm{~d} \mathbf{S} \\
2 \pi \rho H_{\phi} & =j \omega \epsilon \pi \rho^{2} E_{z} \\
H_{\phi} & =\frac{j \omega \epsilon \rho}{2} E_{0} \\
& =\frac{j k \rho}{2 \eta} E_{0}
\end{aligned}
$$

Feynman's Analysis

Now, this magnetic field is also oscillating, so the original electric field is also wrong.

- We will call the original field $E_{1}=E_{0}$; the field at the center of the plate.
- The magnetic field we have found is H_{1}.
- It will give rise to an E_{2}.
- To find E_{2} we use the surface S shown below.

Feynman's Analysis

To find the correction to E, we use Faraday's Law.

$$
\begin{aligned}
\oint_{\partial S} \mathbf{E} \cdot \mathrm{~d} \mathbf{l} & =-j \omega \mu \iint_{S} \mathbf{H} \cdot \mathrm{~d} \mathbf{S} \\
-\int_{0}^{a} E_{2} \mathrm{~d} z & =-j \omega \mu \int_{0}^{a} \mathrm{~d} z \int_{0}^{\rho} \mathrm{d} \rho^{\prime} H_{1} \\
E_{2} & =j \omega \mu \int_{0}^{\rho} \mathrm{d} \rho^{\prime} \frac{j k \rho^{\prime}}{2 \eta} E_{0} \\
& =-\frac{k^{2} \rho^{2}}{2^{2}} E_{0}
\end{aligned}
$$

Thus, at the moment,

$$
E_{z}=E_{1}+E_{2}=E_{0}\left(1-\frac{k^{2} \rho^{2}}{2^{2}}\right)
$$

Feynman's Analysis

We can now correct \mathbf{H} again:

$$
\begin{aligned}
\oint_{\partial C} \mathbf{H} \cdot \mathrm{dl} & =j \omega \epsilon \iint_{C} \mathbf{E} \cdot \mathrm{~d} \mathbf{S} \\
2 \pi \rho H_{2} & =j \omega \epsilon \int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\rho} \rho \mathrm{d} \rho E_{2} \\
H_{2} & =-\frac{j \omega \epsilon k^{2} E_{0}}{2^{2} \rho} \int_{0}^{\rho} \mathrm{d} \rho \rho^{3} \\
& =-\frac{j k^{3} \rho^{3}}{2^{2} \cdot 4} \frac{E_{0}}{\eta}
\end{aligned}
$$

Feynman's Analysis

And, we can now correct E again:

$$
\begin{aligned}
\oint_{\partial S} \mathbf{E} \cdot \mathrm{~d} \mathbf{l} & =-j \omega \mu \iint_{S} \mathbf{H} \cdot \mathrm{~d} \mathbf{S} \\
-\int_{0}^{a} E_{3} \mathrm{~d} z & =-j \omega \mu \int_{0}^{a} \mathrm{~d} z \int_{0}^{\rho} \mathrm{d} \rho^{\prime} H_{2} \\
E_{3} & =\omega \mu \int_{0}^{\rho} \mathrm{d} \rho^{\prime} \frac{k^{3} \rho^{\prime 3}}{2^{2} \cdot 4} \frac{E_{0}}{\eta} \\
& =\frac{k^{4} \rho^{4}}{2^{2} \cdot 4^{2}} E_{0}
\end{aligned}
$$

Thus, at the moment,

$$
E_{z}=E_{1}+E_{2}+E_{3}=E_{0}\left(1-\frac{k^{2} \rho^{2}}{2^{2}}+\frac{k^{4} \rho^{4}}{2^{2} \cdot 4^{2}}\right)
$$

Feynman's Analysis

- The importance of these terms we keep adding is proportional to
- Frequency
- Plate size

In this way, we see how statics naturally morphs into dynamics.

- It is easy to see that the E-field found after continuing the process is

$$
\begin{aligned}
E=E_{0}\left(1-\frac{k^{2} \rho^{2}}{2^{2}}\right. & \left.+\frac{k^{4} \rho^{4}}{2^{2} \cdot 4^{2}}-\frac{k^{4} \rho^{4}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots\right) \\
& =E_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(\frac{k \rho}{2}\right)^{2}=E_{0} J_{0}(k \rho)
\end{aligned}
$$

Wedge Waveguide

- A wedge guide is formed by two half-planes inclined at an angle ϕ_{0}.
- The problem is independent of z.
- For the TM_{z} mode, we must have $E_{z}=0$ on the plates.

Thus

$$
\psi \propto \sin \left(\frac{p \pi}{\phi_{0}} \phi\right)
$$

Wedge Waveguide Wavefunctions

Now, the order of the Bessel function equals the coefficient of ϕ. We thus have the

TM Outwardly Traveling Wavefunctions

$$
\psi_{\rho}^{\mathrm{TM}}=\sin \left(\frac{p_{\pi}}{\phi_{0}} \phi\right) H_{\frac{p \pi}{\phi_{0}}}^{(2)}(k \rho)
$$

By the same token, we have the
TE Outwardly Traveling Wavefunctions

$$
\psi_{\rho}^{\mathrm{TE}}=\cos \left(\frac{p \pi}{\phi_{0}} \phi\right) H_{\substack{\phi_{0}}}^{(2)}(k \rho)
$$

Observations

- Most of the discussion of the radial parallel plate guide applies here:
- Wave impedances are given by the same formulas (with fractional orders),
- Gradual cutoff occurs when $\frac{p \pi}{\phi_{0}}=k \rho$. Why?
- The dominant mode is TE_{0}; it is a TEM mode derivable by transmission line theory. Its fields are

TE ${ }_{0}$ Mode Fields

$$
\begin{aligned}
E_{\phi}^{+} & =k H_{1}^{(2)}(k \rho) \\
H_{z}^{+} & =\frac{k^{2}}{j \omega \mu} H_{0}^{(2)}(k \rho)
\end{aligned}
$$

Outline

(1) Cylindrical Waves

- Separation of Variables
- Bessel Functions
- TE_{z} and TM_{z} Modes
(2) Guided Waves
- Cylindrical Waveguides
- Radial Waveguides
- Cavities

The Circular Cavity

- The circular cavity is a circular waveguide shorted at both ends.
- We will assume the height of the cavity is denoted by d.

For TM_{z} modes,

$$
E_{\rho} \propto \frac{\partial^{2} \psi}{\partial \rho \partial z}
$$

so we must have (assuming $\cos n \phi$ variation)

TMz Modes

$$
\psi_{n p q}^{\mathrm{TM}}=J_{n}\left(\frac{\chi_{n p} \rho}{a}\right) \cos n \phi \cos \left(\frac{q \pi z}{d}\right)
$$

The Circular Cavity

By the same token

$T E_{z}$ Modes

$$
\psi_{n p q}^{\mathrm{TE}}=J_{n}\left(\frac{\chi_{n p}^{\prime} \rho}{a}\right) \cos n \phi \sin \left(\frac{q \pi z}{d}\right)
$$

We can also immediately write
Separation Equations

TM: $\quad\left(\frac{\chi_{n p}}{a}\right)^{2}+\left(\frac{q \pi}{d}\right)^{2}=k^{2}$
TE: $\quad\left(\frac{\chi_{n p}^{\prime}}{a}\right)^{2}+\left(\frac{q \pi}{d}\right)^{2}=k^{2}$

Resonant Frequencies

From these equations it is a simply matter to compute

Resonant Frequencies

$$
\begin{aligned}
& \left(f_{r}\right)_{n p q}^{\mathrm{TM}}=\frac{1}{2 \pi \sqrt{\mu \epsilon}} \sqrt{\left(\frac{\chi_{n p}}{a}\right)^{2}+\left(\frac{q \pi}{d}\right)^{2}} \\
& \left(f_{r}\right)_{n p q}^{\mathrm{TE}}=\frac{1}{2 \pi \sqrt{\mu \epsilon}} \sqrt{\left(\frac{\chi_{n p}^{\prime}}{a}\right)^{2}+\left(\frac{q \pi}{d}\right)^{2}}
\end{aligned}
$$

If $d<2 a$ the TM_{010} mode is dominant, otherwise the TE_{111} mode is.

Quality Factor

- It is also straightforward to compute the Q of the circular cavity.
- We will do so only for the (usually dominant) TM_{010} mode.

Given ψ, it is easy to show that the modal fields are

TM 010 Mode Fields

$$
\begin{aligned}
E_{z} & =\frac{k^{2}}{j \omega \epsilon} J_{0}\left(\frac{\chi_{01} \rho}{a}\right) \\
H_{\phi} & =\frac{\chi_{01}}{a} J_{1}\left(\frac{\chi_{01} \rho}{a}\right)
\end{aligned}
$$

Quality Factor

Now, the total energy stored is

$$
\begin{aligned}
W=2 \overline{W_{\mathrm{e}}}= & \frac{\epsilon}{2} \int_{0}^{d} \int_{0}^{a} \int_{0}^{2 \pi}|E|^{2} \rho \mathrm{~d} \phi \mathrm{~d} \rho \mathrm{~d} z \\
& =\frac{k^{4}}{\omega^{2} \epsilon} \pi d \int_{0}^{a} \rho J_{0}^{2}\left(\frac{\chi_{01} \rho}{a}\right) \mathrm{d} \rho=\frac{\pi k^{4} d a^{2}}{2 \omega^{2} \epsilon} J_{1}^{2}\left(\chi_{01}\right)
\end{aligned}
$$

To compute the energy absorbed by the walls, we appeal to the approximate formula

$$
\overline{P_{\mathrm{d}}}=\frac{\mathcal{R}}{2} \oiint_{\text {walls }}|H|^{2} \mathrm{~d} S
$$

Quality Factor

On the cylindrical side wall of the cavity, the magnetic field is constant, so the value of this integral is

$$
\overline{P_{\mathrm{d}}}=\pi a d \mathcal{R} J_{1}^{2}\left(\chi_{01}\right)
$$

On the other two walls together we have

$$
\begin{aligned}
\overline{P_{\mathrm{d}}}=\mathcal{R} \int_{0}^{a} \int_{0}^{2 \pi}\left(\frac{\chi_{01}}{a}\right)^{2} J_{1}^{2}\left(\frac{\chi_{01} \rho}{a}\right) & \rho \mathrm{d} \phi \mathrm{~d} \rho \\
=2 \pi \mathcal{R}\left(\frac{\chi_{01}}{a}\right)^{2} \int_{0}^{a} J_{1}^{2} & \left(\frac{\chi_{01} \rho}{a}\right) \rho \mathrm{d} \rho \\
& =\pi a^{2} \mathcal{R}\left(\frac{\chi_{01}}{a}\right)^{2} J_{1}^{2}\left(\chi_{01}\right)
\end{aligned}
$$

Quality Factor

Plugging into our formula for the quality factor we find

$$
Q=\frac{\omega W}{\overline{P_{\mathrm{d}}}}=\frac{d k^{4} a^{3}}{2 \omega \epsilon \mathcal{R} \chi_{01}^{2}(d+a)}
$$

Now, $k a=\chi_{01}$ and $\omega \epsilon=\frac{k}{\eta}$, so we find the final formula for
The Quality Factor

$$
Q=\frac{\eta \chi_{01} d}{2 \mathcal{R}(a+d)}
$$

