Spectroscopic Literature

D. C. Harris, M.D.Bertolucci, Symmetry and Spectroscopy
P. W. Atkins, Molecular Quantum Mechanics
J. J. Sakurai, Modern Quantum Mechanics
R. S. Drago, Physical Methods in Chemistry
F. A. Cotton: Chemical Applications of Group Theory

Interaction of electromagnetic waves with matter

Objective

Change electromagnetic waves:
Change matter:
Analyze matter:
research field
optical physics
photochemistry
spectroscopy

Keyword: electromagnetic waves

$\varepsilon=\varepsilon_{0} \operatorname{exp~i(kz-\omega t+\phi)}$
$\mathcal{B}=\mathcal{B}_{0} \exp i(k z-\omega t+\phi)$
ε_{0} : Amplitude,
k: wave vector $=2 \pi / \lambda$
$\omega=2 \pi \nu=$ frequency
$\phi=$ phase
$v=c / n=v \lambda$
propagation velocity
$\mathrm{E}=\mathrm{h} \nu=\hbar \omega$

The Electromagnetic Spectrum

Das für den Menschen sichtbare Spektrum (Licht)

Generation of electromagnetic waves

and detection

General principle: oscillation of charges -> emission of electromagnetic waves $m \ddot{x}+f x=0$->

Keyword: Matter

From spectroscopist's viewpoint: A sum of Hamiltonians

For each Hamiltonian there are exact solutions of the Schröder equation, yielding eigenfunctions and energy eigenvalues for relatively simple model systems and approximate energies for more complex systems:

Rotation: 3D-rigid free rotor ($\mathrm{U}=0$)
Vibration: harmonic oscillator $U=1 / 2 \mathrm{f} \mathrm{q}^{2}$
Electrons: H -like one-electron systems
Zeeman: Stern-Gerlach system
$\mathrm{E}=\mathrm{Bh} \mathrm{J}(\mathrm{J}+1)$ with $\mathrm{B}=\hbar / 4 \pi \Theta \quad(\Theta=$ moment of inertia)
$E=\left(n_{v}+1 / 2\right) \hbar \omega_{0} \quad$ with $\quad \omega_{0}=\sqrt{f / m} \quad(m=m a s s)$
$E \sim 1 / n^{2}$; many-el.: $\left.E=f\left(L, M_{L}, J\right)\right)$ due to inter-electronic interactions
$E=m_{s} \mu_{B} g B$ (EPR) $-----m_{1} \gamma \hbar B$ (NMR) $\left(\mu_{B}=\right.$ Bohr magneton $=e \hbar / \mathbf{2} m_{e}$

Spectroscopy
Magnetic resonance
Rotational spectroscopy
Vibrational spectroscopy
relevant quantum number
m_{1} (NMR) or m_{s} (EPR) spin orientational quantum number
J (angular momentum quantum number of molecular rotation)
n_{v} (vibrational quantum number
Electronic spectroscopy (VIS,UV,X-ray) L, J, M_{L}, M_{J}, n (angular momentum or principal quantum number)
Mössbauer

I (nuclear spin quantum number)

Born-Oppenheimer Approximation.

The different parts of the Hamiltionian are independent and Schrödinger equations can be solved separately. Processes can be considered „decoupled" $->$ this simplifies the theoretical analysis significantly.

Thermal Equilibrium

The fractional populations n_{i} / N of the levels having the energy ε_{i} and degeneracy g_{i} are given by the Boltzmann Distribution.

$$
\mathrm{n}_{\mathrm{i}} / \mathrm{N}=\frac{\mathrm{g}_{\mathrm{i}} \exp -\varepsilon_{\mathrm{i}} / k_{B} T}{\Sigma_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}} \exp -\varepsilon_{\mathrm{i}} / k_{B} T}
$$

Max Born 1882-1970
Göttingen, Edinburgh Nobel Prize 1954

Robert Oppenheimer 1904-1967 UC Berkeley, Caltech Princeton

Most spectroscopic experiments are conducted at thermal equilibrium.
By the experiment the transitions between the energy levels take place, so that the system is transformed into a non-equilibrium state.

The return to thermal equilibrium is called relaxation Relaxation can occur by re-emission or by transfer of energy to the lattice. The time Constant governing this return is called spin-lattice relaxation times.

Photolysis, chemical reaction, nuclear decay or cross-relaxation may create non- equilibrium states, from which return to equilibrium may occur via photon emission. (luminescence: emission spectroscopy)

Keyword: Interaction

Population changes in a two-level system (Einstein)

rates

$$
d N_{2} / d t=-B_{21} N_{2} \rho(v)
$$

spectral energy density $\rho(v)=\frac{8 \pi h v^{3}}{c^{3}} \frac{1}{\exp \left(\frac{h v}{k_{B} T}\right)-1}$
Planck's radiation law

$$
d N_{2} / d t=B_{12} N_{1} \rho(v)
$$

$$
d N_{2} / d t=-A_{21} N_{2}
$$

Equilibrium: Balance from all the Processes: $d N_{2} / d t=B_{12} N_{1} \rho(v)-B_{21} N_{2} \rho(v)-A_{21} N_{2}=0$

Simplest case: non-degenerate states
$\mathbf{p}_{1}=\mathbf{N}_{1} / \mathbf{N}_{\text {tot }}=\frac{\exp -\varepsilon_{1} / k_{B} T}{\Sigma_{\mathrm{i}} \exp -\varepsilon_{\mathrm{i}} / k_{B} T}$
$\mathbf{P} 2=\mathbf{N}_{2} / \mathbf{N}_{\text {tot }}=\frac{\exp -\varepsilon_{2} / k_{B} T}{\sum_{\mathrm{i}} \exp -\varepsilon_{\mathrm{i}} / k_{B} T}$

Equilibrium: Balance from all the Processes: $\mathbf{d} \mathbf{N}_{2} / \mathrm{dt}=\mathrm{B}_{12} \mathrm{~N}_{1} \rho(\mathrm{v})-\mathrm{B}_{21} \mathbf{N}_{2} \rho(\mathrm{v})-\mathrm{A}_{\mathbf{2 1}} \mathbf{N}_{\mathbf{2}}=\mathbf{0}$

$$
\begin{aligned}
& \rho(v)=\frac{A_{21} N_{2}}{B_{12} N_{1}-B_{21} N_{2}}=\frac{A_{21} \exp -\varepsilon_{2} / k_{B} T}{B_{12} \exp -\left(\frac{\varepsilon_{1}}{k_{B} T}\right)-B_{21} \exp --\left(\frac{\varepsilon_{2}}{k_{B} T}\right)}=\frac{A_{21}}{B_{12} \exp \left(\frac{\varepsilon_{2}-\varepsilon_{1}}{k_{B} T}\right)-B_{21}} \quad \text { to be compared with } \\
& \rho(v)=\frac{8 \pi h v^{3}}{c^{3}} \frac{1}{\exp \left(\frac{h v}{k_{B} T}\right)-1}
\end{aligned}
$$

The result is: $\mathbf{A}_{\mathbf{2 1}}=\frac{\mathbf{8 \pi h v ^ { 3 }}}{\boldsymbol{c}^{3}} \mathbf{B}_{\mathbf{2 1}}$ and $\mathrm{B}_{\mathbf{1 2}}=\mathbf{B}_{\mathbf{2 1}}$
-> at high frequencies spontaneous emission favored over stimulated emission

Mechanistically two conditions have to be fulfilled for energy transfer to occur:

1) Resonance condition: $\mathrm{h} v=\varepsilon_{2}-\varepsilon_{1}$ energy of the electromagnetic wave $=$ energy difference between states
2) Coupling condition: interaction between electromagnetic wave and the wave function of the molecule (electric oder magnetic dipole moment): group-theoretical criteria.

Spectroscopic observables

1. Frequency of absorption/emission

2. Width
a) natural linewidth - Heisenberg uncertainty $\delta E \delta t \geqslant \hbar / 2$
($\delta \mathrm{t}=$ lifetime of excited state) $\quad \delta(\hbar \omega) \delta t>\hbar / 2->\delta \omega=1 / 2 \delta t$
b) instrumental broadening (monochromatization limits, field inhomogeneity)
c) physical broadening

- inhomogeneous broadening: anisotropy or distribution of energy levels
- homogeneous broadening: dynamic processes
- unresolved hyperfine structure (low-energy splitting due to weak interactions)

3. Intensities:

proportional to the rate: $\mathrm{dN}_{2} / \mathrm{dt}$
Remembering $d N_{2} / d t=B_{12} N_{1} \rho(v)-B_{21} N_{2} \rho(v)-A_{21} N_{2}$
Neglecting the contribution from spontaneous emission (valid at low frequencies):

$$
d N_{2} / d t=B_{12} N_{1} \rho(v)-B_{21} N_{2} \rho(v)=B_{12} \rho(v)\left(N_{1}-N_{2}\right)=B_{12} \rho(v)\left(p_{1}-p_{2}\right) N_{\text {tot }}
$$

Dependent on four factors:

- Population difference given by the Boltzmann law
- Intensity (wave amplitude, i.e. number of photons)
- Total number of molecules; basis of analytical applications
- Absorption coefficient B_{12}, transition probality, relating to the coupling condition

```
T = transmission of the sample
```



```
Lambert-Beer law
```

$\mathrm{T}=$ transmission of the sample
$\mathrm{T}_{0}=$ transmission of the sample without analyte ($\mathrm{c}=0$)
d = optical path length (diameter of cuvette)
c = analyte concentration ($\mathrm{mol} / \mathrm{dm}^{3}$)
$\varepsilon=$ extinction coefficient ($\mathrm{dm}^{2} / \mathrm{mol}$)

