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Interaction of electromagnetic waves with matter

Change electromagnetic waves: optical physics
Change matter: photochemistry
Analyze matter: spectroscopy

Objective research field

Keyword: electromagnetic waves

E = E0 exp i(kz - wt + f)
B = B0 exp i(kz - wt + f)

E0 : Amplitude, 

k: wave vector =2p/l

w = 2pn = frequency
f   = phase

z

v = c/n = nl

propagation velocity

E = hn =  ћw   



The Electromagnetic Spectrum



Generation of electromagnetic waves …………………………………….and detection

Radiowaves:
Tank circuits

General principle: oscillation of charges -> emission of electromagnetic waves mẍ + fx = 0 ->

x = x0 expiw0t  with w0= 𝒇/𝒎
w0 = 1/ 𝑳𝑪
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Microwaves velocity modulated electron
ensembles

Infrared Molecular oscillators
Black-body (thermal) radiators
Electron relaxation (lasers)

Electron relaxation (following ionization)
Cyclotrons (Synchrotron)

Nuclear relaxation

Ultraviolet

X-Ray

Gamma Ray

Electromagnetic
induction -> U

Rectification ->  Q
Heat transfer ->  T

Heat transfer ->  T
Photoel. effect -> U
(dopedPbTe, CdTe

Photoel. effect -> U
Direct or indirect
(Photostimulated
Detectors)

Scint. Counter NaI(Tl)
Photo-electrons

Tank circuits



Keyword: Matter
From spectroscopist‘s viewpoint: A sum of Hamiltonians

H = Hrot + Hvib + Hel + Hnucl + HZ

For each Hamiltonian there are exact solutions of the Schröder equation, yielding eigenfunctions and energy eigenvalues
for relatively simple model systems and approximate energies for more complex systems: 

Rotation: 3D-rigid free rotor (U = 0) E = B h J(J+1)  with B = ћ/4πQ  (Q = moment of inertia)

Vibration: harmonic oscillator U = ½ f q2 E = (nv + ½ ) ћw0 with w0= 𝒇/𝒎 (𝒎 = 𝒎𝒂𝒔𝒔)
Electrons: H-like one-electron systems E ~ 1/n2 ;  many-el.: E =  f(L, ML,J)) due to inter-electronic interactions
Zeeman: Stern-Gerlach system E = mSµBgB (EPR)-------mIgћB (NMR) (µB = Bohr magneton = e ћ /2me

Spectroscopy relevant quantum number
Magnetic resonance mI (NMR) or mS (EPR) spin orientational quantum number
Rotational spectroscopy J (angular momentum quantum number of molecular rotation)
Vibrational spectroscopy nv (vibrational quantum number
Electronic spectroscopy (VIS,UV,X-ray) L,J,ML,MJ, n (angular momentum or principal quantum number)
Mössbauer I (nuclear spin quantum number)



Born-Oppenheimer Approximation.
The different parts of the Hamiltionian are independent and Schrödinger
equations can be solved separately. Processes can be considered „decoupled“  
-> this simplifies the theoretical analysis significantly. 

Thermal Equilibrium
The fractional populations ni/N of the levels having the energy ei 

and degeneracy gi are given by the Boltzmann Distribution.

ni/N =  
giexp−ɛi/𝒌𝑩𝑻

Sigiexp−ɛi/𝒌𝑩𝑻

1844-1906
Universität Wien

Most spectroscopic experiments are conducted at thermal equilibrium.
By the experiment the transitions between the energy levels take place, so that
the system is transformed into a non-equilibrium state. 

The return to thermal equilibrium is called relaxation
Relaxation can occur by re-emission or by transfer of energy to the lattice. The time
Constant governing this return is called spin-lattice relaxation times. 

Photolysis, chemical reaction, nuclear decay or cross-relaxation may create
non- equilibrium states, from which return to equilibrium may occur via  photon emission.
(luminescence: emission spectroscopy)
Interaction with photons may create virtual states emitting electromagnetic radiation

Max Born
1882-1970
Göttingen, Edinburgh
Nobel Prize 1954

Robert Oppenheimer

1904-1967
UC Berkeley, Caltech
Princeton



Keyword: Interaction
Population changes in a two-level system (Einstein)

dN2/dt = - B21N2r(n) 

dN2/dt =  B12N1r(n) 

dN2/dt =  -A21N2
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spectral energy density

Planck‘s radiation law

Equilibrium: Balance from all the Processes: dN2/dt =  B12N1r(n) - B21N2r(n) -A21N2 = 0

rates



Equilibrium: Balance from all the Processes: dN2/dt =  B12N1r(n) - B21N2r(n) -A21N2 = 0

p1 = N1/Ntot = 
exp−ɛ1/𝒌𝑩𝑻

Siexp−ɛi/𝒌𝑩𝑻
P2 = N2/Ntot = 

exp−ɛ2/𝒌𝑩𝑻
Siexp−ɛi/𝒌𝑩𝑻

Simplest case: non-degenerate states
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to be compared with

The result is:  A21 =
𝟖π𝒉ν𝟑

𝒄𝟑
B21 and B12 = B21

Mechanistically two conditions have to be fulfilled for energy transfer to occur:
1) Resonance condition:  hn = e2-e1 energy of the electromagnetic wave = energy difference between states
2) Coupling condition: interaction between electromagnetic wave and the wave function of the molecule

(electric oder magnetic dipole moment): group-theoretical criteria. 

-> at high frequencies spontaneous emission favored over stimulated emission



Spectroscopic observables
1. Frequency of absorption/emission
2. Width 

a) natural linewidth – Heisenberg uncertainty dEdt > ћ/2

(dt = lifetime of excited state) d(ћw)dt > ћ/2 -> dw = 1/2dt
b) instrumental broadening (monochromatization limits, field inhomogeneity)
c) physical broadening

- inhomogeneous broadening: anisotropy or distribution of energy levels
- homogeneous broadening: dynamic processes
- unresolved hyperfine structure (low-energy splitting due to weak interactions) 

Spectral
holeburning

Inhomogeneous homogeneous



3. Intensities: 
proportional to the rate: dN2/dt
Remembering dN2/dt =  B12N1r(n) - B21N2r(n) -A21N2

Neglecting the contribution from spontaneous emission (valid at low frequencies):

dN2/dt =  B12N1r(n) - B21N2r(n) = B12 r(n)(N1-N2) = B12 r(n)(p1-p2)Ntot

Dependent on four factors:
- Population difference given by the Boltzmann law
- Intensity (wave amplitude, i.e. number of photons)
- Total number of molecules; basis of analytical applications
- Absorption coefficient B12, transition probality, relating to the

coupling condition

Absorbance  A = log 
𝑻
𝟎

𝑻
= ecd

T   =   transmission of the sample
T0 =   transmission of the sample without analyte (c = 0)
d   =   optical path length (diameter of cuvette)
c   =   analyte concentration (mol/dm3)
e =   extinction coefficient (dm2/mol)

Lambert-Beer law


