D I S S ERTATIONES M A T HEMATICAE (ROZPRAWY MATEMATYCZNE)

KOMITET REDAKCYJNY
BOGDAN BOJARSKI redaktor
WIESEAW ŻELAZKO zastȩpca redaktora
ANDRZEJ BIAEYNICKI-BIRULA, ZBIGNIEW CIESIELSKI,
JERZY ŁOŚ, ZBIGNIEW SEMADENI

CCCL

A. GONCHAROV, T. TERZIOGLU and V. ZAHARIUTA

On isomorphic classification of tensor products $E_{\infty}(a) \hat{\otimes} E_{\infty}^{\prime}(b)$

A. Goncharov
Department of Mathematics
Bilkent University
06533 Ankara, Turkey
and
State Building Academy
Rostov-on-Don, Russia
V. Zahariuta
Department of Mathematics
Marmara Research Center
Gebze-Kocaeli, Turkey
and
Department of Mechanics and Mathematics
Rostov State University
Rostov-on-Don, Russia
Tosun Terzioğlu
Department of Mathematics
Middle East Technical University
06531 Ankara, Turkey
E-mail: tosun@kalkan.tetm.tubitak.gov.tr

PRINTED IN POLAND

[^0]
CONTENTS

0. Introduction 5
1. Preliminaries 6
2. Power series space-valued case 8
3. Main results 9
4. F - and $D F$-subspaces 11
5. Quasidiagonal isomorphism 13
6. Sufficiency 14
7. Linear Topological Invariants (LTI) 16
8. Necessary conditions 20
9. Spaces $s \widehat{\otimes} E_{\infty}^{\prime}(b)$ 22
10. Spaces $s^{\prime} \widehat{\otimes} E_{\infty}(a)$ 23
References 26

Abstract

New linear topological invariants are introduced and utilized to give an isomorphic classification of tensor products of the type $E_{\infty}(a) \widehat{\otimes} E_{\infty}^{\prime}(b)$, where $E_{\infty}(a)$ is a power series space of infinite type. These invariants are modifications of those suggested earlier by Zahariuta. In particular, some new results are obtained for spaces of infinitely differentiable functions with values in a locally convex space X. These spaces coincide, up to isomorphism, with spaces $L\left(s^{\prime}, X\right)$ of all continuous linear operators into X from the dual space of the space s of rapidly decreasing sequences. Most of the results given here with proofs were announced in [12].

1991 Mathematics Subject Classification: 46A04, 46A45, 46A11, 46A32.
Received 2.3.1995; revised version 9.5.1995.

0. Introduction

Let C_{X}^{∞} denote the space of all infinitely differentiable functions defined on the interval $[-1,1]$ with values in a given locally convex space X. Usually C_{X}^{∞} is endowed with the topology of uniform convergence of functions on the interval $[-1,1]$ with all their derivatives in every continous seminorm of X (cf. [14]). We have [14] the isomorphisms

$$
C_{X}^{\infty} \simeq s \widehat{\otimes} X \simeq L\left(s^{\prime}, X\right)
$$

Here and throughout, s is the space of all rapidly decreasing sequences, $X \widehat{\otimes} Y$ is the complete projective tensor product and $L(X, Y)$ is the space of continuous linear operators from X into Y equipped with the topology of uniform convergence on bounded subsets of X. In particular, X^{\prime} stands for $L(X, K)$, where K is the scalar field.

Our purpose is to characterize the isomorphism $C_{X}^{\infty} \simeq C_{Y}^{\infty}$ in terms of the spaces X and Y. Valdivia has shown in [23] that if C_{X}^{∞} is isomorphic to a complemented subspace of C_{Y}^{∞} and C_{Y}^{∞} is in turn isomorphic to a complemented subspace of C_{X}^{∞}, then $C_{X}^{\infty} \simeq C_{Y}^{\infty}$. Using this result a simple application of the decomposition method of Aytuna, Krone and Terzioğlu [1] gives $C_{X}^{\infty} \simeq s$ whenever X is a complemented subspace of s.

In contrast, it was shown in [32], [34] that even in the simple case of a nuclear finite type power series space $X=E_{0}(a)$, the structure of C_{X}^{∞} as a Fréchet space depends on X in a quite delicate way. This case will be treated in Section 2. Those two diverse answers indicate that to study the general case, even if we restrict our attention to the class C_{X}^{∞}, with X a nuclear Fréchet space, would not be very promising. Therefore we confine ourselves mainly to some natural classes, such as C_{X}^{∞} for X a nuclear power series space or $X \simeq E_{\infty}^{\prime}(a)$. In the latter case we have

$$
\begin{equation*}
C_{X}^{\infty} \simeq s \widehat{\otimes} E_{\infty}^{\prime}(a) \simeq L\left(E_{\infty}(a), s\right) \tag{0.1}
\end{equation*}
$$

which gives us extra motivation to study this case. Related to this class, we also consider the class

$$
\begin{equation*}
s^{\prime} \widehat{\otimes} E_{\infty}(a) \simeq L\left(s, E_{\infty}(a)\right) \tag{0.2}
\end{equation*}
$$

In a more general setting we consider the problem of isomorphic classification of the class of tensor products of the form

$$
\begin{equation*}
E_{\infty}(a) \widehat{\otimes} E_{\infty}^{\prime}(b) \tag{0.3}
\end{equation*}
$$

which covers both classes (0.1) and (0.2).
To classify the spaces (0.3) we introduce new linear topological invariants based on the idea suggested by Zahariuta in [31], [32], [34]. This may be roughly summarized as follows: starting from a given collection of absolutely convex bounded subsets, we construct in
a particular invariant manner another collection of absolutely convex sets and to this collection we apply the classical invariants.

This approach yields the invariant characteristics for Köthe spaces, considered earlier in [26], [28], [29], [30] and initiated by Mitiagin's results [18], but in a form more convenient for our purpose.

Here we use as a fundamental one a collection of absolutely convex sets in $X \widehat{\otimes} Y$, which corresponds (in our case) to some basis of equicontinuous sets in $L\left(Y^{*}, X\right)$. It is useful to compare this view with previous results [13] on necessary conditions of isomorphism of spaces $E_{\alpha}(a) \widehat{\otimes} E_{\beta}^{\prime}(b)$ which were based on more traditional considerations, dealing with neighborhoods of zero.

To construct an isomorphism or an isomorphic imbedding for a given pair of spaces $X=E_{\infty}(a) \widehat{\otimes} E_{\infty}^{\prime}(b)$ and $Y=E_{\infty}(\widetilde{a}) \widehat{\otimes} E_{\infty}^{\prime}(\widetilde{b})$, we use here the method suggested in [29] but in a considerably simplified form (in the spirit of [34] in its revised English version).

We also refer to the following results closely connected with our present considerations: [2-11], [15-20], [22], [24], [25].

Acknowledgements. The authors are thankful to Prof. P. Djakov and Prof. M. Kocatepe for discussions and useful remarks. The third author also thanks METU and TÜBİTAK for their support.

1. Preliminaries

1.1. Let $A=\left(a_{i \lambda}\right)_{i \in I, \lambda \in \Lambda}$ be a Köthe matrix, where I is a countable set (often $I=\mathbb{N}), \Lambda$ is a directed set and $a_{i \lambda} \geq 0$. We also have $a_{i \lambda} \leq a_{i \mu}$ if $\lambda \leq \mu$ and $\sup \left\{a_{i \lambda}\right.$: $\lambda \in \Lambda\}>0, i \in I$. By $K(A)$ we denote the Köthe space generated by A, i.e., the locally convex space of all sequences $x=\left(\xi_{i}\right)$ such that for every $\lambda \in \Lambda$,

$$
\begin{equation*}
|x|_{\lambda}=\sum_{i \in I}\left|\xi_{i}\right| a_{i \lambda}<\infty \tag{1.1}
\end{equation*}
$$

equipped with the seminorms (1.1). As usual, $\left(e_{i}\right)$ denotes the canonical basis of $K(A)$. In particular, for $a=\left(a_{i}\right)$, by $E_{0}(a)$ and by $E_{\infty}(a)$ we denote the power series space of finite and infinite type, which are Köthe spaces generated by the matrices $\left(\exp \left(-p^{-1} a_{i}\right)\right)$ and $\left(\exp \left(p a_{i}\right)\right), p \in \mathbb{N}$, respectively (see, for example, [14]).

If $A=\left(a_{i \lambda}\right)_{i \in I, \lambda \in \Lambda}, B=\left(b_{j \mu}\right)_{j \in J, \mu \in M}$ are two Köthe matrices, then the tensor product can be written as

$$
K(A) \widehat{\otimes} K(B) \simeq K(C)
$$

where $C=\left(c_{(i, j),(\lambda, \mu)}\right), c_{(i, j),(\lambda, \mu)}=a_{i \lambda} b_{j \mu}$ with $(i, j) \in I \times J$ and $(\lambda, \mu) \in \Lambda \times M$. The above ismorphism is obtained by identifying the basis sequence $\left(e_{i} \otimes e_{j}\right)$ of $K(A) \widehat{\otimes} K(B)$ with the natural basis $\left(e_{i j}\right)$ of $K(C)$.
1.2. A continuous linear operator $T: K(A) \rightarrow K(B)$ is said to be quasidiagonal if

$$
\begin{equation*}
T\left(e_{i}\right)=t_{i} e_{\sigma(i)}, \quad i \in I \tag{1.2}
\end{equation*}
$$

where $\sigma: I \rightarrow J$ and t_{i} is a scalar. In particular, T is diagonal if $I=J$ and σ is the identity. If $\sigma: I \rightarrow J$ is a bijection and $t_{i} \equiv 1$, then T is said to be permutative. For Köthe spaces $X=K(A), Y=K(B)$ we use the notation $X \stackrel{\text { qd }}{\sim} Y, X \stackrel{\text { d }}{\sim} Y$ and $X \stackrel{\text { p }}{\sim} Y$ if there is an isomorphism $T: X \rightarrow Y$ which is respectively quasidiagonal, diagonal or permutative. We use the notation $X \xrightarrow{\hookrightarrow} Y$ if there is an isomorphic imbedding $T: X \rightarrow Y$. If T is also quasidiagonal we write $X \xrightarrow{\text { qd }} Y$. In this context we need the following fact, which was stated in [29] but was considered earlier in [18] in an implicit form.

Proposition 1.1. If $K(A) \stackrel{\text { qd }}{\rightarrow} K(B)$ and $K(B) \stackrel{\text { qd }}{\rightarrow} K(A)$, then $K(A) \stackrel{\text { qd }}{\sim} K(B)$.
1.3. We identify the inductive limit

$$
E_{\infty}^{\prime}(a)=\operatorname{limind} l^{1}\left(\exp \left(-p a_{i}\right)\right)
$$

with the Köthe space $K(A), A=\left(a_{i \pi}\right)$, where

$$
a_{i \pi}=\exp \left(-\pi_{i} a_{i}\right)
$$

and $\pi=\left(\pi_{i}\right)$ runs along the directed set

$$
\Pi^{\infty}=\left\{\pi=\left(\pi_{i}\right): \lim \pi_{i}=\infty\right\}
$$

The set Π^{∞} has the natural order $\lambda \leq \mu$ defined by $\mu_{i} \leq \lambda_{i}$ for all $i \in I$. In case $E_{\infty}(a)$ is nuclear, $E_{\infty}^{*}(a)$ can be naturally identified with $E_{\infty}^{\prime}(a)([14])$.
1.4. For a given sequence $a=\left(a_{i}\right), a_{i} \geq 1$, we consider the following counting functions:

$$
\begin{align*}
m_{a}(\tau, t) & =\left|\left\{i: \tau<a_{i} \leq t\right\}\right|, \tag{1.3}\\
m_{a}(t) & =\left|\left\{i: a_{i} \leq t\right\}\right|, \tag{1.4}
\end{align*}
$$

where $|A|$ denotes the cardinality of a finite set A and equals $+\infty$ for an infinite A, and $0<\tau<+\infty$. We also use the following characteristic of lacunarity:

$$
n_{a}(\tau, t)= \begin{cases}1 & \text { if } m_{a}(\tau, t)>0 \\ 0 & \text { otherwise }\end{cases}
$$

We write $m_{a} \approx m_{b}$ or $n_{a} \approx n_{b}$ if a constant $c>0$ exists such that

$$
\begin{equation*}
m_{a}(t) \leq m_{b}(c t), \quad m_{a}(t) \leq m_{b}(c t), \quad t \geq 1 \tag{1.5}
\end{equation*}
$$

or, respectively,

$$
\begin{equation*}
n_{a}(\tau, t) \leq n_{b}(\tau / c, c t), \quad n_{b}(\tau, t) \leq n_{a}(\tau / c, c t), \quad 1 \leq \tau<t<\infty \tag{1.6}
\end{equation*}
$$

For non-decreasing sequences $a=\left(a_{i}\right), b=\left(b_{i}\right)$ the relation (1.5) is equivalent to the following condition:

$$
\begin{equation*}
b_{i} / c \leq a_{i} \leq c b_{i}, \quad i \in \mathbb{N} \tag{1.7}
\end{equation*}
$$

with the same constant c. If for arbitrary sequences a and b the relation (1.7) holds for some constant c, we say a and b are weakly equivalent and use the notation $a_{i} \asymp b_{i}$ or $a \asymp b$ in this case. If (1.6) holds, we say a and b have the same lacunarities or are identical in lacunarity.

The following simple result about the characteristic of lacunarity will be useful.
Proposition 1.2. Let $a=\left(a_{i}\right), b=\left(b_{i}\right)$ be sequences with $a_{i} \geq 1, b_{i} \geq 1$. The following statements are equivalent:
(i) There is $\Delta>0$ such that

$$
\begin{equation*}
n_{a}(\tau, t) \leq n_{b}(\tau / \Delta, \Delta t), \quad 1 \leq \tau<t<\infty . \tag{1.8}
\end{equation*}
$$

(ii) For every $A>1$ there is $B>0$ with

$$
n_{a}(t / A, A t) \leq n_{b}(t / B, B t), \quad t \geq 1 .
$$

(iii) There exists $A>1$ and $B>0$ with

$$
n_{a}(t / A, A t) \leq n_{b}(t / B, B t), \quad t \geq 1 .
$$

(iv) There exists $A>1$ and $B>0$ with

$$
n_{a}\left(A^{2 m-1}, A^{2 m+1}\right) \leq n_{b}\left(B^{-1} A^{2 m-1}, B A^{2 m+1}\right), \quad m \in \mathbb{Z}
$$

Proof. Since (i) \Rightarrow (ii) $\Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{iv})$ are obvious, we will show that (iv) implies (i). We choose $m, l \in \mathbb{Z}$ such that

$$
A^{2 m-1}<\tau \leq A^{2 m+1}, \quad A^{2(m+l)-1}<t \leq A^{2(m+l)+1}
$$

and use the following chain of inequalities:

$$
\begin{aligned}
n_{a}(\tau, t) & \leq n_{a}\left(A^{2 m-1}, A^{2(m+l)+1}\right) \leq \sup _{\nu=0, \ldots, l} n_{a}\left(A^{2(m+\nu)-1}, A^{2(m+\nu)+1}\right) \\
& \leq \sup _{\nu=0, \ldots, l} n_{b}\left(B^{-1} A^{2(m+\nu)-1}, B A^{2(m+\nu)+1}\right) \\
& \leq n_{b}\left(B^{-1} A^{2 m-1}, B A^{2(m+l)+1}\right) \leq n_{b}\left(\left(B A^{2}\right)^{-1} \tau,\left(B A^{2}\right) t\right)
\end{aligned}
$$

Thus we get (i) with $\Delta=B A^{2}$.

2. Power series space-valued case

We will consider in detail the isomorphic classification of the spaces C_{X}^{∞} when X is a power series space of infinite or finite type. First, we deal with the infinite type, which is quite simple.

In fact we shall consider C_{X}^{∞} where X is a complemented subspace of s. It is not known if X has a basis, but if it does, then X is a nuclear power series space of infinite type [1].

Proposition 2.1. If X is a complemented subspace of s, then $C_{X}^{\infty} \simeq s$.
Proof. $C_{X}^{\infty} \simeq s \widehat{\otimes} X$ is a complemented subspace of $s \simeq s \widehat{\otimes} s$. Further, the diametral dimensions of C_{X}^{∞} and s are equal. We conclude by referring to [1].

In contrast to the above, the spaces C_{X}^{∞} for $X=E_{0}(a)$ have more intricate topological structure. Here the characteristic of lacunarity distinguishes isomorphic classes.

Proposition 2.2 [32, 34]. Let $E_{0}(a)$ be nuclear. Then

$$
s \widehat{\otimes} E_{0}(a) \simeq s \widehat{\otimes} E_{0}(b)
$$

if and only if the following two conditions hold:
(1) $E_{0}(b)$ is nuclear,
(2) $n_{a} \approx n_{b}$, i.e. a and b are identical in lacunarity.

It is of interest to compare the preceding result with the proposition in [19] on page 309.

3. Main results

Here we state our main results. Most of them will be proved in the sections to come. However, some will be demonstrated here.

ThEOREM 3.1. Let $E_{\infty}(b)$ and $E_{\infty}(\widetilde{b})$ be two nuclear power series spaces where b and \widetilde{b} are non-decreasing. Then $s \widehat{\otimes} E_{\infty}^{\prime}(b) \simeq s \widehat{\otimes} E_{\infty}^{\prime}(\widetilde{b})$ if and only if the sequences b and \widetilde{b} are identical in lacunarity.

We say that a sequence $b=\left(b_{i}\right)$ is non-lacunary (shift-stable [10]) if b and (i) are identical in lacunarity. For a non-decreasing sequence $b=\left(b_{i}\right)$ this is equivalent to

$$
\limsup \frac{b_{i+1}}{b_{i}}<\infty
$$

Hence the following statement is an immediate consequence of our theorem.
Corollary 3.2. Let b be as in Theorem 3.1. Then

$$
s \widehat{\otimes} E_{\infty}^{\prime}(b) \simeq s \widehat{\otimes} s^{\prime}
$$

if and only if b is shift-stable.
As we shall discuss later, classification of the products $s^{\prime} \widehat{\otimes} E_{\infty}(a)$ depends on a in a more intricate fashion than in the case we have discussed. However, when the nondecreasing positive sequences $a=\left(a_{i}\right), \widetilde{a}=\left(\widetilde{a_{i}}\right)$ satisfy the following stronger condition:

$$
\begin{equation*}
\ln i=o\left(a_{i}\right), \quad \ln i=o\left(\tilde{a}_{i}\right) \tag{3.1}
\end{equation*}
$$

we have an analog of Theorem 3.1.
Theorem 3.3. Let a and \widetilde{a} satisfy (3.1). Then $X=s^{\prime} \widehat{\otimes} E_{\infty}(a)$ is isomorphic to $Y=s^{\prime} \widehat{\otimes} E_{\infty}(\widetilde{a})$ if and only if a and \widetilde{a} have the same lacunarities.

For $c=(i)$, the space $E_{\infty}(c)$ is isomorphic to the space of entire functions $\mathcal{O}(\mathbb{C}), c$ satisfies the condition (3.1) and is shift-stable. Therefore we have

Corollary 3.4. Let a satisfy (3.1) and be shift-stable. Then

$$
s^{\prime} \widehat{\otimes} E_{\infty}(a) \simeq s^{\prime} \widehat{\otimes} E_{\infty}(c) \simeq s^{\prime} \widehat{\otimes} \mathcal{O}(\mathbb{C})
$$

Although $(\ln i)$ is shift-stable, obviously it does not satisfy (3.1). In fact $s^{\prime} \widehat{\otimes} s$ has an exceptional position in the class of spaces $s^{\prime} \widehat{\otimes} E_{\infty}(a)$.

ThEOREM 3.5. For the isomorphism $s^{\prime} \widehat{\otimes} s \simeq s^{\prime} \widehat{\otimes} E_{\infty}(a)$, it is necessary and sufficient that $s \simeq E_{\infty}(a)$.

Corollary 3.6. We have $L(s, s) \simeq L\left(s, E_{\infty}(a)\right)$ if and only if $s \simeq E_{\infty}(a)$.
The preceding results will be derived in Sections 9 and 10 from the following more general and rather technical result, dealing with the isomorphism of spaces $E_{\infty}(a) \widehat{\otimes}$ $E_{\infty}^{\prime}(b)$, which will be proved in sections 6-8.

Theorem 3.7. Let $X=E_{\infty}(a) \widehat{\otimes}{\underset{\sim}{\infty}}_{\prime}^{(b)}\left(\mathrm{H}=E_{\infty}(\widetilde{a}) \widehat{\otimes} E_{\infty}^{\prime}(\widetilde{b})\right.$ and $T: Y \rightarrow X$ be an isomorphism. Then $\exists \Delta \forall \widetilde{\varepsilon} \exists \varepsilon \forall \delta \exists \widetilde{\delta}$ such that the following inequalities (3.2)-(3.5) are true:

$$
\begin{align*}
& \left|\left\{(i, j): \delta \leq \frac{b_{j}}{a_{i}+b_{j}} \leq \varepsilon, \tau \leq a_{i}+b_{j} \leq t\right\}\right| \tag{3.2}\\
& \quad \leq\left|\left\{(k, l): \widetilde{\delta} \leq \frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \widetilde{\varepsilon}, \frac{\tau}{\Delta} \leq \widetilde{a}_{k}+\widetilde{b}_{l} \leq \Delta t\right\}\right|, \quad \tau \geq \tau_{0} \\
& \left\lvert\, \begin{aligned}
&\left|\left\{(i, j): \delta \leq \frac{b_{j}}{a_{i}+b_{j}}, \tau \leq a_{i}+b_{j} \leq t\right\}\right| \\
& \leq\left|\left\{(k, l): \widetilde{\delta} \leq \frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}}, \frac{\tau}{\Delta} \leq \widetilde{a}_{k}+\widetilde{b}_{l} \leq \Delta t\right\}\right|, \quad \tau \geq \tau_{0} \\
& \leq\left|\left\{(k, l): \frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \widetilde{\varepsilon}, \frac{\tau}{\Delta} \leq \widetilde{a}_{k}+\widetilde{b}_{l} \leq \Delta t\right\}\right| \\
&\left|\left\{(i, j): \frac{b_{j}}{a_{i}+b_{j}} \leq \varepsilon, \tau \leq a_{i}+b_{j} \leq t\right\}\right| \\
&\left|\left\{(i, j): \tau \leq a_{i}+b_{j} \leq t\right\}\right| \leq\left|\left\{(k, l): \frac{\tau}{\Delta} \leq \widetilde{a}_{k}+\widetilde{b}_{l} \leq \Delta t\right\}\right|
\end{aligned}\right. \tag{3.3}
\end{align*}
$$

Some quantifiers before absent parameters need to be omitted; the constant τ_{0} depends on all participating parameters.

Remark. If t depends on τ, i.e. $t=\varphi(\tau), \tau \geq 1$, then the restriction $\tau \geq \tau_{0}$ can be removed everywhere in Theorem 3.7. Indeed, let, for example, the relation (3.3) hold with $t=\varphi(\tau)$ and $\tau \geq \tau_{0}$. Then we choose instead of $\widetilde{\delta}$ some smaller constant $\widetilde{\delta}^{\prime}>0$ such that $\widetilde{\delta}^{\prime} \Delta \varphi\left(\tau_{0}\right) \leq 1$ and get the inequality (3.3) with $\widetilde{\delta^{\prime}}$ instead of $\widetilde{\delta}$ without any restriction on τ.

The last theorem has the following partial converse. The notation Y^{k} means $Y \times \ldots$ $\ldots \times Y, k$ times.

Theorem 3.8. Let X, Y be as in Theorem 3.7 and let the conditions (3.2), (3.3) and (3.4) be valid. Then $X \stackrel{\text { qd }}{\leadsto} Y^{9}$.

With some restrictions on X, Y we get the following criterion of isomorphism.
Theorem 3.9. Let X, Y be as in Theorem 3.7 and $X \stackrel{\text { qd }}{\sim} X^{2}, Y \stackrel{\text { qd }}{\sim} Y^{2}$. Then the following statements are equivalent:
(i) $X \simeq Y$,
(ii) $X \stackrel{\text { qd }}{\sim} Y$,
(iii) the inequalities (3.2), (3.3) are true together with the inequalities which are obtained from these inequalities by interchanging $a, b,(i, j)$ with $\widetilde{a}, \widetilde{b},(k, l)$ respectively.

Proof. Because (ii) \Rightarrow (i) is obvious and (i) \Rightarrow (iii) follows from Theorem 3.7, we need only prove (iii) \Rightarrow (ii). Since $X \stackrel{\text { qd }}{\sim} X^{2}$ implies $X \stackrel{\text { qd }}{\simeq} X^{9}$, we get by Theorem 3.8 that $Y \stackrel{\text { qd }}{\rightarrow} X^{9} \stackrel{\text { qd }}{\sim} X$, i.e. $Y \stackrel{\text { qd }}{\rightarrow} X$. By symmetry we get also $X \xrightarrow{\text { qd }} Y$. Hence Proposition 1.1 implies $X \stackrel{\text { qd }}{\sim} Y$.

Corollary 3.10. Let X, Y be the same as in Theorem 3.7 and additionally the conditions

$$
\begin{equation*}
a_{2 i} \asymp a_{i}, \quad \widetilde{a}_{2 i} \asymp \widetilde{a}_{i} \tag{3.6}
\end{equation*}
$$

or the conditions

$$
\begin{equation*}
b_{2 j} \asymp b_{j}, \quad \widetilde{b}_{2 j} \asymp \widetilde{b}_{j} \tag{3.7}
\end{equation*}
$$

hold. Then $X \stackrel{\mathrm{qd}}{\sim} Y$ (and all the more $X \simeq Y$).
Proof. Indeed, both (3.6) and (3.7) imply $X \stackrel{\text { qd }}{\sim} X^{2}$ and $Y \stackrel{\text { qd }}{\sim} Y^{2}$, hence we can apply Theorem 3.9.

Theorem 3.11. Let $X=s^{\prime} \widehat{\otimes} E_{\infty}(a)$ and $Y=s^{\prime} \widehat{\otimes} E_{\infty}(\widetilde{a})$ be nuclear. Then the following statements are equivalent:
(i) $X \stackrel{\text { qd }}{\sim} Y$,
(ii) $X \simeq Y$,
(iii) $\exists A \forall \gamma>0 \exists \tau_{0}$ such that

$$
\begin{array}{ll}
m_{a}(\tau, t) \leq(\exp \gamma t) m_{\tilde{a}}(\tau / A, A t), & \tau_{0} \leq \tau \leq t \\
m_{\tilde{a}}(\tau, t) \leq(\exp \gamma t) m_{a}(\tau / A, A t), & \tau_{0} \leq \tau \leq t \tag{3.9}
\end{array}
$$

(iv) $\forall A \exists B \forall \gamma \exists \tau_{0}$ such that

$$
\begin{align*}
& m_{a}(t / A, A t) \leq(\exp \gamma t) m_{\tilde{a}}(t / B, B t), \quad t \geq \tau_{0} \tag{3.10}\\
& m_{\tilde{a}}(t / A, A t) \leq(\exp \gamma t) m_{a}(t / B, B t), \quad t \geq \tau_{0} \tag{3.11}
\end{align*}
$$

and $\exists E>1$ such that

$$
\begin{align*}
& m_{a}(t) \leq(\exp E t) m_{\tilde{a}}(E t), \tag{3.12}\\
& m_{\tilde{a}}(t) \leq(\exp E t) m_{a}(E t), \quad t \geq 1 \tag{3.13}
\end{align*}
$$

4. F - and $D F$-subspaces

Let $X=E_{\infty}(a) \widehat{\otimes} E_{\infty}^{\prime}(b)$ and M be an infinite subset of \mathbb{N}^{2}. By X_{M} we denote the closed subspace of X which is generated by the basic sequence $\left\{e_{i} \otimes e_{j}:(i, j) \in M\right\}$. We now determine when X_{M} is an F-space or a $D F$-space.

Lemma 4.1. X_{M} is an F-space if and only if

$$
\begin{equation*}
\lim _{(i, j) \in M} \frac{b_{j}}{a_{i}}=0 \tag{4.1}
\end{equation*}
$$

X_{M} is a DF-space if and only if there exists $\delta>0$ with

$$
\begin{equation*}
\frac{b_{j}}{a_{i}} \geq \delta, \quad(i, j) \in M \tag{4.2}
\end{equation*}
$$

Proof. Identifying X with the Köthe space $K(A)$, where

$$
A=\left\{\exp \left(p a_{i}-\pi_{j} b_{j}\right)\right\}, \quad p \in \mathbb{N}, \pi \in \Pi^{\infty}
$$

we see that X_{M} can be considered as the space of all doubly indexed sequences $x=\left(\xi_{i, j}\right)$, $(i, j) \in M$, endowed with the locally convex topology defined by the norms

$$
\begin{equation*}
\|x\|_{p, \pi}=\sum_{(i, j) \in M}\left|\xi_{i j}\right| \exp \left(p a_{i}-\pi_{j} b_{j}\right)<\infty \tag{4.3}
\end{equation*}
$$

The inequality

$$
\|x\|_{p, \pi} \leq \sum_{(i, j) \in M}\left|\xi_{i j}\right| \exp p a_{i}
$$

is obvious. On the other hand, if (4.1) holds, we set

$$
\pi_{j}^{\circ}=\inf _{i}\left\{a_{i} / b_{j}:(i, j) \in M\right\}
$$

For $\pi \in \Pi^{\infty}$ satisfying $\pi_{j}=O\left(\pi_{j}^{\circ}\right)$ and $p \in \mathbb{N}$ we have

$$
\sum_{(i, j) \in M}\left|\xi_{i j}\right| \exp (p-\Delta) a_{i} \leq\|x\|_{p, \pi}
$$

where $\Delta=\sup \left\{\pi_{j} / \pi_{j}^{\circ}\right\}$. Hence X_{M} is a Fréchet space if (4.1) holds.
Assume (4.2). Then for $p \in \mathbb{N}$ and $\pi \in \Pi^{\infty}$ we have the inequalities

$$
\sum_{(i, j) \in M}\left|\xi_{i j}\right| \exp \left(-\pi_{j} b_{j}\right) \leq\|x\|_{p, \pi} \leq \sum_{(i, j) \in M}\left|\xi_{i j}\right| \exp \left(-\widetilde{\pi}_{j} b_{j}\right),
$$

where $\widetilde{\pi}_{j} b_{j}=\pi_{j}-p / \delta$. Hence the topology of X_{M} is defined by the system of norms

$$
\|x\|_{\pi}^{(\circ)}=\sum_{(i, j) \in M}\left|\xi_{i j}\right| \exp \left(-\pi_{j} b_{j}\right), \quad \pi \in \Pi^{\infty}
$$

Thus the space X_{M} can be represented as the inductive limit

$$
\operatorname{limind} l_{M}^{1}\left(\exp \left(-q b_{j}\right)\right)
$$

Hence X is a $D F$-space.
Let us consider the converse situation. If X_{M} is an F-space but (4.1) is not true, then we can find a subsequence $M^{\prime} \subset M$ for which (4.2) holds. But then $X_{M^{\prime}}$ is a $D F$-space by what we have already proved. This is impossible. In exactly the same manner we can prove that if X_{M} is a $D F$-space then (4.2) is true.

5. Quasidiagonal isomorphism

We consider a criterion for the existence of quasidiagonal isomorphism between spaces $E_{\infty}(a) \widehat{\otimes} E_{\infty}^{\prime}(b)$.

Proposition 5.1. For $E_{\infty}(a) \widehat{\otimes} E_{\infty}^{\prime}(b)$ to be quasidiagonally isomorphic to $E_{\infty}(\widetilde{a}) \widehat{\otimes}$ $E_{\infty}^{\prime}(\widetilde{b})$ it is necessary and sufficient that a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$ exists such that the following conditions hold:
(i) $a_{i}+b_{j} \asymp \widetilde{a}_{k}+\widetilde{b}_{l}$, where $(k, l)=\sigma((i, j))$.
(ii) For any subsequence $M \subset \mathbb{N}^{2}$, we have

$$
\lim _{(i, j) \in M} \frac{b_{j}}{a_{i}}=0 \quad \text { if and only if } \quad \lim _{(k, l) \in \sigma(M)} \frac{\widetilde{b}_{l}}{\widetilde{a}_{k}}=0 .
$$

First we note that it is not necessary to consider diagonal isomorphism at all, because the existence of a diagonal isomorphism means automatically that the spaces coincide. By Proposition 1.1 it is enough to show the following:

Proposition 5.2. Let $\sigma: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$ be an injection. Then the operator $T: E_{\infty}(a) \widehat{\otimes}$ $E_{\infty}^{\prime}(b) \rightarrow E_{\infty}(\widetilde{a}) \widehat{\otimes} E_{\infty}^{\prime}(\widetilde{b})$ defined by

$$
\begin{equation*}
T\left(e_{i} \otimes e_{j}\right)=e_{k} \otimes e_{l}, \quad(k, l)=\sigma((i, j)) \tag{5.1}
\end{equation*}
$$

is an isomorphic imbedding if and only if the conditions (i) and (ii) of Proposition 5.1 are satisfied.

Proof. Suppose that the operator T defined by (5.1) is an isomorphic imbedding. Since an isomorphism preserves the F - or $D F$-character of subspaces, the condition (ii) of Proposition 5.1 is true by Lemma 4.1. To obtain the condition (i), we use the continuity of T and its inverse. By Grothendieck's factorization theorem [14], I, p. 16, we choose natural numbers $p_{1}<r_{1}<r_{2}<p_{2}<q_{2}<s_{2}<s_{1}<q_{1}$ and a constant c such that the following inequalities hold for every $(i, j) \in \mathbb{N}^{2}$:

$$
\begin{array}{ll}
\exp \left(p_{1} \widetilde{a}_{k}-q_{1} \widetilde{b}_{l}\right) \leq c \exp \left(r_{1} a_{i}-s_{1} b_{j}\right), & \exp \left(r_{2} \widetilde{a}_{k}-s_{2} \widetilde{b}_{l}\right) \leq c \exp \left(p_{2} a_{i}-q_{2} b_{j}\right), \\
\exp \left(p_{1} a_{i}-q_{1} b_{j}\right) \leq c \exp \left(r_{1} \widetilde{a}_{k}-s_{1} \widetilde{b}_{l}\right), & \exp \left(r_{2} a_{i}-s_{2} b_{j}\right) \leq c \exp \left(p_{2} \widetilde{a}_{k}-q_{2} \widetilde{b}_{l}\right) .
\end{array}
$$

Here and in what follows, $(k, l)=\sigma((i, j))$. From the above we get

$$
\begin{aligned}
& \left(r_{2}-r_{1}\right) \widetilde{a}_{k}+\left(s_{1}-s_{2}\right) \widetilde{b}_{l} \leq\left(p_{2}-p_{1}\right) a_{i}+\left(q_{1}-q_{2}\right) b_{j}+2 \ln c, \\
& \left(r_{2}-r_{1}\right) a_{i}+\left(s_{1}-s_{2}\right) b_{j} \leq\left(p_{2}-p_{1}\right) \widetilde{a}_{k}+\left(q_{1}-q_{2}\right) \widetilde{b}_{l}+2 \ln c,
\end{aligned}
$$

and so (i) is true.
Conversely, let $\sigma: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$ be an injection, so that the conditions (i) and (ii) are satisfied. We want to show that the formula (5.1) generates an isomorphic imbedding.

Suppose T generated by σ is not continuous. This means that $\exists p \forall r \exists s \forall q \exists\left(i_{q}, j_{q}\right) \in$ \mathbb{N}^{2} such that

$$
\begin{equation*}
\exp \left(p \widetilde{a}_{k_{q}}-q \widetilde{b}_{l_{q}}\right) \geq \exp \left(r a_{i_{q}}-s b_{j_{q}}\right) \tag{5.2}
\end{equation*}
$$

where $\left(k_{q}, l_{q}\right)=\sigma\left(i_{q}, j_{q}\right)$.

Further, if

$$
\gamma=\inf \frac{a_{i}+b_{j}}{\widetilde{a}_{k}+\widetilde{b}_{l}}
$$

let r be chosen so that $r \gamma>p$.
Without loss of generality, we may assume the existence of the following limits:

$$
\lim _{q \rightarrow \infty} \frac{\widetilde{b}_{l_{q}}}{\widetilde{a}_{k_{q}}+\widetilde{b}_{l_{q}}}=\alpha, \quad \lim _{q \rightarrow \infty} \frac{b_{j_{q}}}{a_{i_{q}}+b_{j_{q}}}=\beta
$$

Let us take the logarithm of inequality (5.2) and, after dividing by $\widetilde{a}_{k}+\widetilde{b}_{l}$, let q tend to infinity. Then we get $\alpha=0$, since otherwise $-\infty \geq(r(1-\beta)-s \beta) \gamma$, which is impossible. This means that

$$
\lim \frac{\widetilde{b}_{l_{q}}}{\widetilde{a}_{k_{q}}}=0
$$

and so by condition (ii) we have

$$
\lim \frac{b_{j_{q}}}{a_{i_{q}}}=0
$$

Therefore $\beta=0$ as well. Hence, from (5.2) we have $p \geq r \gamma$, which contradicts the original choice of r.

6. Sufficiency

6.1. Here Theorem 3.8 will be proved. By Theorem 3.7 we can assume that a constant Δ and a non-decreasing function $\varphi:(0,1] \rightarrow(0,1]$ exist such that for any $\tau \geq 1$ and $\underset{\sim}{t}=\Delta \tau$ the conditions (3.3), (3.4) are valid with $\Delta, \forall \widetilde{\varepsilon} \in[0,1], \varepsilon=\varphi(\widetilde{\varepsilon}), \forall \delta \in(0,1]$ and $\widetilde{\delta}=\varphi(\delta) ; \varphi(\delta) \rightarrow 0$ if $\delta \rightarrow 0$. Define the sequence $\left(\varepsilon_{k}\right)$ by $\varepsilon_{-1}=\varepsilon_{0}=1$ and $\varepsilon_{k}=\varphi\left(\varepsilon_{k-1}\right)$, $k \in \mathbb{N}$. Let us represent the set \mathbb{N}^{2} as the union of families of disjoint subsets:

$$
\mathbb{N}^{2}=\bigcup_{m=0}^{\infty} \bigcup_{s=0}^{\infty} \mathcal{N}_{m, s}=\bigcup_{m=0}^{\infty} \bigcup_{s=0}^{\infty} \mathcal{M}_{m, s}
$$

where, for $s, m \in \mathbb{Z}_{+}$,

$$
\begin{aligned}
& \mathcal{N}_{m, s}=\left\{(i, j) \in \mathbb{N}^{2}: \varepsilon_{m+1}<\frac{b_{j}}{a_{i}+b_{j}} \leq \varepsilon_{m} ; \Delta^{s} \leq a_{i}+b_{j}<\Delta^{s+1}\right\} \\
& \mathcal{M}_{m, s}=\left\{(k, l) \in \mathbb{N}^{2}: \varepsilon_{m+1}<\frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \varepsilon_{m} ; \Delta^{s} \leq \widetilde{a}_{k}+\widetilde{b}_{l}<\Delta^{s+1}\right\} .
\end{aligned}
$$

For the sets

$$
\begin{aligned}
\widetilde{\mathcal{M}}_{m, s} & =\bigcup_{\alpha=0}^{2} \bigcup_{\beta=0}^{2} \mathcal{M}_{m-1+\alpha, s-1+\beta} \\
& =\left\{(k, l): \varepsilon_{m+2}<\frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \varepsilon_{m-1} ; \quad \Delta^{s-1} \leq \widetilde{a}_{k}+\widetilde{b}_{l}<\Delta^{s+2}\right\}, \quad s, m \in \mathbb{Z}_{+}
\end{aligned}
$$

the following estimates arise from the conditions (3.3), (3.4) with the above choice of parameters:

$$
\left|\mathcal{N}_{m, s}\right| \leq\left|\widetilde{\mathcal{M}}_{m, s}\right|, \quad s, m \in \mathbb{Z}_{+}
$$

It is clear that $Y^{9} \stackrel{\text { qd }}{\sim} E_{\infty}(\widetilde{a})^{3} \widehat{\otimes} E_{\infty}^{\prime}(\widetilde{b})^{3} \stackrel{\text { qd }}{\sim} E_{\infty}(c) \widehat{\otimes} E_{\infty}^{\prime}(d)$, where $c=\left(c_{\mu}\right), d=\left(d_{\nu}\right)$ and

$$
\begin{array}{ll}
c_{\mu}=\widetilde{a}_{k, \mu} ; & \mu=3 k-\alpha, \alpha=0,1,2, k \in \mathbb{N} \\
d_{\nu}=\widetilde{b}_{l, \nu} ; & \nu=3 l-\beta, \beta=0,1,2, l \in \mathbb{N}
\end{array}
$$

By construction the sets

$$
\mathcal{M}_{m, s}^{*}:=\left\{(3 k-\alpha, 3 l-\beta):(k, l) \in \mathcal{M}_{m-1+\alpha, s-1+\beta}, \alpha, \beta=0,1,2\right\}
$$

are disjoint and

$$
\left|\mathcal{M}_{m, s}^{*}\right|=\left|\widetilde{\mathcal{M}}_{m, s}\right| \geq\left|\mathcal{N}_{m, s}\right|, \quad m, s \in \mathbb{Z}_{+}
$$

Then by construction,

$$
\Delta^{-2} \leq \frac{\Delta^{s}}{\Delta^{s-2}} \leq \frac{a_{i}+b_{j}}{c_{\mu}+d_{\nu}} \leq \frac{\Delta^{s+1}}{\Delta^{s-1}}=\Delta^{2}
$$

and

$$
\begin{aligned}
& \frac{c_{\mu}}{c_{\mu}+d_{\nu}} \geq \varepsilon_{m+2}=\varphi^{2}\left(\varepsilon_{m}\right) \geq \varphi^{2}\left(\frac{b_{j}}{a_{i}+b_{j}}\right) \\
& \frac{b_{j}}{a_{i}+b_{j}} \geq \varepsilon_{m+1} \geq \varphi^{2}\left(\varepsilon_{m-1}\right) \geq \varphi^{2}\left(\frac{c_{\mu}}{c_{\mu}+d_{\nu}}\right)
\end{aligned}
$$

where φ^{2} means the composition with itself. Hence, we have

$$
\frac{1}{\Delta^{2}} \leq \frac{a_{i}+b_{j}}{c_{\mu}+d_{\nu}} \leq \Delta^{2}, \quad \frac{c_{\mu}}{c_{\mu}+d_{\nu}} \geq \varphi^{2}\left(\frac{b_{j}}{a_{i}+b_{j}}\right), \quad \frac{b_{j}}{a_{i}+b_{j}} \geq \varphi^{2}\left(\frac{c_{\mu}}{c_{\mu}+d_{\nu}}\right)
$$

for each $(i, j) \in \mathbb{N}^{2}$ and $(\mu, \nu)=\sigma((i, j))$.
So, the permutation operator $T: X \rightarrow E_{\infty}(c) \widehat{\otimes} E_{\infty}^{\prime}(d)$, generated by the injection σ :

$$
T\left(e_{i} \otimes e_{j}\right)=e_{\mu} \otimes e_{\nu}, \quad(\mu, \nu)=\sigma((i, j)), \quad(i, j) \in \mathbb{N}^{2}
$$

must be an isomorphic imbedding by Proposition 5.2.
Because of symmetry, using the conditions which can be obtained from the conditions (3.3), (3.4) by interchanging $a, b,(i, j)$ with $\widetilde{a}, \widetilde{b},(k, l)$, we analogously get $Y \stackrel{\text { qd }}{\sim} X^{9}$ (under similar assumptions on the choice of parameters).
6.2. Taking into consideration Theorem 3.7 and the proof of Theorem 3.8, we can derive the following refinement of Theorem 3.9.

Proposition 6.1. Under the conditions of Theorem 3.9 the following statements are equivalent:
(i) $X \simeq Y$.
(ii) $X \stackrel{\text { qd }}{\sim} Y$.
(iii) A strongly decreasing sequence $\varepsilon_{k} \rightarrow 0, \varepsilon_{0}=1$, and a constant $\Delta>0$ exist such that

$$
\begin{align*}
\mid\{(i, j) & \left.\in \mathbb{N}^{2}: \varepsilon_{m+1}<\frac{b_{j}}{a_{i}+b_{j}} \leq \varepsilon_{m} ; \Delta^{s} \leq a_{i}+b_{j} \leq \Delta^{s+1}\right\} \mid \tag{6.1}\\
& \leq\left|\left\{(k, l) \in \mathbb{N}^{2}: \varepsilon_{m+2}<\frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \varepsilon_{m-1} ; \Delta^{s-1} \leq \widetilde{a}_{k}+\widetilde{b}_{l}<\Delta^{s+2}\right\}\right|
\end{align*}
$$

and

$$
\begin{aligned}
& \left|\left\{(k, l) \in \mathbb{N}^{2}: \varepsilon_{m+1}<\frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \varepsilon_{m} ; \Delta^{s} \leq \widetilde{a}_{k}+\widetilde{b}_{l}<\Delta^{s+1}\right\}\right| \\
& \quad \leq\left|\left\{(i, j) \in \mathbb{N}^{2}: \varepsilon_{m+2}<\frac{b_{j}}{a_{i}+b_{j}} \leq \varepsilon_{m-1} ; \Delta^{s-1} \leq a_{i}+b_{j}<\Delta^{s+2}\right\}\right|
\end{aligned}
$$

for every $s, m \in \mathbb{Z}_{+}\left(\right.$put $\left.\varepsilon_{-1}=1\right)$.
6.3. The condition (iii) in Proposition 6.1 is only necessary if we consider spaces X, Y from Theorem 3.7 without any additional restriction. It is useful to compare Proposition 6.1 with the following criterion of the quasidiagonal isomorphism $X \stackrel{\text { qd }}{\sim} Y$ in the general case; this fact can be proved similarly to [5] by using the Hall-Koenig Lemma about representatives.

Proposition 6.2. Let $X=E_{\infty}(a) \widehat{\otimes} E_{\infty}^{\prime}(b)$ and $Y=E_{\infty}(\widetilde{a}) \widehat{\otimes} E_{\infty}^{\prime}(\widetilde{b})$. Then the following statements are equivalent:
(i) $X \stackrel{\mathrm{qd}}{\sim} Y$.
(ii) A strongly decreasing sequence $\varepsilon_{k} \rightarrow 0, \varepsilon_{0}=\varepsilon_{-1}=1$, and a constant $\Delta>1$ exist such that

$$
\begin{aligned}
& \left|\bigcup_{\alpha \in A}\left\{(i, j): \varepsilon_{m(\alpha)+1}<\frac{b_{j}}{a_{i}+b_{j}} \leq \varepsilon_{m(\alpha)} ; \Delta_{s(\alpha)} \leq a_{i}+b_{j}<\Delta_{s(\alpha)+1}\right\}\right| \\
& \quad \leq\left|\bigcup_{\alpha \in A}\left\{(k, l): \varepsilon_{m(\alpha)+2}<\frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \varepsilon_{m(\alpha)-1} ; \Delta_{s(\alpha)-1} \leq \widetilde{a}_{k}+\widetilde{b_{l}}<\Delta_{s(\alpha)+2}\right\}\right|
\end{aligned}
$$

for each finite collection $\left\{\left(\varepsilon_{m(\alpha)}, s(\alpha)\right): \alpha \in A\right\}$, with $m(\alpha), s(\alpha) \in \mathbb{Z}_{+}$.

7. Linear Topological Invariants (LTI)

7.1. We shall exploit here the idea, suggested in [31], [32], [34], to use some very well known classical invariant characteristics, but considered for special ("synthetic") sets, which should be constructed in some invariant geometric manner from a fixed system of subsets (for instance, a basis of absolutely convex neighbourhoods of zero or a basis of bounded absolutely convex sets in a locally convex space X). As a fundamental characteristic we shall use the following simplest function of a pair of absolutely convex subsets in X :

$$
\begin{equation*}
\beta\left(W_{1}, W_{2}\right)=\sup \left\{\operatorname{dim} L: W_{1} \cap L \subset W_{2}\right\} \tag{7.1}
\end{equation*}
$$

where L stands for a finite-dimensional subspace of X. The function $\beta\left(W_{1}, t W_{2}\right)=$ $\beta\left(t^{-1} W_{1}, W_{2}\right)$ is the inverse function (counting function) for the sequence $\left\{1 / b_{i}\left(W_{2}, W_{1}\right)\right\}$, where

$$
\begin{equation*}
b_{i}\left(W_{2}, W_{1}\right)=\sup _{L \in \mathcal{L}_{i}} \sup \left\{\alpha>0: \alpha W_{1} \cap L \subset W_{2}\right\}, \tag{7.2}
\end{equation*}
$$

\mathcal{L}_{i} being the collection of all i-dimensional subspaces in X. The numbers in (7.2) are the so-called Bernstein diameters (we use them instead of more traditional Kolmogorov diameters $d_{i}\left(W_{2}, W_{1}\right)$ for our convenience only), and the relation between (7.1) and (7.2) is described by

$$
\beta\left(W_{1}, t W_{2}\right)=\left|\left\{i: \frac{1}{b_{i}\left(W_{2}, W_{1}\right)} \leq t\right\}\right|
$$

For a given quadruple of absolutely convex sets $W_{i}, i=1,2,3,4$, the following characteristics can be constructed by using the simplest function ([29, 31, 32]):

$$
\begin{gather*}
\beta\left(W_{1}, W_{2}, W_{3}, W_{4}\right):=\beta\left(\overline{\operatorname{conv}}\left(W_{1} \cup W_{2}\right) ; W_{3} \cap W_{4}\right) \\
\beta\left(W_{1}, W_{2}, W_{3}\right):=\beta\left(W_{1}, W_{2}, W_{3}, W_{2}\right) \tag{7.3}
\end{gather*}
$$

If we put some parameters in these characteristics, for example, if we consider the function $\beta\left(\tau^{-1} W_{1}, W_{2}, t W_{3}\right)$, we can obtain considerably more information about the space X than the classical one-parameter characteristics could provide.

The following fact, very useful for construction of invariants, is an immediate consequence of the definitions.

Proposition 7.1. If $W_{1} \subset V_{1}, W_{2} \subset V_{2}, W_{3} \supset V_{3}, W_{4} \supset V_{4}$, then

$$
\beta\left(V_{1}, V_{2}, V_{3}, V_{4}\right) \leq \beta\left(W_{1}, W_{2}, W_{3}, W_{4}\right), \quad \beta\left(V_{1}, V_{3}\right) \leq \beta\left(W_{1}, W_{3}\right)
$$

7.2. Now we describe a way to estimate the general characteristics (7.3) for weighted l^{1}-balls, generated by a fixed absolute basis in X.

Let X be a locally convex space with an absolute basis $\left\{e_{i}\right\}_{I}, I$ being a countable set, and let $\left\{e_{i}^{\prime}\right\}$ be a biorthogonal system in X^{*}. We use the notation

$$
B(a)=B^{e}(a):=\left\{x \in X: \sum_{i \in I}\left|e_{i}^{\prime}(x)\right| a_{i} \leq 1\right\},
$$

for any sequence $a=\left(a_{i}\right)$ of positive numbers.
Proposition 7.2. Let $a^{(p)}=\left(a_{i p}\right)_{i \in I}, p=1,2,3,4$. Then

$$
\begin{align*}
& \beta\left(B^{e}\left(a^{(1)}\right), B^{e}\left(a^{(2)}\right), B^{e}\left(a^{(3)}\right), B^{e}\left(a^{(2)}\right)\right) \geq\left|\left\{i: \frac{a_{i 3}}{a_{i 2}} \leq 1 ; \frac{a_{i 2}}{a_{i 1}} \leq 1\right\}\right| \tag{7.4}\\
& \beta\left(B^{e}\left(a^{(1)}\right), B^{e}\left(a^{(2)}\right), B^{e}\left(a^{(3)}\right), B^{e}\left(a^{(4)}\right)\right) \leq\left|\left\{i: \frac{a_{i 3}}{a_{i 2}} \leq 2 ; \frac{a_{i 4}}{a_{i 1}} \leq 2\right\}\right| \tag{7.5}
\end{align*}
$$

Proof. (a) First we show that for a pair $b^{(1)}=\left(b_{i 1}\right), b^{(2)}=\left(b_{i 2}\right)$,

$$
\begin{equation*}
\beta\left(B^{e}\left(b^{(1)}\right), B^{e}\left(b^{(2)}\right)\right)=\left|\left\{i \in I: \frac{b_{i 2}}{b_{i 1}} \leq 1\right\}\right| . \tag{7.6}
\end{equation*}
$$

We put

$$
|x|_{q}=\sum_{i \in I}\left|e_{i}^{\prime}(x)\right| b_{i q}, \quad q=1,2 ; \quad \mathcal{N}=\left\{i \in I: b_{i 2} \leq b_{i 1}\right\}, \quad L_{0}=\operatorname{span}\left\{e_{i}: i \in \mathcal{N}\right\}
$$

By definition (7.1),

It remains to prove

$$
\begin{equation*}
\beta\left(B^{e}\left(b^{(1)}\right), B^{e}\left(b^{(2)}\right)\right) \geq \operatorname{dim} L_{0}=|\mathcal{N}| . \tag{7.7}
\end{equation*}
$$

Consider the natural projection $P: X \rightarrow L_{0}$, defined by $P x=\sum_{i \in \mathcal{N}} e_{i}^{\prime}(x) e_{i}$. Let L be an arbitrary finite-dimensional subspace in X which satisfies the condition

$$
\begin{equation*}
L \cap B^{e}\left(b^{(1)}\right) \subset B^{e}\left(b^{(2)}\right) \tag{7.9}
\end{equation*}
$$

To show (7.8) it is enough to prove that the linear operator $T=P \mid L: L \rightarrow L_{0}$ is an injection, because this implies immediately that $\operatorname{dim} L \leq \operatorname{dim} L_{0}=|\mathcal{N}|$. Ad absurdum, suppose that an element $z \in L$ exists such that $|z|_{2}=1$ but $P z=0$. Then, from (7.9) it follows that $1=|z|_{2} \leq|z|_{1}$, and from $P z=0$ we have $|z|_{1}=\sum_{i \in I \backslash \mathcal{N}}\left|e_{i}^{\prime}(z)\right| b_{i 1}<$ $\sum_{i \in I \backslash \mathcal{N}}\left|e_{i}^{\prime}(z)\right| b_{i 2}=|z|_{2}=1$, therewith the strong inequality has been realized, because at least one of the coefficients $e_{i}^{\prime}(z)$ must be non-zero, since $z \neq 0$. The discovered contradiction proves (7.8) and together with (7.7) implies (7.6).
(b) Now we use the following obvious geometric relations:

$$
\begin{align*}
\overline{\operatorname{conv}}\left(B^{e}\left(a^{(1)}\right) \cup B^{e}\left(a^{(2)}\right)\right) & =B^{e}\left(a^{(1)} \wedge a^{(2)}\right), \tag{7.10}\\
B^{e}\left(a^{(3)} \vee a^{(4)}\right) \subset B^{e}\left(a^{(3)}\right) \cap B^{e}\left(a^{(4)}\right) & \subset 2 B^{e}\left(a^{(3)} \vee a^{(4)}\right), \tag{7.11}
\end{align*}
$$

where $a^{(1)} \wedge a^{(2)}=\left(\min \left\{a_{i 1}, a_{i 2}\right\}\right)_{i \in I}, a^{(3)} \vee a^{(4)}=\left(\max \left\{a_{i 3}, a_{i 4}\right\}\right)_{i \in I}$. Denote by \mathcal{L} the left side of (7.4). Then by Proposition 7.1 and the relation (7.6) we get, applying (7.10), (7.11), the estimate (7.4) as follows:

$$
\begin{aligned}
\mathcal{L} & \geq \beta\left(B^{e}\left(a^{(1)} \wedge a^{(2)}\right), B^{e}\left(a^{(2)} \vee a^{(3)}\right)\right)=\left|\left\{i: \frac{\max \left\{a_{i 2}, a_{i 3}\right\}}{\min \left\{a_{i 1}, a_{i 2}\right\}} \leq 1\right\}\right| \\
& =\left|\left\{i: \frac{a_{i 2}}{a_{i 1}} \leq 1 ; \frac{a_{i 2}}{a_{i 2}} \leq 1 ; \frac{a_{i 3}}{a_{i 1}} \leq 1 ; \frac{a_{i 3}}{a_{i 2}} \leq 1\right\}\right|=\left|\left\{i: \frac{a_{i 3}}{a_{i 2}} \leq 1 ; \frac{a_{i 2}}{a_{i 1}} \leq 1\right\}\right|
\end{aligned}
$$

The last equality is true, because one of the omitted inequalities is trivial, and the other is a consequence of the two remaining ones.

Denoting by \mathcal{L}^{\prime} the left side of (7.5) we analogously get the estimate (7.5) as follows:

$$
\begin{aligned}
\mathcal{L}^{\prime} & \leq \beta\left(B^{e}\left(a^{(1)} \wedge a^{(2)}\right), 2 B^{e}\left(a^{(3)} \vee a^{(4)}\right)\right) \\
& =\left|\left\{i: \frac{2^{-1} \max \left\{a_{i 3}, a_{i 4}\right\}}{\min \left\{a_{i 1}, a_{i 2}\right\}} \leq 1\right\}\right| \leq\left|\left\{i: \frac{a_{i 3}}{a_{i 2}} \leq 2 ; \frac{a_{i 4}}{a_{i 1}} \leq 2\right\}\right|
\end{aligned}
$$

7.3. For a pair of sets $U_{0}=B^{e}\left(a^{(0)}\right), U_{1}=B^{e}\left(a^{(1)}\right)$ we define the one-parameter family of sets

$$
U_{\alpha}=\left(U_{0}\right)^{1-\alpha}\left(U_{1}\right)^{\alpha}:=B^{e}\left(a^{(\alpha)}\right), \quad-\infty<\alpha<\infty
$$

where $a^{(\alpha)}=\left(a_{i}^{(\alpha)}\right), a_{i}^{(\alpha)}=\left(a_{i}^{(0)}\right)^{1-\alpha}\left(a_{i}^{(1)}\right)^{\alpha}, i \in I$.
This construction can be used to compose invariants, due to the following simple interpolational statements.

Proposition 7.3. Let T be a linear bounded operator from $l^{1}\left(a^{(0)}\right)$ to $l^{1}\left(b^{(0)}\right)$ and from $l^{1}\left(a^{(1)}\right)$ to $l^{1}\left(b^{(1)}\right)$, with both norms ≤ 1. Then T is a linear bounded operator from $l^{1}\left(a^{(\alpha)}\right)$ to $l^{1}\left(b^{(\alpha)}\right)$ with norm ≤ 1; here $a^{\alpha}=\left(\left(a_{i}^{(0)}\right)^{1-\alpha}\left(a_{i}^{(1)}\right)^{\alpha}\right)_{i \in I}, b^{(\alpha)}=$ $\left(\left(b_{i}^{(0)}\right)^{1-\alpha}\left(b_{i}^{(1)}\right)^{\alpha}\right)_{i \in I}, 0 \leq \alpha \leq 1$.

Corollary 7.4. Let $e=\left(e_{i}\right), f=\left(f_{j}\right)$ be two absolute bases in a locally convex space X and $B^{e}\left(a^{(\alpha)}\right) \subset B^{f}\left(b^{(\alpha)}\right), \alpha=0,1$. Then $B^{e}\left(a^{(\alpha)}\right) \subset B^{f}\left(b^{(\alpha)}\right)$, where $0<\alpha<1$.
7.4. Let us consider two spaces $X=E_{\infty}(a) \widehat{\otimes} E_{\infty}^{\prime}(b), Y=E_{\infty}(\widetilde{a}) \widehat{\otimes} E_{\infty}^{\prime}(\widetilde{b})$ and an isomorphism $T: Y \rightarrow X$.

Then we can consider two absolute bases in X : the canonical one $e_{i} \otimes e_{j},(i, j) \in \mathbb{N}^{2}$, and the image of the canonical basis of $Y: f_{k l}=T\left(e_{k} \otimes e_{l}\right),(k, l) \in \mathbb{N}^{2}$. Hence each $x \in X$ has two basis expansions:

$$
x=\sum \xi_{i j} e_{i} \otimes e_{j}=\sum \eta_{k l} f_{k l} .
$$

Consider two systems of sets, defined respectively by those expansions $(p, q \in \mathbb{N})$:

$$
\begin{align*}
& A_{p, q}=\left\{x \in X: \sum\left|\xi_{i j}\right| \exp \left(p a_{i}-q b_{j}\right) \leq 1\right\} \tag{7.12}\\
& B_{p, q}=\left\{x \in X: \sum\left|\eta_{k l}\right| \exp \left(p \widetilde{a}_{k}-q \widetilde{b}_{l}\right) \leq 1\right\} \tag{7.13}
\end{align*}
$$

By [14], II, p. 113, we have $X=\lim _{\operatorname{proj}}^{p} 10 \operatorname{limin}_{q} l^{1}\left(\exp \left(p a_{i}-q b_{j}\right)\right)$ and $X \simeq(\widetilde{X})^{*}$, where $\widetilde{X}=\operatorname{limind}_{p} \lim \operatorname{proj}_{q} c_{0}\left(\exp \left(-p a_{j}+q b_{j}\right)\right)$, and the analogous representations for Y hold. Hence by Grothendieck's factorization theorem ([14], I, p. 16) we derive that the systems (7.12), (7.13) are equivalent in the following sense:

$$
\forall r \exists p \forall q \exists s \exists c: B_{p, q} \subset c A_{r, s}, A_{p, q} \subset c B_{r, s}
$$

Therefore we can consider some chains of indices (as long as we need, but finite),

$$
r_{1}<p_{1}<\ldots<r_{m}<p_{m}<q_{m}<s_{m}<\ldots<q_{1}<s_{1}
$$

such that the following imbeddings are valid:

$$
\begin{equation*}
A_{p_{\nu}, q_{\nu}} \subset c_{\nu} B_{r_{\nu}, s_{\nu}}, \quad B_{r_{\nu+1}, s_{\nu+1}} \subset c_{\nu} A_{p_{\nu}, q_{\nu}} \tag{7.14}
\end{equation*}
$$

where the constant c_{ν} does not depend on the parameters q_{μ}, s_{μ} with $\mu<\nu, \nu=2, \ldots, m$. So we will assume that those indices are taken sufficiently far apart:

$$
\begin{equation*}
\min \left\{\frac{p_{1}}{r_{1}}, \frac{r_{2}}{p_{1}}, \ldots, \frac{p_{m}}{r_{m}}, \frac{q_{m}}{p_{m}}, \frac{s_{m}}{q_{m}}, \ldots, \frac{s_{1}}{q_{1}}\right\} \geq 2 \tag{7.15}
\end{equation*}
$$

Those systems of sets are good raw material to construct some new linear topological invariants, which are natural for the class of spaces considered here. Namely, we apply the functions (7.3) to the following artificial "synthetic" absolutely convex sets, constructed with the sets taken from the two fixed collections (7.12), (7.13):

$$
\begin{aligned}
& W_{1}=\overline{\operatorname{conv}}\left(\left(A_{p_{2}, q_{2}}\right)^{1 / 2}\left(A_{p_{7}, q_{7}}\right)^{1 / 2} \cup(\exp \tau)\left(A_{p_{7}, q_{7}}\right)\right), \\
& W_{2}=W_{4}=A_{p_{4}, q_{4}}, \\
& W_{3}=\left(A_{p_{1}, q_{1}}\right)^{1 / 2}\left(A_{p_{6}, q_{6}}\right)^{1 / 2} \cap(\exp t)\left(A_{p_{6}, q_{6}}\right),
\end{aligned}
$$

$$
\begin{aligned}
V_{1} & =\overline{\operatorname{conv}}\left(\frac{1}{\sqrt{c_{2} c_{7}}}\left(B_{r_{3} s_{3}}\right)^{1 / 2}\left(B_{r_{8} s_{8}}\right)^{1 / 2} \cup\left(\frac{1}{c_{7}} \exp \tau\right) B_{r_{8} s_{8}}\right) \\
V_{2} & =\frac{1}{2 c_{4}} B_{r_{5} s_{5}} \\
V_{3} & =\sqrt{c_{1} c_{6}}\left(B_{r_{1} s_{1}}\right)^{1 / 2}\left(B_{r_{6} s_{6}}\right)^{1 / 2} \cap\left(c_{6} \exp t\right) B_{r_{6} s_{6}} \\
V_{4} & =2 c_{4} B_{r_{4} s_{4}}
\end{aligned}
$$

therewith we assume that (7.14) and (7.15) hold.
So, we get two families of functions:

$$
\begin{array}{ll}
\beta_{P}(t, \tau):=\beta\left(W_{1}, W_{2}, W_{3}, W_{2}\right), & P=\left(p_{1}, q_{1} ; \ldots ; p_{7}, q_{7}\right), \\
\widetilde{\beta}_{R}(t, \tau):=\beta\left(V_{1}, V_{2}, V_{3}, V_{4}\right), & R=\left(r_{1}, s_{1} ; \ldots ; r_{8}, r_{8}\right) .
\end{array}
$$

The first carries some information on the space X, as does the second about the space Y. By Proposition 7.1 we can compare these data:

$$
\begin{equation*}
\beta_{P}(t, \tau) \leq \widetilde{\beta}_{R}(t, \tau) \tag{7.16}
\end{equation*}
$$

In view of symmetry we can arrange the corresponding estimates in the opposite direction:

$$
\begin{equation*}
\widetilde{\beta}_{R^{\prime}}^{\prime}(t, \tau) \leq \beta_{P^{\prime}}^{\prime}(t, \tau) \tag{7.17}
\end{equation*}
$$

after some analogous preparation of appropriate "synthetic" sets $V_{1}^{\prime}, V_{2}^{\prime}=V_{4}^{\prime}, V_{3}^{\prime}$ and $W_{1}^{\prime}, W_{2}^{\prime}, W_{3}^{\prime}, W_{4}^{\prime}$, constructed from the same material (7.10) and (7.11).

After some calculations, based on Proposition 7.2, we can give necessary conditions for the isomorphism $X \simeq Y$ in terms of the sequences $a, b, \widetilde{a}, \widetilde{b}$. These conditions will be given in the following section.

8. Necessary conditions

Here we give the proof of Theorem 3.7. We need to estimate the functions $\beta_{P}, \widetilde{\beta}_{R}$ by some characteristics of the sequences $a, b, \widetilde{a}, \widetilde{b}$. Denote by $a^{(\nu)}=\left(a_{i j}^{(\nu)}\right), b^{(\nu)}=\left(b_{k l}^{(\nu)}\right)$ the weight sequences, corresponding to the sets $A_{p_{v}, q_{v}}$ and $B_{r_{v}, s_{v}}$:

$$
\begin{aligned}
a_{i, j}^{(\nu)} & =\exp \left(p_{\nu} a_{i}-q_{\nu} b_{j}\right),
\end{aligned} \quad(i, j) \in \mathbb{N}^{2}, \nu=1, \ldots, 7, ~ 子, ~(k, l) \in \mathbb{N}^{2}, \nu=1, \ldots, 8 .
$$

Then by Proposition 7.2 the following estimates hold:

$$
\beta_{P}(t, \tau) \geq\left|\left\{(i, j): \frac{\sqrt{a_{i j}^{(1)} a_{i j}^{(6)}}}{a_{i j}^{(4)}} \leq 1 ; \frac{\sqrt{a_{i j}^{(2)} a_{i j}^{(7)}}}{a_{i j}^{(4)}} \geq 1 ; \frac{a_{i j}^{(6)}}{a_{i j}^{(4)}} \leq \exp t ; \frac{a_{i j}^{(7)}}{a_{i j}^{(4)}} \geq \exp \tau\right\}\right|
$$

$\widetilde{\beta}_{R}(t, \tau) \leq$
$\left|\left\{(k, l): \frac{\sqrt{b_{k l}^{(1)} b_{k l}^{(6)}}}{b_{k l}^{(5)}} \leq c_{4} \sqrt{c_{1} c_{6}} ; \frac{\sqrt{b_{k l}^{(3)} b_{k l}^{(8)}}}{b_{k l}^{(4)}} \geq \frac{1}{c_{4} \sqrt{c_{2} c_{7}}} ; \frac{b_{k l}^{(6)}}{b_{k l}^{(5)}} \leq c_{4} c_{6} \exp t ; \frac{b_{k l}^{(8)}}{b_{k l}^{(4)}} \geq \frac{\exp \tau}{c_{4} c_{7}}\right\}\right|$.
The simple estimates below, following from assumptions (7.15), are useful now, if we try to work with the concrete form of $a^{(\nu)}, b^{(\nu)}$:

$$
\begin{gathered}
\frac{p_{1}+p_{6}}{2}-p_{4} \leq p_{6} ; \quad \frac{q_{1}+q_{6}}{2}-q_{4} \geq \frac{q_{1}}{4} ; \quad \frac{p_{2}+p_{7}}{2}-p_{4} \geq \frac{p_{7}}{4} ; \quad \frac{q_{2}+q_{7}}{2}-q_{4} \leq q_{2} \\
p_{6}-p_{4} \leq p_{6} \leq q_{4} ; \quad q_{4}-q_{6} \leq q_{4} ; \quad p_{7}-p_{4} \geq \frac{p_{7}}{2} ; \quad q_{4}-q_{7} \geq \frac{q_{4}}{2} \geq \frac{p_{7}}{2} \\
\frac{r_{6}}{4} \leq \frac{r_{1}+r_{6}}{2}-r_{5} \leq r_{6} ; \quad \frac{s_{1}}{4} \leq \frac{s_{1}+s_{6}}{2}-s_{5} \leq s_{1} \\
\frac{r_{8}}{4} \leq \frac{r_{3}+r_{8}}{2}-r_{4} \leq r_{8} ; \quad \frac{s_{3}}{4} \leq \frac{s_{3}+s_{8}}{2}-s_{4} \leq s_{3} \\
\frac{r_{6}}{2} \leq r_{6}-r_{5} \leq r_{6} ; \\
\frac{r_{6}}{2} \leq \frac{s_{5}}{2} \leq s_{5}-s_{6} \leq s_{5} \\
\frac{r_{8}}{2} \leq r_{8}-r_{4} \leq r_{8} \leq s_{4} ; \quad \frac{s_{4}}{2} \leq s_{4}-s_{8} \leq s_{4}
\end{gathered}
$$

With these relations the next estimates will be obtained:

$$
\begin{aligned}
\beta_{P}(t, \tau) \geq & \left\lvert\,\left\{(i, j):\left(\frac{p_{1}+p_{6}}{2}-p_{4}\right) a_{i}-\left(\frac{q_{1}+q_{6}}{2}-q_{4}\right) b_{j} \leq 0\right.\right. \\
& \left(\frac{p_{2}+p_{7}}{2}-p_{4}\right) a_{i}-\left(\frac{q_{2}+q_{7}}{2}-q_{4}\right) b_{j} \geq 0 \\
& \left.\left(p_{6}-p_{4}\right) a_{i}+\left(q_{4}-q_{6}\right) b_{j} \leq t ;\left(p_{7}-p_{4}\right) a_{i}+\left(q_{4}-q_{7}\right) b_{j} \geq \tau\right\} \mid \\
\geq & \left|\left\{(i, j): \frac{4 p_{6}}{q_{1}} \leq \frac{b_{j}}{a_{i}+b_{j}} \leq \frac{p_{7}}{8 q_{2}} ; \frac{2 \tau}{p_{7}} \leq a_{i}+b_{j} \leq \frac{t}{q_{4}}\right\}\right| \\
\widetilde{\beta}_{R}(t, \tau) \leq & \left\lvert\,\left\{(k, l):\left(\frac{r_{1}+r_{6}}{2}-r_{5}\right) \widetilde{a}_{k}-\left(\frac{s_{1}+s_{6}}{2}-s_{5}\right) \widetilde{b}_{l} \leq \ln c_{4} \sqrt{c_{1} c_{6}} ;\right.\right. \\
& \left(\frac{r_{3}+r_{8}}{2}-r_{4}\right) \widetilde{a}_{k}-\left(\frac{s_{3}+s_{8}}{2}-s_{4}\right) \widetilde{b}_{l} \geq-\ln c_{4} \sqrt{c_{2} c_{7}} ; \\
& \left(r_{6}-r_{5}\right) \widetilde{a}_{k}+\left(s_{5}-s_{6}\right) \widetilde{b}_{l} \leq t+\ln c_{4} c_{6} ; \\
& \left.\left(r_{8}-r_{4}\right) \widetilde{a}_{k}+\left(s_{4}-s_{8}\right) \widetilde{b}_{l} \geq \tau-\ln c_{4} c_{7}\right\} \mid \\
\leq & \left|\left\{(k, l): \frac{r_{6}}{8 s_{1}} \leq \frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \frac{8 r_{8}}{s_{3}} ; \frac{\tau}{4 s_{4}} \leq \widetilde{a}_{k}+\widetilde{b}_{l} \leq \frac{4 t}{r_{6}}\right\}\right|
\end{aligned}
$$

where the last inequality is true for $\tau \geq \tau_{0}$, and τ_{0} depends on all the parameters r_{ν}, s_{ν}. Thus we have, after replacing $2 \tau / p_{8}$ by τ and t / q_{4} by t,

$$
\begin{aligned}
& \left|\left\{(i, j): \frac{4 p_{6}}{q_{1}} \leq \frac{b_{j}}{a_{i}+b_{j}} \leq \frac{p_{7}}{8 q_{2}} ; \tau \leq a_{i}+b_{j} \leq t\right\}\right| \\
& \quad \leq\left|\left\{(k, l): \frac{r_{6}}{8 s_{1}} \leq \frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \frac{8 r_{8}}{s_{3}} ; \frac{p_{7} \tau}{8 s_{4}} \leq \widetilde{a}_{k}+\widetilde{b}_{l} \leq \frac{4 q_{4}}{r_{6}} t\right\}\right|
\end{aligned}
$$

Fixing the parameters $p_{6}, p_{7}, p_{8}, r_{6}, r_{8}, q_{4}, s_{4}$ and leaving the rest of them free, we get assertion (3.2) of Theorem 3.7 with

$$
\Delta=\max \left\{4 q_{4} / r_{6}, 8 s_{4} / p_{7}\right\}
$$

but asymptotically, i.e., for $\tau \geq \tau_{0}$, where τ_{0} depends on all the parameters. The relations (3.3)-(3.5) can be proved similarly, but in a considerably simpler fashion.

9. Spaces $s \hat{\otimes} E_{\infty}^{\prime}(b)$

Proof of Theorem 3.1. We shall apply Theorem 3.7 and Proposition 6.1 to the spaces $X=E_{\infty}(a) \widehat{\otimes} E_{\infty}^{\prime}(b)$ and $Y=E_{\infty}(\widetilde{a}) \widehat{\otimes} E_{\infty}^{\prime}(\widetilde{b})$ with

$$
a_{i}=\widetilde{a}_{i}=\max \{1, \ln i\}, \quad i \in \mathbb{N}
$$

(note that $s \simeq E_{\infty}(a)$). Without loss of generality, we can assume the following conditions:

$$
a_{i} \leq b_{i}, \quad \widetilde{a}_{i} \leq \widetilde{b}_{i}, \quad i \in \mathbb{N}
$$

or, what is the same,

$$
m_{b}(t) \leq m_{a}(t), \quad m_{\tilde{b}}(t) \leq m_{\tilde{a}}(t), \quad t \geq 1
$$

Note that $m_{a}(t)=m_{\tilde{a}}(t)$ and

$$
\begin{equation*}
e^{t / 2}<e^{t}-1<m_{a}(t) \leq e^{t}, \quad t \geq 1 \tag{9.1}
\end{equation*}
$$

Suppose that $X \simeq Y$. Then, by Theorem 3.7, $\exists \Delta \forall \widetilde{\varepsilon} \exists \varepsilon \forall \delta \exists \widetilde{\delta}$ such that the inequality (3.2) is valid. We denote by I and \widetilde{I}, respectively, the left and right sides of (3.2) with $t=\tau \Delta$. It can be assumed that all the parameters are chosen in such a way that $\Delta \geq 5$, $\delta \Delta<\varepsilon<\widetilde{\varepsilon}$. Then, applying (9.1), the following estimates are true:

$$
\begin{aligned}
I & \geq\left[m_{a}(\tau(\Delta-\varepsilon))-m_{a}(\tau)\right]\left[m_{b}(\varepsilon \tau)-m_{b}(\delta \Delta \tau)\right] \\
& \geq\left[\exp \frac{\tau(\Delta-\varepsilon)}{2}-\exp \tau\right] n_{b}(\delta \Delta \tau, \varepsilon \tau) \geq(\exp \tau) n_{b}(\delta \Delta \tau, \varepsilon \tau) \\
\widetilde{I} & \left.\leq m_{\tilde{a}}\left(\Delta^{2} \tau\right)\left[m_{\tilde{b}}\left(\widetilde{\varepsilon} \Delta^{2} \tau\right)-m_{\tilde{b}}(\widetilde{\delta} \tau / \Delta)\right] \leq\left(\exp 2 \Delta^{2} \tau\right) n_{\tilde{b}} \widetilde{\delta} \tau / \Delta, \widetilde{\varepsilon} \Delta^{2} \tau\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
(\exp \tau) n_{b}(\delta \Delta \tau, \varepsilon \tau) \leq\left(\exp \left(2 \Delta^{2} \tau\right)\right) n_{\tilde{b}}\left(\widetilde{\delta} \tau / \Delta, \widetilde{\varepsilon} \Delta^{2} \tau\right) \tag{9.2}
\end{equation*}
$$

From this it follows that

$$
\begin{equation*}
n_{b}(\delta \Delta \tau, \varepsilon \tau) \leq n_{\tilde{b}}\left(\widetilde{\delta} \tau / \Delta, \widetilde{\varepsilon} \Delta^{2} \tau\right), \quad \tau \geq 1 \tag{9.3}
\end{equation*}
$$

otherwise, for some τ_{0}, the left side of (9.2) would be positive, but the right side would be equal to zero. Putting $t=\sqrt{\varepsilon \delta \Delta} \tau$, from (9.3) we get

$$
\begin{equation*}
n_{b}(t / A, A t) \leq n_{\tilde{b}}(t / B, B t), \quad t \geq 1 \tag{9.4}
\end{equation*}
$$

where

$$
A=\sqrt{\frac{\varepsilon}{\delta \Delta}}>1, \quad B=\max \left\{\widetilde{\varepsilon} \sqrt{\frac{\Delta^{3}}{\varepsilon \delta}}, \frac{\sqrt{\varepsilon \delta \Delta^{3}}}{\widetilde{\delta}}\right\}
$$

Because of symmetry we also have the inequality obtained from (3.4) by exchanging b and \widetilde{b}. By Proposition 1.1 this means that b and \widetilde{b} are identical in lacunarity.

On the other hand, with b and \widetilde{b} identical in lacunarity, this means that for arbitrary $A>1$ and some $B=B(A)$ the condition (9.4) holds together with the above-mentioned symmetric inequality. We choose a constant Δ and a sequence $\varepsilon_{m}, m \in \mathbb{Z}_{+}$, in such a way that

$$
\begin{equation*}
\Delta \geq 8, \quad \Delta^{3} \varepsilon_{m+1} \leq \varepsilon_{m}, \quad m \in \mathbb{Z}_{+} \tag{9.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \varepsilon_{m} \leq A^{2} \varepsilon_{m+1}, \quad B \leq \min \left\{\frac{\varepsilon_{m-1}^{2}}{\Delta \varepsilon_{m} \varepsilon_{m+1}}, \frac{\varepsilon_{m} \varepsilon_{m+1}}{\Delta^{3} \varepsilon_{m+2}^{2}}\right\}, \quad m \in \mathbb{Z}_{+} \tag{9.6}
\end{equation*}
$$

Let us now show that, after choosing all the parameters, condition (iii) of Proposition 6.1 is valid. Because of symmetry, only (6.1) needs to be proved.

By $I(m, s)$ and $\widetilde{I}(m, s)$, respectively, we denote the left and right sides of (6.1). The assumption taken at the beginning of this proof, together with (9.5), ensures the following inequalities:

$$
\begin{aligned}
I(m, s) & \leq m_{a}\left(\Delta^{s+1}\right)\left[m_{b}\left(\varepsilon_{m} \Delta^{s+1}\right)-m_{b}\left(\varepsilon_{m+1} \Delta^{s}\right)\right] \\
& \leq\left(\exp \left(2 \Delta^{s+1}\right)\right) n_{b}\left(\varepsilon_{m+1} \Delta^{s}, \varepsilon_{m} \Delta^{s+1}\right) \\
\widetilde{I}(m, s) & \geq\left[m_{\tilde{a}}\left(\Delta^{s+2}-\varepsilon_{m+1} \Delta^{s-1}\right)-m_{a}\left(\Delta^{s-1}\right)\right] n_{\tilde{b}}\left(\varepsilon_{m+2} \Delta^{s+2}, \varepsilon_{m-1} \Delta^{s}\right) \\
& \geq\left(\exp \left(2 \Delta^{s+1}\right)\right) n_{\tilde{b}}\left(\varepsilon_{m+2} \Delta^{s+2}, \varepsilon_{m-1} \Delta^{s}\right) .
\end{aligned}
$$

Taking into account (9.6), from this we get

$$
I(m, s) \leq \widetilde{I}(m, s), \quad m, s \in \mathbb{Z}_{+}
$$

So, by Proposition 6.1, $X \stackrel{\text { qd }}{\sim} Y$ (the more so as $X \simeq Y$).

10. Spaces $s^{\prime} \widehat{\otimes} E_{\infty}(a)$

10.1. Proof of Theorem 3.11. Since $(i) \Rightarrow$ (ii) and (iii) \Rightarrow (iv) are obvious, we need to prove $(\mathrm{ii}) \Rightarrow(\mathrm{iii})$ and $(\mathrm{iv}) \Rightarrow$ (i). First we show $(\mathrm{ii}) \Rightarrow$ (iii). For this purpose we use Theorem 3.7. Denote by I and \widetilde{I} the left and right sides of (3.2), respectively, and assume that

$$
\varepsilon \geq \frac{4 \delta}{1-\delta}, \quad \varepsilon=\varepsilon(\widetilde{\varepsilon})<\widetilde{\varepsilon}<\frac{1}{2}
$$

Then

$$
I \geq \sum_{\tau<a_{i} \leq t(1-\varepsilon)}\left[m_{b}\left(\varepsilon a_{i}\right)-m_{b}\left(\frac{\delta}{1-\delta} a_{i}\right)\right] \geq m_{a}(t(1-\varepsilon))-m_{a}(\tau), \quad \tau \geq \tau_{0}:=\frac{4}{\varepsilon}
$$

since

$$
m_{b}(\varepsilon \tau)-m_{b}\left(\frac{\delta}{1-\delta} \tau\right) \geq \exp \frac{\varepsilon \tau}{2}-\exp \frac{\varepsilon \tau}{4} \geq 1
$$

if $\tau \geq \tau_{0}$. Further,

$$
\widetilde{I} \leq(\exp \widetilde{\varepsilon} \Delta t)\left[m_{a}(\Delta t)-m_{a}\left(\frac{1-\widetilde{\varepsilon}}{\Delta} \tau\right)\right]
$$

Therefore, from (3.2) it follows that (3.8) is satisfied with $\gamma=\widetilde{\varepsilon} \Delta /(1-\varepsilon), A=2 \Delta$ and τ_{0} defined as above. Because of symmetry (3.9) can be obtained in the same way.
$(\mathrm{iv}) \Rightarrow(\mathrm{i})$. By Theorem 3.9, and for reasons of symmetry, it is enough to prove the inequalities (3.2) and (3.3) with the corresponding quantifiers and $\tau \geq t_{0}$ for some constant t_{0}, depending on all parameters.

First, we deal with (3.2). Let (iv) hold. Take some $D>2$. Without loss of generality it can be assumed that

$$
\begin{equation*}
\widetilde{\delta}<\delta<\varepsilon<\frac{\widetilde{\varepsilon}}{16 D^{4(r+1)}}, \tag{10.1}
\end{equation*}
$$

where r will be fixed later.
Let us introduce some notation:

$$
\begin{aligned}
b_{j} & =\max (1, \ln j), \quad \widetilde{b}_{j}=b_{j}, \quad j \in \mathbb{N} ; \\
\mathcal{N}(s) & =\left\{(i, j) \in \mathbb{N}^{2}: \delta<\frac{b_{j}}{a_{i}+b_{j}} \leq \varepsilon ; D^{2 s-1} \leq a_{i}+b_{j}<D^{2 s+1}\right\}, \\
\mathcal{M}(s) & =\left\{(k, l) \in \mathbb{N}^{2}: \widetilde{\delta}<\frac{\widetilde{b}_{l}}{\widetilde{a}_{k}+\widetilde{b}_{l}} \leq \widetilde{\varepsilon} ; D^{2 s-1} \leq \widetilde{a}_{k}+\widetilde{b}_{l}<D^{2 s+1}\right\}, \\
I(s) & =|\mathcal{N}(s)|, \quad J(s)=|\mathcal{M}(s)|, \quad s \in \mathbb{Z}_{+}, \\
I\left(s_{0}, s_{1}\right) & =\left|\bigcup_{s=s_{0}}^{s_{1}} \mathcal{N}(s)\right|=\sum_{s=s_{0}}^{s_{1}} I(s), \quad J\left(s_{0}, s_{1}\right)=\left|\bigcup_{s=s_{0}}^{s_{1}} \mathcal{M}(s)\right|=\sum_{s=s_{0}}^{s_{1}} J(s), \quad s_{0} \leq s_{1} .
\end{aligned}
$$

Put $A=D^{2}$ and choose $r \in \mathbb{N}$ in such a way that the constant $B=B(A)$ in (iv) satisfies the condition $B \leq D^{2 r}$. Then with the assumption (10.1) and the condition (iv),

$$
\begin{aligned}
I(s) & \leq\left[m_{b}\left(\varepsilon D^{2 s+1}\right)-m_{b}\left(\delta D^{2 s-1}\right)\right]\left[m_{a}\left(D^{2 s+1}\right)-m_{a}\left(\frac{D^{2 s-1}}{2}\right)\right] \\
& \leq \exp \varepsilon D^{2 s+1}\left[m_{a}\left(D^{2(s+1)}\right)-m_{a}\left(D^{2(s-1)}\right)\right] \\
& \leq \exp 2 \varepsilon D^{2 s+1}\left[m_{\tilde{a}}\left(D^{2(s+r)}\right)-m_{a}\left(D^{2(s-r)}\right)\right]
\end{aligned}
$$

for $D^{2 s+1} \geq \tau_{0}(\varepsilon)$. On the other hand,

$$
\begin{aligned}
\widetilde{J}(s) & :=J(s-r-1, s+r+1) \\
& \geq\left[m_{\tilde{b}}\left(\widetilde{\varepsilon} D^{2(s-r-1)}\right)-m_{\tilde{b}}\left(\widetilde{\delta} D^{2(s+r+1)}\right)\right]\left[m_{\tilde{a}}\left(\frac{D^{2(s+r+1)}}{2}\right)-m_{\tilde{a}}\left(D^{2(s-r-1)}\right)\right] \\
& \geq\left[\exp \frac{\widetilde{\varepsilon} D^{2(s-r-1)}}{2}-\exp \left(\widetilde{\delta} D^{2(s+r+1)}\right)\right]\left[m_{\tilde{a}}\left(D^{2(s+r)}\right)-m_{\tilde{a}}\left(D^{2(s-r)}\right)\right] \\
& \geq \exp \frac{\widetilde{\varepsilon} D^{2(s-r-1)}}{4}\left[m_{\tilde{a}}\left(D^{2(s+r)}\right)-m_{\tilde{a}}\left(D^{2(s-r)}\right)\right]
\end{aligned}
$$

for $D^{2 s} \geq 1 / \widetilde{\delta}$. Therefore the inequality

$$
\begin{equation*}
I(s) \leq \frac{1}{2(r+1)} \widetilde{J}(s), \quad s \geq S \tag{10.2}
\end{equation*}
$$

would be true with an appropriate constant S if the following inequality held:

$$
\exp 2 \varepsilon D^{2 s+1} \leq \frac{1}{2(r+1)} \exp \frac{\widetilde{\varepsilon} D^{2(s-r-1)}}{4}, \quad s \geq R
$$

with some constant R. But the last inequality follows from the assumption (10.1) if $D^{2 R+1} \geq(\ln 2(r+1)) /(2 \varepsilon)$, so (10.2) is proved. Hence

$$
I\left(s_{0}, s_{1}\right) \leq \frac{1}{2(r+1)} \sum_{s=s_{0}}^{s_{1}} \widetilde{J}(s)=\frac{1}{2(r+1)} \sum_{s=s_{0}}^{s_{1}} \sum_{\alpha=0}^{2(r+1)} J(s-r-1+\alpha)
$$

$$
\leq \frac{1}{2(r+1)} \sum_{s=s_{0}}^{s_{1}} J\left(s_{0}-r-1, s_{0}+r+1\right)=J\left(s_{0}-r-1, s_{0}+r+1\right)
$$

Putting $t_{0}=D^{2 S-1}$, we choose for $t_{0} \leq \tau<t<\infty$ two natural numbers s_{0} and s_{1} such that

$$
D^{2 s_{0}-1} \leq \tau<D^{2 s_{0}}, \quad D^{2 s_{1}} \leq t<D^{2 s_{1}+1}
$$

Then we get (3.2) with $\Delta=D^{2(r+1)+1}$ and $\tau \geq t_{0}$. To prove (3.3) we use the conditions (3.12), (3.13). Denote by I and J the left and right sides of (3.3), respectively. Without loss of generality, we can assume $\widetilde{\delta}<\delta<1$. Put $\Delta=16 E$. Then

$$
\begin{aligned}
I & \leq m_{b}(t) m_{a}(t) \leq(\exp t) m_{a}(t) \leq \exp ((E+1) t) m_{\tilde{a}}(E t) \leq(\exp 2 E t) m_{\tilde{a}}(E t) \\
J & \geq\left[m_{\tilde{b}}(\Delta t / 2)-m_{\tilde{b}}(\Delta t / 8)\right] m_{\tilde{a}}(\Delta t / 2) \\
& \geq(\exp \Delta t / 8) m_{\tilde{a}}(\Delta t / 2) \geq(\exp 2 E t) m_{\tilde{a}}(E t), \quad t \geq 1
\end{aligned}
$$

Thus we get (3.3).
10.2. Proof of Theorem 3.3. Let a and \widetilde{a} be identical in lacunarity, i.e., $\exists A>1$ such that

$$
\begin{equation*}
n_{a}(t, \tau) \leq n_{\tilde{a}}(\tau / A, A t), \quad n_{\tilde{a}}(t, \tau) \leq n_{a}(\tau / A, A t), \quad 1 \leq \tau<t<\infty \tag{10.3}
\end{equation*}
$$

Then, due to (3.1), we have for each $\gamma>0$,

$$
m_{a}(\tau, t) \leq(\exp \gamma t) n_{a}(\tau, t), \quad \tau \geq \tau_{0}=\tau_{0}(\gamma)
$$

Using (10.3), from this we get

$$
m_{a}(\tau, t) \leq(\exp \gamma t) n_{\tilde{a}}(\tau / A, A t) \leq(\exp \gamma t) m_{\tilde{a}}(\tau / A, A t), \quad \tau \geq \tau_{0}
$$

i.e., (3.10); by symmetry we also have (3.11). Therefore, by Theorem 3.11 we get $X \simeq Y$.

On the other hand, let $X \simeq Y$. Then condition (iii) of Theorem 3.11 holds. Suppose that the left side of (3.10) is not equal to zero; then the right side of (3.10) is not equal to zero either, which means that

$$
n_{a}(t, \tau) \leq n_{\tilde{a}}(\tau / A, A t)
$$

Similarly we get $n_{\tilde{a}}(t, \tau) \leq n_{a}(\tau / A, A t)$. So the sequences a and \widetilde{a} are identical in lacunarity.

References

[1] A. Aytuna, J. Krone and T. Terzioğlu, Complemented infinite type power series subspaces of nuclear spaces, Math. Ann. 283 (1989), 193-202.
[2] V. I. Baran, On quasiequivalence of absolute bases in Cartesian products of Köthe spaces, in: Actual Problems of Mathematical Analysis, Rostov-on-Don, 1978, 13-21 (in Russian).
[3] C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318.
[4] C. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. 9 (1961), 677-683.
[5] P. A. Chalov and V. P. Zahariuta, On linear topological invariants, manuscript No. 5941-85, deposited at VINITI, 1985 (in Russian).
[6] -, 一, On linear topological invariants on some class of families of Hilbert spaces, manuscript No. 3862-B 86, deposited at VINITI, 1986 (in Russian).
[7] M. M. Dragilev, On regular bases in nuclear spaces, Mat. Sb. 68 (1965), 153-173 (in Russian).
[8] -, On special dimensions, defined on some classes of Köthe spaces, ibid. 80 (1969), 225-240 (in Russian).
[9] -, Bases in Köthe spaces, Rostov State Univ., Rostov-on-Don, 1983 (in Russian).
[10] E. Dubinsky, The structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, 1979.
[11] E. Dubinsky and D. Vogt, Bases in complemented subspaces of power series spaces, Bull. Polish Acad. Sci. 34 (1986), 65-67.
[12] A. Goncharov, T. Terzioğlu and V. Zahariuta, On isomorphic classification of spaces $s \widehat{\otimes} E_{\infty}^{\prime}(a)$, in: Linear Topological Spaces and Complex Analysis, METU-TÜBITAK, Ankara, 1994, 14-24.
[13] A. P. Goncharov and V. P. Zahariuta, Linear topological invariants for tensor products of power F-, DF-spaces, Turkish J. Math. 1 (1995), 90-101.
[14] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
[15] A. N. Kolmogorov, On the linear dimension of topological vector spaces, Dokl. Akad. Nauk SSSR 120 (1958), 239-241 (in Russian).
[16] V. P. Kondakov, Questions of geometry of non-normed spaces, Rostov State Univ., Rostov-on-Don, 1983 (in Russian).
[17] B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (4) (1961), 63-132 (in Russian).
[18] -, Equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian).
[19] -, Non-Schwartzian power series spaces, Math. Z. 182 (1983), 303-310.
[20] A. Pełczyński, On the approximation of S-spaces by finite-dimensional spaces, Bull. Acad. Polon. Sci. 5 (1957), 879-881.
[21] H. H. Schaefer, Topological Vector Spaces, Grad. Texts in Math. 3, Springer, New York, 1971.
[22] T. Terzioğlu, Some invariants of Fréchet spaces and imbeddings of smooth sequence spaces, in: Advances in the Theory of Fréchet Spaces, Kluwer, 1989, 305-324.
[23] M. Valdivia, Topics in Locally Convex Spaces, North-Holland Math. Stud. 67, NorthHolland, Amsterdam, 1982.
[24] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117.
[25] -, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301.
[26] V. P. Zahariuta, Linear topological invariants and isomorphisms of spaces of analytic functions, Mat. Anal. i Prilozhen., Rostov Univ., 2 (1970), 3-13; 3 (1971), 176-180 (in Russian).
[27] -, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv. Nauk. 4 (1974), 62-64 (in Russian).
[28] -, On isomorphisms and quasiequivalence of bases of power Köthe spaces, Dokl. Akad. Nauk SSSR 221 (1975), 772-774 (in Russian).
[29] -, On isomorphisms and quasiequivalence of bases of power Köthe spaces, in: Proc. 7th Winter School in Drogobych, 1976, 101-126 (in Russian).
[30] - , Generalized Mityagin invariants and continuum pairwise nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (3) (1977), 24-30 (in Russian).
[31] -, Synthetic diameters and linear topological invariants, in: School on Theory of Operators in Function Spaces (Abstracts of Reports), Minsk, 1978, 51-52 (in Russian).
[32] -, Isomorphism of spaces of vector-valued infinitely differentiable functions, in: School on Theory of Operators in Function Spaces (Abstracts of Reports), Minsk, 1982 (in Russian).
[33] - , On isomorphic classification of F-spaces, in: Lecture Notes in Math. 1043, Springer, 1984, 34-37.
[34] -, Linear topological invariants and their applications to generalized power spaces, manuscript of survey, Rostov State Univ., 1979 (in Russian); revised English version will appear in Turkish J. Math.
[35] -, Linear topological invariants and mixed (F,DF)-spaces, Mathematische Forschungsinstitut Oberwolfach, Tagungsbericht 44/1992, Funktionalanalysis (4.10-10.10.1992), 21.

[^0]: © Copyright by Instytut Matematyczny PAN, Warszawa 1996

