CHAPTER 2
DIMENSIONAL ANALYSIS

Any physical relationship must be expressible in dimensionless form. The impli-
cation of this statement is that all of the fundamental equations of physics, all
approximations to these equations and, for that matter, all functional relationships
between physical variables must be invariant under a dilation (or stretching) of
the dimensions of the variables. This is because the variables are subject to mea-
surement by an observer in terms of units which are selected at the arbitrary
discretion of the observer. It is clear that a physical event cannot depend on the
choice of the unit of measure used to describe the event. It cannot depend on the
particular ruler used to measure space, the clock used for time, the scale used to
measure mass, or any other standard of measure which might be required depend-
ing on the dimensions which appear in the problem. This principle of covariance
is the basis for a powerful method of reduction called dimensional analysis.

2.1 INTRODUCTION

A general mathematical relationship between variables is completely devoid of
symmetry. However, if the variables describe the properties of a measureable
physical system, then the dimensions of the system add a symmetry property to
the relationship where none existed before. In effect, assigning dimensions to the
variables brings into play the principle of covariance. We can define the notion
of dimension as follows.

Definition 2.1 A dimension is a measureable property of a physical system which can be
varied by a dilational transformation of the units of measurement. The value of each variable
of the system is proportional to a power monomial function of the fundamental dimensions.

Often dimensional analysis is carried out without any explicit consideration of the
actual equations which may govern a physical phenomenon. Only the variables
which affect the problem are considered. Actually, this is a little deceiving. Inev-
itably, the choice of variables is intimately connected to the phenomenon itself
and therefore is always is connected to, and has implications for, the governing
equations. In fact the most complex problems in dimensional analysis tend to be
filled with ambiguity as regards the choice of variables that govern the phenome-
non in question.
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The two-body problem in a gravitational field

2.2 THE TWO-BODY PROBLEM IN A GRAVITATIONAL FIELD

First let’s look at a fairly straightforward example that nicely illustrates both the
power and limitations of dimensional analysis. This is the problem of determining
the relationship between the mean distance from the Sun and the orbital period of
the planets. The solution of this problem was published by Johannes Kepler in
1619 and has since been known as Kepler’s third law. Kepler, who succeeded
Tycho Brahe as the imperial mathematician of the Holy Roman Empire in 1601,
was one of the truly outstanding scientists of the Age of Enlightenment. His posi-
tion gave him access to Brahe’s incomparable collection of astronomical data,
particularly data for the movement of Mars, collected by a team of astronomers
over decades of painstaking work. By 1609 he had published his first two laws
(although he did not refer to them as such) that the planets follow elliptical orbits
and that the movement of a planet along its orbit traces out equal areas in equal
times. A decade later he published his findings that the cube of the distance from
the Sun divided by the square of the period is a constant. Kepler’s accomplish-
ments at the time are all the more remarkable in that they occurred at about the
same time that he had to rush to the defense of his mother who had been indicted
as a witch. Only his timely defense in 1620 prevented her from being tortured and
burned at the stake. Kepler remained the imperial mathematician for several more
years but, through the events leading up to the thirty years war, was eventually
forced to find a new patron. He fell ill and died on November 15, 1630. Kepler
was the first to provide a dynamical explanation of the movements of the heavens
and his results continued to have an impact long after his death. Newton relied
heavily on Kepler’s work in developing his theory of gravitation in the 1680’s.
Today we recognize that the law of equal areas applies to any pair of masses with
aradially directed force between them while the first and third laws apply only to
particles that obey an inverse square law; everything from the motion of satellites
to the electric interactions of charged particles.

Consider the movement of one of the planets about the Sun. The orbit is elliptical
with major axis, a, minor axis, » and area A = mab. The Sun lies very close to
one of the foci of the ellipse as shown in the figure below.The force between the
two masses follows the Newtonian law of gravitation,
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The two-body problem in a gravitational field

where G is the gravitational constant G = 6.670 x 107" Newton-MZ/ng and the
minus sign indicates that the force is attractive. The perturbation of the orbit by
all the other planets is ignored. We wish to use dimensional analysis to rediscover
Kepler’s third law relating the period of the orbit to its size. Data for the solar sys-

tem 1s included below.

.
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Figure 2.1 Elliptical orbit of a planet about the Sun
Heavenl Number of | Number of | Mean orbit Orbital
?;og Y Earth Earth radiusin | Becentricity | period in
y masses diameters | f;;; x ]0_6 years
Sun 3324880 109.15
Mercury 0.0543 0.38 579 0.2056 0.241
Venus 0.8136 0.967 108.1 0.0068 0.615
Earth 1.0000 1.000 149.5 0.0167 1.000
Mars 0.1069 0.523 227.8 0.0934 1.881
Jupiter 318.35 10.97 777.8 0.0484 11.862
Saturn 953 9.03 1426.1 0.0557 29.458
Uranus 14.58 3.72 2869.1 0.0472 84.015
Neptune 17.26 3.38 4495.6 0.0086 164.788
Pluto <0.1 0.45 5898.9 0.2485 247.697
Table 2.1 The planets and their orbits
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The mass of the Earth is 5.975 x 10°*kg and the mean diameter is 1274246 km . The
eccentricity of a planet’s orbit is

2
e = |I- (’3) (2.2)
a
The only parameters that can enter the problem are the lengths of the two axes,
the two masses, the time of the period and the gravitational constant.

3
&:L;I}:L;M:M;ﬁq:M;T:T;G:L—Z (2.3)
MT

The “hat” over a parameter such as & in (2.3) is used to mean “dimensions of”.
In this problem M-mass, L-length and T-time are the fundamental dimensions.
There are six parameters and three fundamental dimensions and so we can expect
the solution to depend on three dimensionless numbers. Two of these are obvi-
ously a mass ratio and a length ratio,

n =2 . 1, = (2.4)

In view of the dimensions of G, it is clear that the third number must involve one
of the masses, one of the lengths and the period. Thus, we can expect a dimen-
sionless variable of the form.

1, = ) (2.5)

where we have arbitrarily chosen M and « to form IT, rather than m and 5.

According to the law of covariance one can expect all these variables to be related
by a dimensionless function of the form

Y = W(H]: H2, Hg) (2.6)

Without loss of generality we can solve (2.6) explicitly for I7,,

(2.7)
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where we have used the eccentricity in place of »/a and a mean radius defined

as r = Jab. Using the data in Table 2.1 we can plot the values of (2.7) for

mean
the various planets in the Solar System.
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Figure 2.2 Kepler’s third law for the Solar System.

Figure 2.2 provides stunning confirmation of our dimensional analysis result and
indicates that the function on the right hand side of (2.7) is very nearly constant
for all the planets in the Solar System. In fact, theory tells us that the right hand

side of (2.7) is

F(ie) = 4 ! (2.8)

(1 + ]ﬂw)(z — %)

AW

For all the planets m/M « I and e’ is very small for all but Mercury and Pluto. In
the limits, m/M — 0 and ¢ — 0 the right hand side of (2.8) approaches the finite

limit 47° = 394784 .
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The drag of a sphere

In fact we have made a lucky choice! On purely dimensional grounds, in the
absence of Kepler’s theory, there is absolutely no reason to select M in the defi-

nition of IT,, m would have been just as appropriate a choice but would have

3 ]
produced a highly scattered plot. Dimensional analysis alone provides no infor-

mation in this matter. The full theory is required.

2.3 THE DRAG OF A SPHERE

Next, we will work a problem which also illustrates the power as well as some of
the pitfalls of dimensional analysis. This is the problem of viscous flow past a
sphere. The previous example involved a rather simple set of basic dimensioned
variables and so it could be worked out by inspection. In the present case this is
not quite so easy and so we will resort to a systematic method of constructing
appropriate dimensionless variables. Initially we will make the assumption that
the flow is incompressible and then compressibility effects will be added. The
results will then be compared with experimental data. Uniform flow of a viscous
fluid past a sphere is shown in the figure below.

u, p 4
— ——» D

Figure 2.3 Viscous flow past a sphere

To get started let’s assume that the relevant variables of the problem are the drag
force, D , the fluid density, p, the viscosity, u, the freestream flow velocity, U, and
the radius of the sphere, r. Without loss of generality, these variables can be
thought of as related to one another through a function of the form

wo = lIIO[DJ ALLJ p: U7 l"] (29)
where v, is a pure number (ie, dimensionless) which may be zero.

Considered solely as a mathematical statement, (2.9) has no symmetry. But it is
not just an abstraction! It is a physical statement in two respects. First, it states
that the drag of the sphere depends only on the selected variables. This is totally
at our discretion and it would be easy to argue that other quantities, for example

4/9/13 2.6 bjc
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the speed of sound in the fluid, ought to also play a role. Second, the variables in
(2.9) are all measureable properties of a physical system; they have dimensions
and those dimensions are measured in arbitrarily chosen units.

b=, a2 M gL o (2.10)

LT L3 T

Because the variables in (2.9) have dimensions, the function ¥, cannot be arbi-
trary. If it were, the constant vy, would change whenever the choice of units was

changed. In effect, the drag force on the sphere would appear to depend on the
choice of the units of measurement, which is impossible. To see this let’s suspend
the principle of covariance for a moment and imagine that the drag relationship
(2.9)1s

D=u+p+U+r

in terms of dimensions
2.11)

If we were to change the units of mass from kilograms to grams then u and p

would both be larger by a factor of 1 0° while U and r stayed the same. This would
increase the term in parentheses in (2.11) but not by this factor. But D also
increases by a factor of a thousand, thus the equality (2.11) cannot be maintained
when the units are changed. The various terms of the drag relationship (2.11) do
not vary together (they do not co-vary) as the units of mass are changed; and (2.11)
cannot possibly describe the drag of a sphere!

The only way to avoid this problem is to require that the general drag relationship
(2.9) satisfies the principle of covariance. Accordingly, (2.9) must be invariant
under a three-parameter dilation group

M=¢"M: L=cL; T=¢T 2.12)
where the group parameters m , [ and ¢ are arbitrary real numbers. This invariance

requirement severely restricts the function ¥, and suggests that one can learn

something important by searching for a proper invariant form of the drag relation-
ship. We will proceed in steps. Begin by scaling the units of mass using the
following one-parameter group.
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M=¢"M; L=L; T-=T. (2.13)

The effect of this scaling on the variables of the problem is to transform them as
follows.

D=¢"D; p=cu; p=ép; U=U; F=r (2.14)

The drag relation (2.9) is required to be independent of the group parameter m
and therefore must be of the form

D p

- [II - -, U’ r (2.15)
Yo ! [p u |

or something equivalent. That is, (2.15) is not unique. For example, we could have

picked D/ u, p/u, U, r as the new independent variables. Either choice is invari-

ant under (2.13). We shall return to this point in a moment. The dimensions of the

variables remaining in (2.15) are

A L
= y U=-, & =1L. 2.16
. (2.16)

|
=
I

Now let the units of length be scaled according to

L=¢éL: T=r1. 2.17)

The effect of this group on the variables in (2.15) is

D _ D 0 _ 20 f_Jy 7o (2.18)

P Pl u

By the principle of covariance, the drag relation (2.15) must be independent of /
and a functional form which accomplishes this is

2
_ D pU r
Yo = ’pg[lﬁ’ R l_]} (2.19)

The dimensions of the variables in (2.19) are

g 1
:]; = = 5
T

>
Q)

D =T. (2.20)

|
Q>|\>

a2, 2
pU 7

Finally, scale the units of time.
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T = ¢'T. 2.21)

The effect of this group on the variables in (2.19) is as follows.

b _ D . pU _ apU’

— = e —. (2.22)

T <

The drag relation (2.19) must be independent of ¢ and this leads finally to the
dimensionless form

Y, = YICp, Re] (2.23)
where
Cp = % . Re = RUCH (2.24)
5pU (mr™) “

The first dimensionless variable has the usual interpretation of a drag coefficient.
The constants /72 and = have been added to bring the definition into line with
accepted usage where the drag is normalized by the free stream dynamic pressure
and the frontal area of the body. The second dimensionless variable is the Rey-
nolds number commonly defined in terms of the sphere diameter. The final result
(2.23) is invariant under the three parameter group (2.12) and covariance is satis-
fied! The experimentally determined relationship (2.23) will be discussed in the
next section. In a way (2.23) is a remarkable achievement. The drag has been
found to depend on only one quantity, not four - a tremendous reduction! Further-
more we were able to reach this simple relationship without ever having to
consider the equations of motion for the flow over a sphere. This does not mean
we did not do any physics - there is a significant amount of physics in the identi-
fication of the relevant variables. In this respect dimensional analysis is
deceptively simple. In fact it requires a deep physical understanding of the prob-
lem being addressed including the governing equations.

It is common to seek a further simplification of the problem by considering pos-
sible limiting behavior of (2.23). To illustrate this idea we will make use of the
well known exact solution for the drag of a sphere in the limit of small Reynolds
number,

24

Ch, = —. 2.25
D~ Re (2.25)
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If we restore the dimensioned variables in (2.25) and solve for the drag, the result
1s

D = 6. (2.26)

uUr
At very low Reynolds number the drag of a sphere is independent of the density
of the surrounding fluid - a completely unexpected result and one which could not
be determined without knowing the solution (2.25)! This amazing result explains
a variety of phenomena. It tells us why the atmosphere of Mars, with a surface
pressure which is less than one-percent of that of Earth, can support planet-wide
dust storms that may take several months to settle out. The density of the atmo-
sphere hardly matters at all, the settling speed of small dust particles is determined
almost entirely by the viscosity of the Mars atmosphere which is 96% cold Carbon
Dioxide at about 200K. Mariner 9 encountered such a storm when it arrived at the
Red planet in 1972. At first this was thought to be a major dissapointment since
the surface of the planet was totally obscured, but the optical scattering data
obtained over the weeks and months as the dust settled continues to be analyzed
today and will remain for a long while one of the most important sources of data
on the composition of Mars (Refs [2.2] and [2.3]).

It is perfectly reasonable to try to extend this result to flow over a circular cylinder
where the drag per unit length has the dimensions

A M
Dcylinder = > (2.27)
T
and the drag coefficient is
D ..
Cp = (2.28)
cylinder §pU (2}")

The circle in Figure 2.3 is now interpreted as a cylinder extending to infinity.
Dimensional analysis leads to a result identical to (2.23) and logic would suggest
that, perhaps, in the limit of very small Reynolds number the flow over a cylinder
is governed by an equation similar in form to (2.25). Let

c =¥ (2.29)

Dcylinder Re .

If we restore the dimensioned variables in this relation the result is
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Dcylinder

oo (2.30)

which says that the drag of a cylinder is independent of its radius. In this case
dimensional reasoning plus a little bit of experience has led us down a garden path
to a nonsensical and completely incorrect result!

23.1  SOME FURTHER PHYSICAL CONSIDERATIONS

Even when dimensional analysis succeeds in producing a physically reasonable
result, that result is usually limited in very important ways. Figure 2.4 from Ref-
erence [2.1] shows measurements of circular cylinder drag versus Reynolds
number taken by a variety of investigators. According to (2.23) there should be a
single curve of C, versus Re. But one can’t help but be struck by the wide vari-

ation from one experiment to another depicted in Figure 2.4. Is our analysis
wrong?

103 104 105 106

Figure 2.4 Experimental measurements of the drag of a circular cylinder from [2.1].

No, not really within the confines of the physical variables identified in (2.9).
However it is pretty obvious that important variables have been ignored! The drag
of a circular cylinder or a sphere is sensitive to many things. The main depen-
dence is on the Reynolds number which is successfully identified using
dimensional analysis. But in addition, the drag depends on a whole variety of
velocity scales and length scales including surface roughness (measured in terms
of a roughness height), the level of free stream turbulent velocity fluctuations,
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the length scale of turbulent eddies in the free stream, the size of the wind tunnel,
the speed of sound (if U is not small enough), etc. A more complete dimensionless
description of the problem would be of the form

w = w| D pUrVita At .
- Y B G G S T |

where v, v,, ..., A;, A,, ... are the neglected velocity and length scales of the

problem. The point of all this is that when we formulated the original problem an
implicit assumption was made that these quantities are either infinitesimally small
or infinitely large and a finite limit of (2.31) exists as any one of
U}, Uy, wony Apy Ay, ... gOES to zero or infinity. That is, we assumed that when these

variables are asymptotically small or large they have a small effect and that the
remaining variables provide an adequate description of the physical system. The
experience we gained from the Kepler problem, where the limit of (2.8) as m/ M

and e went to zero was 47> would suggest that such an assumption is justified.

But the lesson of Figure 2.4 is that not all problems are as clean as the Kepler prob-
lem. In fact fluid dynamics presents a wide variety of problems where such an
assumption is a close call at best and has to be examined through experiment in
each case. The drag law at low Reynolds number (2.25) is another case in point.
Obviously, a finite limit at zero Reynolds number in this relationship does not
exist. Only by renormalizing the drag in the form of (2.26) can a finite limit be
realized. For an extensive discussion of this issue the reader is referred to the text
by Barenblatt [2.4].

This example highlights a key point. A real physical system in all of its detail is
devoid of perfect symmetries. We live in a universe of broken symmetries. In a
sense, our mathematical physics, constructed around equations with perfect sym-
metry and methods which can incorporate only relatively idealized boundary
conditions, simply isn’t up to the task of fully describing real phenomena in all
detail. Nevertheless, by incorporating as exact symmetries those approximate
symmetries which play a key role in the phenomena being described, remarkably
accurate models of the physical world can be developed. The identification of
such symmetries is one of the main objectives of scientific inquiry.

As a final example we consider what happens to the sphere drag problem when
the speed of the flow is large and the effects of compressibility are incorporated.
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2.4 THE DRAG OF A SPHERE IN HIGH SPEED GAS FLOW

The figure below shows the flow that would occur when the speed of the sphere
exceeds the speed of sound in the surrounding medium. In this case the pressure
disturbance produced by the sphere is unable to propagate upstream to infinity. In
effect the sphere continually overtakes its own sound field and the result is a shock
wave standing in front of the sphere. Figure 2.5 is intended to illustrate the flow
at supersonic speeds. However it is well to recognize that compressibility effects
begin to come into play at a critical subsonic speed somewhat below the speed at
which shock formation ahead of the body begins to occur. We have the same rel-
evant variables that we had before, including the drag force, D, the fluid density,
o, »the viscosity, u_ , the freestream flow velocity, U , and the radius of the sphere,

Au“oo’ poo U
—> —>» D
T, C,C,

shock wave

r.

Figure 2.5 High speed flow past a sphere

At low speed, where the flow is nearly incompressible, the effect of the motion of
the sphere on the internal energy of the fluid is extremely small and mainly con-
fined to slight heating by viscous friction. At high speed, the motion of the sphere
can substantially change the internal energy of the gas owing to its compressibil-
ity. The kinetic energy of the sphere ratioed to the thermal energy of the
surrounding gas becomes an important measure of the degree to which the internal
energy of the gas can be changed by the motion of the sphere. Moreover this ratio
is correlated with the strength, shape and position of the shock and therefore the
drag of the sphere. This brings into play the gas temperature and the heat capaci-
ties at constant pressure and volume indicated in Figure 2.5 as additional
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dimensioned variables governing the drag. Note that the temperature and density
of the gas vary throughout the flow necissitating the use of subscripts to denote
free stream values. The dimensions of the relevant variables are,

2 2
T, =0; C, = M. C, = M (2.32)
2 2
L e L 6
Now we have one additional fundamental dimension, temperature, and three addi-
tional parameters, two of which have the same units. Note that the dimensions of

the heat capacities, speed2 /temperature ,reflect the argument just made compar-
ing the kinetic energy of the motion to the thermal energy of the gas. When we
carry through the systematic procedure used in the incompressible case, the result
1s two additional dimensionless variables.

U C,

I, = : I, = — . 2.33

\4 1%

Note that C T, is the internal energy per unit mass of the free stream gas. Finally

our drag relation is,
¥ = Y[Cp R, M, 7] (2.34)

where y = C »7C, and II, is replaced by the usual form of the Mach number,
M = 2. (2.35)

where the speed of sound is,

a’ = yRT, (2.36)

The quantity, R is the universal gas constant divided by the molecular weight of
the gas, R = R, /M, which obeys the ideal gas law p = pRT . Without loss of
generality we can write,

Cp = F[R,M_, v]. (2.37)

Miller and Bailey [2.5] studied the available experimental data for the drag of
spheres over a wide range of Reynolds and Mach numbers in air. Interestingly the
most accurate high Reynolds number data for Mach numbers between 0.6 and 2.0
turned out to be the 19th century cannonball measurements by Francis Bashforth
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[2.6] who was Professor of Applied Mathematics at the Royal Military Academy
at Woolwich (near Greenwich) England. In 1947 the Academy was consolidated
with the Royal Military Academy at Sandhurst. The Royal Artillery Barracks on
Woolwich Common where many famous British military figures were trained is
now the home of the Royal Artillery Museum.

08

06—

Drag content, Cp

74 mm di
from figure 3.

04} ©O

o2 —

PR AERUTE CE T RO N L CCr R D
06 0-8 1-0 12 1-4 1-6 1-8 2:0

Mach number, M_

Figure 2.6 Bashforth’s drag data for a 7.4 cm diameter cannonball from [2.5]

Bashforth’s technique was to measure the successive times when the projectile
passed through a series of ten wire screens spaced 150 feet apart and electrically
connected to a chronograph consisting of a pair of pens writing on a paper-cov-
ered, rotating drum. As the projectile passed through each screen the current to
the chronograph was interrupted providing a position-time history from which
Bashforth could infer the velocity and deceleration of the cannonball. This infor-
mation could then be used to compile an extensive set of data for the drag
coefficient, Mach number and Reynolds number of spheres. The figure above
(Figure 2 from Miller and Bailey) presents the data of Bashforth that shows the
rapid rise in the drag coefficient of a 7.4 cm diameter sphere through the transonic
Mach number regime.

Figure 2.7 shows their complete compilation of data at various Reynolds numbers
and Mach numbers. The most interesting feature of the data in Figure 2.7 is the
tendency for the drag coefficient to become essentially independent of Reynolds
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number for M > 1.5. In this regime, wave drag dominates viscous drag. In fact

the data suggests that as the Mach number is increased, the drag coefficient

approaches,

although there is a slight but systematic decrease above M, = 2.0.Atlow Mach

Cp=~1

(2.38)

number the drag coefficient shows no sign of reaching an asymptotic value up to
the highest Reynolds number measured.
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Figure 2.7 Compilation of sphere drag as a function of Mach number and Reynolds

number from Miller and Bailey [2.5].
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2.5 DIMENSIONLESS EQUATIONS OF MOTION

The figure below shows a wing in a compressible air stream with the various
parameters of the fluid, the flow and the wing that govern the problem. In addition
to the parameters shown gravity acts on the wing and the fluid. The gravitational
parameter will be taken to be g, , the gravitational acceleration at the surface of

the Earth.

Figure 2.8 Schematic of a wing in a compressible, viscous, heat conducting flow.

The wing chord is C, the span is » and the wing planform area is S. The shear
viscosity of the fluid is u_, in the free stream and the bulk viscosity is u,, The

problem is completely characterized by these two viscosities, the heat conductiv-
ity of the fluid, the thermodynamic state of the fluid, the speed of the flow and the
geometry of the wing. The fundamental dimensions are M = mass, L = length,
T = time,® = temperature and N = moles The units of the various parameters
are

2 2
A ML aA M - ML P ML
K, = —T MOO’MVOO = T CPoo = -—T va = "'T (239)
T 0 T 0 T 0
(2.40)
2
LT L T 6N
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v, = L C =1L
T

S
Il
h
vy
Il
[\4

o

S)
]

(2.41)

Let the tilda on (p, P, T, U i € h i, i, & X, t) represent dimensioned variables.

The equations of motion in dimensioned variables are

Continuity
5 d(pU;
ap , APU) _ (242)
dt X ;
J
Momentum
pU; g (-~ ~ oUu; U\ 2 UL . -
3 - UU P(S - - - —<— - )(Sf - G:0243
Energy
. U, .
ap<e+ 2) a (~= » UiU;
P 7)) -
ot j (2.44)
- (dU; 9U; oU T\ . -
%(“Ui(ﬁl + a_) - (Gu-n) ‘Sfj:i;zf) ‘%(Kgg‘) -PGU; = 0
J J J k J J

In addition we have the ideal gas equation of state.

. _R,.
Po=p T (2.45)

w

Now replace dimensioned variables with dimensionless variables using the
scalings

K = (k,)x wo= (u,u w, = (U, )u, Cp = (Cp )Cp
i ) , ) i (2.46)
Cy = (Cy )Cy P = (p ,UL,P P = (PP r =(T,T
e = (Cy T,)e h = (Cp T)h T = (T )T (2.47)
% = (C) 7 ¢ U = (U)U 6= (s
;o= : t = —|t ;o= . L= .
3, X, (Uw) ; DU, =g @4
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For example the internal energy and enthalpy become

¢+ (éffﬂ?i) = (Cy T)e+ (Ui)(éU,-Ul-)
(2.49)

e (30,0 = o rons W (lu)

When the equations of motion are transformed using (2.46) to (2.48) the result is

Dimensionless continuity

op , YPY)

ot ox i

(2.50)

Dimensionless momentum

apU;
ot

J 1 oUu; dU; 2 M, IUy 1
—|pU.U. +PS. ——|u|—+—| - |su—u,|—||0;,—|| - =—pG;, = 0
dxj(p L Y R, (u( dx;  Jx; Ela Uyp)) Y dx, F_ PV

foe]

Dimensionless energy

2 YUY
ap(e+ (VolVoo= DML)—5) , U,
(U (1o + (1l - DML —5)) -
ot dx \"T T oot foo /7
2
(Voo Voo = 1M ,) U, U, My \\ U
a &i(uyi(a_l N a_l) _ (gﬂ— MV(L)) %ﬁ—k) B (2.52)
¢ i Yoo X
Y (7 oy o= M)
« i(,{ﬂ)_ © > ® pGiUi =0
RewPrm&x] o’?xj Fr00
The dimensionless form of the equation of state is
2
(YoM )P = pT (2.53)

When we nondimensionalize the equations this way several important flow
parameters emerge. The Reynolds number
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Dimensionless equations of motion

0LU..C
R, = (2.54)
oo ‘u'OO
The ratio of specific heats
CPOO (2.55)
}/oo = M
Cy

U,
= (2.56)
U
The Mach number
UOO
M, = P v (2.57)
u
y o0 7 T (0]
[T
The Prandtl number
HoCp
Pr = " * (2.58)
and the Froude number
UOO
F = (2.59)

roo /\/gOT,
The flow is determined entirely by these six parameters and the wing geometry.

In dimensionless form the equations of motion become invariant under an arbi-
trary choice of the units of measurement. Any integrated quantity will also depend
on the various properties of the flow. For example, in the absence of buoyancy
effects, the drag of the wing would depend on nine parameters as well as the wing
geometry.

D = f(po Ty Uy Wyoo K s CPm’ CVDO’ M, U, Geometry) (2.60)

But according to our dimensional study of the equations of motion the drag
coefficient,
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Dimensionless equations of motion

D
Cp = ——r (2.61)

1 2
=0, U.S
ZpOO o

where S is the planform area of the wing, can depend on at most five independent
quantities along with dimensionless measures of the geometry such as the wing

aspect ratio A, = b2/,
Cp = g(Rew, Yor M o Prw, (ptvm/uoo ), Dimensionless geometry) (2.62)

In practice the effects of Prandtl number and ratio of bulk to shear viscosity are
small and the primary dependence ison R, , M, and y_, , a tremendous simplifi-

cation of the problem. All forces and moments on the wing would be normalized
this way although at very low Reynolds number (a small flying insect) a more
appropriate choice for normalizing forces would be that used in (2.26).

A small scale test that is intended to model a full scale flow must reproduce the
values of these dimensionless quantities. Typically y_ and P, are essentially

constant and well modeled if the test fluid is air. Reproducing M is also relatively

easy in a modest size test facility. However reaching realistic Reynolds numbers
is much harder because of the need to match velocity and length scales. One
approach is to increase the pressure or decrease the temperature of the test gas.

pU.C P, U,C
R, = = — = (RM/MW)TOO( ™ ) (2.63)
The viscosity of a gas increases with temperature. A reasonable model is
u, ~1* (2.64)
Therefore
U C(P.M,
R, ~ R—u( T7/4) (2.65)
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Buckingham’s Pi Theorem - the dimensional analysis algorithm

We can reach very high Reynolds numbers on a small scale model by elevating
the pressure and lowering the temperature of the test gas. This is the idea behind
the National Transonic Facility, a large closed-circuit wind tunnel at the NASA
Langley Research Center in Hampton Virginia. This wind tunnel uses very cold
nitrogen gas at high pressures to reach flight Reynolds numbers.

2.6 BUCKINGHAM’S PI THEOREM - THE DIMENSIONAL ANALYSIS
ALGORITHM

Finally, let’s take a moment to formally state the systematic procedure for gener-
ating dimensionless variables. This is one way of stating the well-known
Buckingham Pi Theorem (Bridgeman [2.13]).

To summarize, dimensional analysis makes use of a simple, purely algorithmic,
procedure that is extremely general and can be applied to practically any physical
problem. The various steps are as follows.

1) Identify the physical variables relevant to the problem (a, a,, ..., a,).

2) Determine the fundamental dimensions of each physical variable. The total
number of dimensions is (d,;, d,, ..., d /3); (B = a). Each variable is a power

monomial function of its dimensions,

k, k k
a; = d/'dy..dJ . (2.66)
3) Buckingham’s Pi Theorem - A relationship between physical variables
Y = fla, a,, ...,a,] must be invariant under a g-parameter dilation group

applied to the fundamental dimensions.

- 8, - 8, - Sp

dj =e'd ; dy=e’dy; ..; dg=e'dg (2.67)
4) The algorithm for accomplishing step 3 is to apply a one-parameter dilation
group to each dimension in succession. New variables are created at each step
which are independent of the dimension being varied. This process is continued
until all the dimensions are exhausted. In the final result, the physical problem can
only depend on dimensionless variables via a function of the form,
Y = Y[, IL, ..., Hy] .Usually y = «a - B.However if two or more of the phys-
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Concluding remarks

ical variables have the same or commensurate units then y can be greater than
a — 8 by the number of variables having common units minus one. This is the case
for the examples described in Sections 2.2 and 2.4.

Step 4 is a purely algorithmic process which always leads to a set of dimensionless
combinations of the physical variables. The only problem is that any product of
these dimensionless variables is also dimensionless, and so the reduced set is not
unique and therefore not always recognizable in traditional terms. Changing the
order in which various dimensions are subjected to dilation will change the form
of the final variables. For example, in the case of sphere drag described above we
could have wound up with

_ _ [ D pUr
¢ = ®[CpRe, Re] = cp[MUr, . } (2.68)
as an equivalent dimensionless form of the drag equation. Note that in this renor-
malized form the drag law has a finite limit as the Reynolds number goes to zero.

D pur

lim CD[M 7

} = 6. (2.69)
Re — 0

The success or failure of dimensional analysis depends entirely on Step 1; the
choice of the dimensioned physical variables relevant to the problem. This com-
prises the art of dimensional analysis. Applied intelligently with a deep
knowledge of the problem, very important and profound results can be obtained.
Applied blindly, dimensional analysis can easily lead to nonsense!

2.7 CONCLUDING REMARKS

Although I have tended to emphasize the limitations of dimensional analysis this
should be balanced by the recognition of the tremendous simplification achieved
in converting from dimensioned to dimensionless variables. Sphere drag is a great
example because, in spite of the fact that the equations governing the flow are per-
fectly well known and have been for over a century, we are still very far from
having an adequate theory for the viscous flow past a sphere. For example, we
have no idea of the asymptotic value of C, as R, approaches infinity at fixed

Mach number or as M approaches infinity at fixed Reynolds number. Neverthe-

less dimensional analysis is able to reduce the number of variables in the problem
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Exercises

from nine to five - a tremendous accomplishment! Without this all-important tool
to organize the experimental data and our thinking rational scientific inquiry into
aerodynamics and many other fields would be utterly impossible!

2.8 EXERCISES

EXERCISE 2.1 - Under the influence of surface tension, a liquid rises to a height H in a glass tube of

diameter D . How does H depend on the parameters of the problem?

-~

EXERCISE 2.2 - Estimate the time of oscillation of a small drop of liquid under its own surface tension.

EXERCISE 2.3 - When a drop of water strikes a surface at sufficiently low speed, surface tension keeps it
round, so it makes a circular spot. As the impact speed is increased, dynamic forces overcome the smoothing
effect of surface tension, and the drop becomes unstable and forms a spiky shape as shown in the sketch below

(Reference [2.7]).

How does the speed at which the impact becomes unstable depend on the properties of the drop? Retain only
the essential properties, so that your result involves only a single unknown constant that could be determined
from an experiment. Thus you may wish to assume that viscosity is negligible, the properties of the ssur-
rounding Air are unimportant, etc. See if your result makes sense. For example, does the critical speed depend
on the surface tension in the way you would expect?

EXERCISE 2.4 - Estimate the velocity of fall of a small heavy sphere in a viscous fluid of lower density
than the sphere under the influence of gravity. Compare your result with the exact solution. How long does
it take the sphere to reach its terminal velocity when dropped from rest.
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Exercises

EXERCISE 2.5 - Liquid in an open container flows through a long horizontal pipe into a second container
as shown below.

How does the time for the liquid level to reach equilibrium depend on the parameters of the problem?

EXERCISE 2.6 - Use dimensional analysis to find how rowing speed depends on the number of oarsman for
racing shells. This problem is discussed by McMahon [2.8] and Barenblatt [2.4]. First identify the appropri-

ate parameters of the problem and use the procedure developed in 2.3 to identify dimensionless IT ‘s.
Then apply some physics using the following asssumptions.
i) The boats are geometrically similar.

ii) The boat weight, W, per oarsman is constant.

iii) Each oarsman contributes the same power, P.

iv) The only hindering force is skin friction and the friction coefficient over the wetted area is a constant.

Hint: find how the volume of the displaced water varies with the number of oarsman and the length of the
boat. Equate the expenditure of energy on skin friction to the power supplied by the oarsman.

Data for men’s rowing over a 2 km course from three recent Olympic summer games is presented in the fol-
lowing table.

Olympics 1 Oarsman 2 Oarsmen 4 Oarsmen 8 Oarsman
Atlanta 404.85 376.98 356.93 342.74

Barcelona 411.40 377.32 355.04 329.53
Seoul 409.86 381.13 363.11 -

Table 2.2 Rowing times in seconds for 1, 2, 4 and 8 man shells from four previous
Olympics, the distance traveled in each case is 2000 meters.

Plot the data in logarithmic coordinates and compare with your prediction. Notice that in the context of this
problem “number of oarsman” is a fundamental dimension.

EXERCISE 2.7 - Critique the assumptions in EXERCISE 2.6 particularly (i) that seems to suggest that the
shells get wider as they get longer to accomodate more rowers.

(i) How does the problem work out if the width of the shell is assumed to be constant?

(i1) Suppose the drag is primarily due to the generation of waves and skin friction can be neglected, how
would the speed depend on the number of oarsman? Do these results shake your confidence in the solution
developed in EXERCISE 2.6?
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(iii) Work the case where the race is carried out by fleas on a lake of honey.

EXERCISE 2.8 - What is the speed of the wave in a row of falling dominos on a table? Add whatever sim-
plifying assumptions you feel are reasonable such as perfectly rigid dominos, constant coefficient of friction
between the dominos and the table, etc. This problem is the subject of a pair of journal papers by Stronge
[2.9] and Stronge and Shu [2.10] as well as a note in SIAM Review “problems and solutions”. The problem
was proposed by Daykin [2.11] and solved by McLachlan, Beaupre, Cox and Gore [2.12].

EXERCISE 2.9 - Show that if two equal size elastic spheres are pressed together, the radius of the circle of
contact varies as the one-third power of the force between them. How does it vary as the radius of the spheres?

EXERCISE 2.10 - One of the well known observations in blood flow is that the viscous shear stress at the
wall of an artery is approximately constant independent of the diameter of the artery. Consider a bifurcation
where the flow in one large artery splits into two smaller adjoining arteries of equal size. How are the diam-
eters of the smaller arteries related to the diameter of the large artery?

EXERCISE 2.11 - Use dimensional analysis to deduce how the weight a man can lift depends on his own
weight. Assume that the strength of a muscle varies as its cross-sectional area. See if your result correlates
the following data taken from the 1969 World Almanac for the 1968 Senior National AAU weightlifting
championships.

Bantam 123.5 740
Featherweight 132.25 795
Lightweight 148.75 820
Light-heavy 181.75 1025
Middle-heavy 198.25 1055
Heavyweight ? 1280

Table 2.3 Total weight lifted for different classes.

How much did the heavyweight lifter weigh?

EXERCISE 2.12 - There is a continuing interest in pushing measurements of circular cylinder drag to the
highest possible Reynolds numbers. One scheme that has been proposed is to tow a submerged, high aspect-
ratio cylinder behind two nuclear powered aircraft carriers pulling lines attached to each end of the cylinder.
The kinematic viscosity of water is small, the cylinder diameter can be made quite large and thus high Rey-
nolds numbers ought to be achievable. Assuming only cylinders of a given aspect ratio,say L/ r = 60,

are used, how does the required towing force vary with the Reynolds number based on cylinder diameter?
What force would be required to reach a Reynolds number that exceeds the highest available data

(R, = 108 , C, = 0.6).The maximum towing force available is about ]08 Newtons.

EXERCISE 2.13 - Consider the dynamics of the so-called “dead man’s dive”. An adult who stands rigid and
topples from a three meter diving board will execute a succesful dive. How is this result changed for a child;
for a man on the moon?
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