
  

 

 

 

 

Project acronym:  OVERSEE 

Project title: Open Vehicular Secure Platform 

Project ID: 248333 

Call ID:  FP7-ICT-2009-4 

Programme: 7th Framework Programme for Research and Technological Development 

Objective: ICT-2009.6.1: ICT for Safety and Energy Efficiency in Mobility 

Contract type: Collaborative project 

Duration: 01-01-2010 to 30-06-2012 (30 months) 

 

 

 

 

Deliverable D2.2: 

Specification of security services incl. virtualization 
and firewall mechanisms 

Authors: Jan Holle (Uni Siegen) 
André Groll (Uni Siegen) 
Alfons Crespo (UPVLC) 
Hakan Cankaya (escrypt) 
Thomas Enderle (escrypt) 
Nicholas Mc Guire (OpenTech) 
Andreas Platschek (OpenTech) 

Reviewers: Hakan Cankaya (escrypt) 
Thomas Enderle (escrypt) 

Florian Friederici (FOKUS) 

Dissemination level: Public 

Deliverable type: Report 

Version: 1.6 

Submission date: 11 November 2013 



D2.2: Spec. of security services incl. virt. and firewall mech. 

ii 

 

Abstract 

This document specifies all capabilities and services of OVERSEE, which are related to 
security. Thus, it defines a large part of the OVERSEE design since the project has a strong 
focus on security. 

Security services that are part of the generic OVERSEE implementation will be depicted. 
These services are offered to the partitions through an appropriate API and are reused by 
other OVERSEE components, too. Additionally, the following security related features are 
specified: Whole virtualization concept, OVERSEE firewall, secure assurance of prioritized 
resource access and internal communication requirements in the virtualized environment. 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

iii 

 

Contents 

Abstract ............................................................................................................................. ii 

Contents ........................................................................................................................... iii 

List of Figures .................................................................................................................... vi 

List of Tables .................................................................................................................... vii 

List of Acronyms and Abbreviations ................................................................................ viii 

1 Introduction ................................................................................................................1 

1.1 Scope and Objectives of the Document ..................................................................... 1 

1.2 Definitions .................................................................................................................. 1 

1.3 Document Outline ...................................................................................................... 1 

2 Security Services .........................................................................................................2 

2.1 Overall Structure of Security Services ........................................................................ 2 

2.2 Hardware Security Module ........................................................................................ 2 

2.2.1 HSM Cryptographic Functions ....................................................................... 3 

2.2.2 HSM Secure Key Storage ................................................................................ 3 

2.2.3 HSM Secure Boot Registers ........................................................................... 4 

2.2.4 HSM Hardware Interface ............................................................................... 4 

2.3 Security Services Partition .......................................................................................... 4 

2.3.1 Security Partition Binding .............................................................................. 5 

2.3.2 Hardware Security Module I/O Driver ........................................................... 5 

2.3.3 Cryptographic Services Module ..................................................................... 5 

2.3.4 Key Management Module ............................................................................. 5 

2.3.5 Secure Storage ............................................................................................... 7 

2.3.6 Certificate Handler ......................................................................................... 7 

2.3.7 Security Services Configuration Table ........................................................... 7 

2.4 Security Services Provider Module ............................................................................ 8 

2.4.1 Cryptographic Services API ............................................................................ 8 

2.4.2 Key Management API ................................................................................... 14 

2.4.3 Secure Storage API ....................................................................................... 14 

2.4.4 Alternative Secure Storage .......................................................................... 15 

2.4.5 Secure Communication API ......................................................................... 16 

2.5 Secure Boot .............................................................................................................. 16 



D2.2: Spec. of security services incl. virt. and firewall mech. 

iv 

 

2.5.1 Guideline for Providing Secure Boot in OVERSEE ........................................ 16 

2.6 User Authentication and Authorization ................................................................... 17 

2.6.1 User Model of OVERSEE ............................................................................... 17 

2.6.2 Authentication Methods for OVERSEE ........................................................ 19 

2.6.3 Extended Authorization Capabilities ........................................................... 21 

2.7 Secure Software Load ............................................................................................... 22 

2.7.1 Requirements for a Secure Software Load .................................................. 22 

3 Specification of the Whole Virtualization Concept ..................................................... 24 

3.1 Partitions .................................................................................................................. 24 

3.1.1 Virtualized Resources ................................................................................... 25 

3.1.2 Configuration and Deployment Overview ................................................... 25 

3.2 Concepts ................................................................................................................... 26 

3.2.1 Subjects, Objects and Privileges .................................................................. 27 

3.2.2 Subject Identification ................................................................................... 27 

3.2.3 Exported Resource Identification ................................................................ 27 

3.2.4 Partitions and the Partitioned Information Flow Policy .............................. 28 

3.2.5 Auditable Events .......................................................................................... 28 

3.3 Secure States ............................................................................................................ 29 

3.3.1 Concepts ...................................................................................................... 29 

3.3.2 Operations ................................................................................................... 30 

3.4 TOE Attestation ........................................................................................................ 31 

3.4.1 Health Monitor Events ................................................................................. 32 

3.4.2 Traces and Logs ............................................................................................ 34 

4 OVERSEE Firewall ...................................................................................................... 35 

4.1 Communication Paths and Interfaces ...................................................................... 35 

4.1.1 Security Methods Concerning the Communication Paths to be Considered 
for the OVERSEE Firewall ............................................................................. 37 

4.2 Specification of the OVERSEE firewall ...................................................................... 39 

4.2.1 Role Model for Definition of Firewall Policies ............................................. 40 

4.2.2 Policy language for the OVERSEE firewall .................................................... 40 

5 Secure Assurance of Prioritized Resource Access ....................................................... 42 

5.1 Classes of Resources Concerning Prioritized Resource Access ................................ 43 

5.1.1 Time shared resources ................................................................................. 43 

5.1.2 Resources capacity shared resources .......................................................... 43 



D2.2: Spec. of security services incl. virt. and firewall mech. 

v 

 

5.1.3 Classification of OVERSEE Resources Concerning Prioritized Resource 

Access ........................................................................................................... 43 

5.1.4 Special Issues concerning Prioritization in SVAS.......................................... 45 

5.2 Concepts for Prioritized Resource Access in OVERSEE ............................................ 45 

5.2.1 Resources shared over time ........................................................................ 45 

5.2.2 Resources with shared Capacity .................................................................. 46 

5.3 Change of Resource Sharing During Operation ....................................................... 46 

5.4 Policy Language for Definition of Prioritized Resource Access ................................ 46 

5.5 Security Challenges for Assurance of Prioritized Resources Access ........................ 47 

5.5.1 Residual Risks ............................................................................................... 47 

6 Specification of internal communication requirements in the virtualized environment48 

6.1 High-Level Requirements ......................................................................................... 48 

6.2 Available Communication Mechanisms ................................................................... 49 

6.2.1 Sampling Ports ............................................................................................. 49 

6.2.2 Queuing Ports .............................................................................................. 50 

6.2.3 Compliance with RTE API ............................................................................. 50 

6.2.4 Shared Memory ........................................................................................... 51 

6.2.5 Design Discussion - Robust SHM: ................................................................. 51 

6.3 Requirements on the Internal Communication ....................................................... 53 

6.3.1 Scenario1: Secure Communication - Dedicated Partition ........................... 54 

6.3.2 Scenario2: Non/low-secure device access - integrate in guest OS partition55 

6.3.3 Scenario3: Device Multiple Access - Virtual Multiplexing ........................... 56 

6.3.4 Scenario 4 - Virtual Device - Interpartition Communication ....................... 57 

6.3.5 Scenario 5 - Scalability of the Architecture .................................................. 58 

7 Next Steps ................................................................................................................. 59 

References ....................................................................................................................... 60 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

vi 

 

List of Figures 

Figure 1: Structure of Security Services ..................................................................................... 2 

Figure 2: Key for OVERSEE communication paths ................................................................... 35 

Figure 3: OVERSEE communication paths ................................................................................ 36 

Figure 4: Example of prioritized capacity resource sharing ..................................................... 46 

Figure 5: Asymmetric Bi-directional mapping (ABM) .............................................................. 52 

Figure 6: Exchange Page Table Entry (XPTE) ............................................................................ 52 

Figure 7: Secure Communication - Dedicated Partition........................................................... 54 

Figure 8: Non/low-secure device access - integrate in guest OS partition .............................. 55 

Figure 9: Device Multiple Access - Virtual Multiplexing .......................................................... 56 

Figure 10: Virtual Device - Interpartition Communication ...................................................... 57 

Figure 11: Scalability of the Architecture ................................................................................. 58 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

vii 

 

List of Tables 

Table 1: Security Service General Command Structure ............................................................. 5 

Table 2: Internal Key Structure .................................................................................................. 6 

Table 3: Key Structure for Export/Import .................................................................................. 7 

Table 4: Cipher API ..................................................................................................................... 9 

Table 5: Cipher API, Output ........................................................................................................ 9 

Table 6: CMAC API .................................................................................................................... 10 

Table 7: CMAC API, Output ...................................................................................................... 10 

Table 8: Hash and HMAC API ................................................................................................... 10 

Table 9: Hash and HMAC API, Output ...................................................................................... 11 

Table 10: Signature Generation API ......................................................................................... 11 

Table 11: Signature Generation API, Output ........................................................................... 11 

Table 12: Signature Verification API ......................................................................................... 12 

Table 13: Signature Verification API, Output ........................................................................... 12 

Table 14: Random Number Generator API .............................................................................. 12 

Table 15: Random Number Generator API, Output ................................................................. 12 

Table 16: Counter API, Create counter .................................................................................... 13 

Table 17: Counter API, Delete counter .................................................................................... 13 

Table 18: Counter API, Output value create counter ............................................................... 13 

Table 19: Counter API, Increment counter .............................................................................. 13 

Table 20: Counter API, Read counter ....................................................................................... 13 

Table 21: Counter API, Output value read counter ................................................................. 13 

Table 22: File encryption API .................................................................................................... 14 

Table 23: File encryption API, Output ...................................................................................... 14 

Table 24: File decryption API .................................................................................................... 15 

Table 25: File decryption API, Output ...................................................................................... 15 

Table 26: Content of software download configuration file .................................................... 23 

Table 27: Captured errors, TOE and partition operation ......................................................... 33 

Table 28: Captured errors, Partition operation ....................................................................... 33 

Table 29: Predefined actions .................................................................................................... 34 

Table 30: Security issues to be handled by the OVERSEE firewall ........................................... 39 

Table 31: Classification of resources concerning prioritized resource access ......................... 45 



D2.2: Spec. of security services incl. virt. and firewall mech. 

viii 

 

List of Acronyms and Abbreviations 

2G Second generation mobile phone system 

3G Third generation mobile phone system 

ABM Asymmetric Bi-directional mapping 

AES Advanced Encryption Standard 

AMT Abstract Machine Test 

API Application Programming Interface 

ARINC Aeronautical Radio Incorporated 

BIOS Basic Input Output System 

CA Certification Authority 

CAM Cooperative Awareness Message 

CAN Controller–area Network 

CBC Cipher Block Chaining  

CBC-MAC Cipher Block Chaining Message Authentication Code 

CC Common Criteria 

CCM Counter with CBC-MAC 

CEN European Committee for Standardization 

CMAC Cipher based MAC 

CPU Central Processing Unit 

CRL Certification revocation list 

DENM Decentralized Environmental Notification Message 

DoS Denial of Service 

DSRC Dedicated Short-Range Communications 

DTD Document Type Definition 

eCall Emergency Call 

ECB Electronic Code Book 

ECC Elliptic Curve Cryptography 

ECR ECU configuration registers  

ECU Electronic Control Unit 

FiFo First in First out 

FPU Floating point unit 

GCM Galois/Counter Mode 



D2.2: Spec. of security services incl. virt. and firewall mech. 

ix 

 

GNU GNU's not Unix 

GPS Global Positioning System 

HAL Hardware Abstraction Layer 

HMAC Hash based MAC 

HMI Human Machine Interface 

HSM Hardware Security Module 

HW Hardware 

I/O Input Output 

ICT Information and Communication Technology 

IMA Modular Avionics  

IP Internet Protocol 

IPC Inter Process Communication 

ITS Intelligent Transportation System 

LDM Local Dynamic Map 

MAC Message Authentication Code 

MILS Multiple Independent Levels of Security and Safety 

MMU Memory Management Unit  

NIC Network Interface Card 

NIST National Institute of Standards and Technology  

OEM Original Equipment Manufacturer 

OS Operating System 

OSEK Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug 

PIFP Partitioned Information Flow Policy 

PKCS Public Key Cryptography Standards  

PKI Public Key Infrastructure 

PoS Positioning Service 

POSIX Portable Operating System Interface (for Unix) 

PRNG Pseudo Random Number Generator 

PSAP Public-Safety Answering Point 

QoS Quality of Service 

RAM Random-access memory  

RTE Runtime Environemnt 

RTEMS Real-Time Operating System for Multiprocessor Systems  

RTOS Real-time Operating System 



D2.2: Spec. of security services incl. virt. and firewall mech. 

x 

 

SecS Security Services 

SKPP Separation Kernel Protection Profile 

SSL Secure Sockets Layer 

SSPM Security Services Provider Module 

SVAS Secure Vehicle Access Service 

TLS Transport Layer Security 

TOE Target Of Evaluation 

TSF TOE Security Functions 

USB Universal Serial Bus 

V2X Vehicle-to-X 

VDX Vehicle Distributed eXecutive 

VFB Virtual Function Bus 

VM Virtual Machine/Virtual Machine Manager 

VMA Virtual Memory Area 

VMM Virtual Machine Manager/Monitor 

Wi-Fi Wireless Fidelity 

XEX Xor-Encrypt-Xor 

XML Extensible Markup Language 

XPTE Exchange Page Table Entry 

XTS XEX-based Tweaked CodeBook 

 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

1 

 

1 Introduction 

The Open Vehicular Secure Platform (OVERSEE) project has produced this deliverable; 
therefore it contains contributions from all partners, while the main contributors are: 
escrypt, UPVLC, OpenTech and University of Siegen. 

The present document contains the specification of the security relevant features and 
capabilities of OVERSEE, hence a large part of the overall specification, since OVERSEE has a 
dedicated focus on security for open platforms. 

1.1 Scope and Objectives of the Document 

The scope of this document is the specification of the security related features and 
capabilities of OVERSSE. Since OVERSEE is a project focusing on security from secure 
communication aspects to secure parallel execution of applications, this document contains 

a large part of the overall OVERSEE design. 

The objective of the actual document is to provide a global description for the 
implementation of the security related parts of OVERSEE. Thus, the document would be 
used as a kind of functional specification for the implementation phase and also a reference 
book concerning the security capabilities of the platform during usage. 

1.2 Definitions 

For the purpose of the present document, the terms and definitions given in [1], [2] and [3] 

apply, if not otherwise noted. 

1.3 Document Outline 

The document is structured as follows: Section 1 gives an introduction on the scope and 
intentions. Section 2 specifies the security services provided by OVERSEE. Section 3 is 
concerned with the description of the overall virtualization concept. Section 4 contains the 
specification of the OVERSEE firewall concept. Section 5 is dedicated to the secure assurance 
of prioritized access on shared resources and finally section 6 specifies the internal 
communication requirements in the virtualised environment. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

2 

 

2 Security Services 

2.1 Overall Structure of Security Services 

 

Figure 1: Structure of Security Services 

Two main facts play a key role defining the requirements of the security services. First of all 
OVERSEE aims to provide a platform for ICT applications, which require a set of dependable 
security services. The second aspect is that OVERSEE provides multiple isolated runtime 
environments. This demands a strong level of isolation, which also has an impact on the 
security services. 

The OVERSEE security architecture basically consists of three parts. The first part is the 
hardware security module (HSM). The HSM provides accelerated cryptographic function 
execution, secure key and certificate storage, and registers for secure boot services. The 
second part is a dedicated partition for the security services. This partition owns exclusive 
rights to access the HSM and also hosts building blocks for further security services. The last 
part is the so-called security service provider module (SSPM). This module is a high level 
client located at the user partitions (or any other partition if needed) providing the link 

between user applications and security services.  

2.2 Hardware Security Module 

The HSM is not part of the OVERSEE design however a crucial element in the security 
architecture. This part of the document will still list some requirements for the HSM on 
which the security services of OVERSEE will be build on. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

3 

 

Furthermore it is also possible to implement most of the functionality of a HSM in the 

security partition as a software version, though respectively in a less secure way. The design 
of OVERSEE is based on the existence of a HSM but the structure of the security partition will 
be specified in a flexible way to enable also a software implementation of HSM 
functionalities. 

2.2.1 HSM Cryptographic Functions 

The cryptographic functions provided by the HSM are hardware-accelerated 
implementations of the algorithm thus offering higher performance than software 
implementations. In addition the HSM enables a secure environment for the cryptographic 
functions making any tampering attempts practically impossible. Furthermore key data used 
for the algorithms are also handled internally in the HSM, thus assuring security of key data. 

In order to satisfy the requirements to sign, verify and encrypt messages for V2X 

communications and PKI Infrastructure communications the following minimum set of functions 

are proposed by the OVERSEE design to be supported by the HSM: 

 ECC-256: Asymmetric cryptographic engine based on elliptic curve arithmetic. 

 Whirlpool: A hash function proposed by NIST. 

 AES-128: A symmetric block encryption standard with a key length of 128 bits. It 
should support standard block encryption modes as ECB and CBC but also advanced 
modes as GCM and CCM.  

 PRNG: A pseudo random number generator. 

 Counters: Counter management with authorization. 

An implementation of further needed cryptographic functions into the security services 
partition would be a solution for creating a flexible and expandable design but is not a very 
secure method regarding key security. Therefore the HSM should also provide enhancement 
capabilities regarding cryptographic functions. That is the firmware of the HSM should 
enable realization of further cryptographic functions, even if supporting hardware blocks do 
not exist in the HSM. This would enable the implementation of cryptographic functions in 
software, e.g., ECC-224 as a candidate for cryptography in the upcoming ITS standards for 
Europe. 

2.2.2 HSM Secure Key Storage 

The HSM features an internal storage for keys and certificates. The internal storage is not 

accessible directly over any interface, hence creating a secure storage for security relevant 
data. The exportation of a key from the HSM depends on the configuration of the relevant 
key. For further information on the security of key material and key management refer to 
Deliverable 2.4 [4]. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

4 

 

2.2.3 HSM Secure Boot Registers 

The HSM features so called ECU configuration registers (ECR) and assigned functions on 
which a secure and/or authenticated boot process can be built on. The following 
functionalities are provided in this context. Further information on secure boot process can 
be found in chapter 2.5. 

 Extend ECR: This function is used for updating the ECR with a new (hash) value. The new 

value is pro-vided as input and chained together with the existing value stored in the ECR 

using a hash update function.  

 Retrieve ECR: For any ECR, this function may be used to retrieve and verify its actual 

value. The ECR value is signed by a certification key whose usage authorization data 

needs to be presented as input. Furthermore, a nonce value, possibly obtained as a 

challenge from an external verifier, may be included to be able to prove the freshness of 

the signature. The ECR value together with its signature are returned as output 

 Preset ECR: This function is used to manage references to ECR values by ECR indices in 

the context of secure boot. The function provides the possibilities to directly update an 

ECR with a new value, to set a new reference to an ECR index ("inherit") or to remove an 

existing reference ("clear").  

 Compare ECR: This function allows the direct comparison of the current ECR with a 

reference. If match fails, an automatic secure boot alarm may be activated. As a 

precondition, a reference must be set for the given ECR index, and an internal secure 

boot failure mechanism must be given. 

2.2.4 HSM Hardware Interface 

The HW interface provided by the HSM is the dedicated interface to reach the functionality 
of the HSM. The interface depends on the HSM and the OVERSEE platform and will not be 
specified any further in the OVERSEE design. The proof of concept implementation will use 
any interface provided by the HSM without concerning any security aspects although the 
HW interface is an important communication path in the design respective security. Later 
implementations of the platform have to assure a secure interface; for further information 
refer to the document D2.4 [4].  

2.3 Security Services Partition 

The security services partition provides a secure and isolated runtime for the shared security 
services. Multiple partitions thus multiple applications will access the security functions of 

the platform. The security partition provides a trustable anchor in the whole security 
architecture and a controlled access to the security services as user partitions (and 
applications) have only restricted access to the security partition and services provided by 
the partition.  

In this section of the document the building blocks of the security partition are listed and 
described. Further specification of the building blocks is left to the implementation phase of 
the platform. The API to the security services are listed in section 2.4 where the client 
module for user partitions is specified. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

5 

 

2.3.1 Security Partition Binding 

The security services partition binding module is the first instance interfacing requests from 
the other partitions. The connection between the other partition and the security partition 
binding module exists of a queue in each direction for the commands and a shared memory 
for exchanging large chunks of data.  

The command structure received by the binding module can be seen in Table 1. The request 
ID is a unique label defined by the other partition for internal use at the other partition. This 
ID is followed by the command id and the parameters of the command. The security 
partition binding module handles the incoming command by adding the origin of the request 
and a unique handling id to the command before forwarding the command to the 
appropriate module. 

No. Name Description 

1 Request ID A unique ID given by the user partition for the request. 

2 Command ID ID of requested command. 

3 Command parameters Parameters needed for the command. Details are 
specified in every method. 

Table 1: Security Service General Command Structure 

2.3.2 Hardware Security Module I/O Driver 

The HSM I/O driver is the interface to the HSM module. The driver is provided by the HSM 
manufacturer and therefore is out of scope of the OVERSEE design. The driver should 

provide a seamless integration of the HSM services into the runtime environment and 
function as a non-blocking device.  

2.3.3 Cryptographic Services Module 

Any request for a cryptographic function is handled by the cryptographic functions module. 
The request is forwarded from the security services partition binding module and handled 
basically in this sequence: 

 Check for authorization of requesting partition for requested service. 

 Check for authorization of requested key and key usage. 

Subsequently the cryptographic service on the HSM is triggered or a software 

implementation of the requested cryptographic function is executed with the needed 
parameters. 

2.3.4 Key Management Module 

The Key Management Module plays an important role in the security architecture of the 
OVERSEE design. Issues as authenticity, integrity and encryption are closely coupled to 
ownership of key information as the isolation of the security services for the multiple 



D2.2: Spec. of security services incl. virt. and firewall mech. 

6 

 

partitions is mainly provided by defining different access rights to the key material. A key 

request is strictly handled by the key management module. The requesting partition has to 
be authorized for the requested key and the requested usage of the key. Only in this case 
the key data may be used for the requested security service by the user partition. The 
reliability of the origin of the request is assumed to be provided by the virtualization layer. 

Information regarding key management can be found in D2.4 Specification of Secure 
Communication [4]. 

An important role of the key management module is to integrate the key management 
functionality of the HSM with the virtualized environment of OVERSEE. Basically the key 
management of the HSM is not aware of the multiple runtime environments.  The key 
management module builds an extra management stage between the user partition and the 
HSM providing the needed access control.  

The key management module also handles key export, import and creation requests from 

the other partitions. The API for the functionality is specified in chapter 2.4 Security Services 
Provider Module. Table 2: Internal Key Structure shows the internal key structure used in 
OVERSEE, Table 3 shows the encrypted key blob structure which is used in case of key 
importation/exportation. 

 

No Name  Description  

1 Algorithm 
Identifier 

This parameter determines the algorithm to be used with the 
key 

2 Use Flags  This parameter indicates the operations that may be 
performed with the key. 

3 Key ID  Identifier of the key. 

4 Validity  Indicates the last valid date the key can be used. 

5 Certification Data This parameter is optional and may be used to certify the 
origin and/or properties of the key (e.g., by MVK). It may 

consist of, but is not limited to a digital signature. 

6 Authorization 
Data 

This vector represents the authorization data items for each 
individual. (Passwords, list of authorized partitions) 

7 Public Key Data Public key data bytes. 

8 Private Key Data Private key data bytes. 

9 Key handle Internal handle. 

Table 2: Internal Key Structure 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

7 

 

No Name  Description  

1 Algorithm 
Identifier 

This parameter determines the algorithm to be used with the 
key 

2 Use Flags  This parameter indicates the operations that may be 
performed with the key. 

3 Key ID  Identifier of the key. 

4 Validity  Indicates the last valid date the key can be used. 

5 Public Key Data Public key data bytes. 

6 Encrypted Blob This part of the key structure includes all confidential key 
material encrypted with corresponding transport key.  

7 Authentication 

Code 

This parameter is used to protect the integrity and 

authenticity of the key data. It may be either a MAC created 
by the symmetric transport key or a digital signature w/ IDK.  

Table 3: Key Structure for Export/Import 

2.3.5 Secure Storage 

The secure storage module is responsible for encrypting and decrypting files. The encryption 
procedure is described in the following steps. 

1. The file to be encrypted arrives at the module from the user partition. 

2. A random key KR is generated. 

3. KR is used to encrypt the file. 

4. KR is encrypted with the requested storage key KS. The user partition has to have the 

usage rights of this key. 

5. The encrypted file, the encrypted key KR and the applied encryption parameters are 
bundled together as a file and sent back to the user partition. 

The API for the functionality is specified in chapter 2.4.3. 

2.3.6 Certificate Handler 

The certificate handler is responsible for creating new certificates and handling incoming 
certificates. Certificates can be stored by this module. Additionally, the access control 

management for certificates is also done within the certificate handler module. 

2.3.7 Security Services Configuration Table 

As mentioned before access to security services and key data requires proper access rights 
of the partitions. The security service configuration table provides a configuration tool to 
manage the access rights of the partitions.  



D2.2: Spec. of security services incl. virt. and firewall mech. 

8 

 

Accessing and changing the table have to be done in a secure way to avoid any unauthorized 

changes in the table. The user has to prove authorization by a challenge-response process. 
Furthermore the table should also be not accessible offline. The table is either stored in the 
HSM or is encrypted before storing. The content of table should also be signed to avoid any 
offline changes in the table. 

2.4 Security Services Provider Module 

The security services provider module (SSPM) is located at the user partition and is the client 
for accessing the security services provided by the security services partition. Furthermore, 
the SSPM provides high-level functionality for several services like communication protocols 
and secure storage. This means that only when services provided by the security services 
partition have to be accessed the client contacts the security services partition and requests 

the required service. 

The SSPM is an application level service running in the user partition. The connection to the 
security services partition is provided by the virtualization layer and consists of a queue for 

the requests and a shared memory area for exchanging larger chunks of data. The general 
command structure between the SSPM and security partition is described in section Security 
Partition Binding of this document. The next sections describe different services and the 
associated API’s provided by the SSPM. 

2.4.1 Cryptographic Services API 

Following are the methods provided by the cryptographic services module. 

2.4.1.1 Cipher  

The cipher API provides the required method for general encryption/decryption. The 
algorithm and operation mode can be defined with the parameters. 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

9 

 

No Name  Description  

1 Algorithm identifier  Reference to associated symmetric algorithm  

2 Cipher mode  Indicate decryption or encryption mode  

3 operation mode  Indicate cipher mode of operation 
{ECB|CBC|GCM|EAX|..} 

4 padding_scheme  Indicate padding scheme 
{none|bit|byte|pkcsx|..} 

5 IV_SIZE  Size of given initialization vector (can be 0)  

6 Key handle Handle (internal ID) of the requested key 

7 Key Authorization Size Size of authorization value of the key 

8 Key Authorization Value Authorization value of key 

9 Input Data Pointer to input data 

10 Input Data Size Size of input data 

Table 4: Cipher API 

 

 

No Name  Description  

1 Output Data Pointer to Output data 

2 Output Data Size Size of Output data 

Table 5: Cipher API, Output 

2.4.1.2 CMAC 

The CMAC API provides the required method for cipher based MAC calculation. The 
algorithm and operation mode can be defined with the parameters. 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

10 

 

No Name  Description  

1 Algorithm identifier  Reference to associated symmetric algorithm  

2 MAC mode  Indicate MAC mode: sign, timestamped sign 
or verify  

3 operation mode  Indicate cipher mode of operation 
{CMAC/OMAC/…} 

4 padding_scheme  Indicate padding scheme 
{none|bit|byte|pkcsx|..} 

5 Key handle Handle (internal ID) of the requested key 

6 Key Authorization Size Size of authorization value of the key 

7 Key Authorization Value Authorization value of key 

8 Input Data Pointer to input data 

9 Input Data Size Size of input data 

Table 6: CMAC API 

 

No Name  Description  

1 Output Data Pointer to Output data 

2 Output Data Size Size of Output data 

Table 7: CMAC API, Output 

2.4.1.3 Hash and HMAC 

The HMAC API provides the required method for general hash calculation and hash based 
MAC calculation. The algorithm and operation mode can be defined with the parameters. 

No Name  Description  

1 Requesting Partition ID of partition requesting the service 

2 Algorithm identifier  Reference to associated symmetric algorithm  

3 Hash mode  Indicate hash or HMAC creation mode  

4 Key handle Handle (internal ID) of the requested key 

5 Key Authorization Size Size of authorization value of the key 

6 Key Authorization Value Authorization value of key 

7 Input Data Pointer to input data (to be verified MAC, or 
Data for creating MAC) 

8 Input Data Size Size of input data 

Table 8: Hash and HMAC API 



D2.2: Spec. of security services incl. virt. and firewall mech. 

11 

 

 

No Name  Description  

1 Output Data Pointer to Output data 

2 Output Data Size Size of Output data 

Table 9: Hash and HMAC API, Output 

2.4.1.4 Signature Generation 

The following method is used to handle the generation of signatures with a private key. This 

method is applied to the complete message to be signed. 

 

No Name  Description  

1 Requesting Partition ID of partition requesting the service 

2 Algorithm identifier  Reference to associated asymmetric algorithm  

3 Hash algorithm identifier Reference to associated hash algorithm 

4 padding_scheme  Indicate padding scheme 
{none|bit|byte|pkcsx|..} 

5 Time stamp Indicate additional timestamp creation 

6 Key handle Handle (internal ID) of the requested key 

7 Key Authorization Size Size of authorization value of the key 

8 Key Authorization Value Authorization value of key 

9 Input Data Pointer to input data (to be verified MAC, or 
Data for creating MAC) 

10 Input Data Size Size of input data 

Table 10: Signature Generation API 

 

No Name  Description  

1 Output Data Pointer to Output data 

2 Output Data Size Size of Output data 

Table 11: Signature Generation API, Output 

2.4.1.5 Signature Verification 

The following method is used for signature verification. These functions are applied to the 

complete message whose signature shall be verified. 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

12 

 

No Name  Description  

1 Algorithm identifier  Reference to associated asymmetric algorithm  

2 Hash algorithm identifier Reference to associated hash algorithm 

3 padding_scheme  Indicate padding scheme 
{none|bit|byte|pkcsx|..} 

4 Time stamp Indicate additional timestamp creation 

5 Key handle Handle (internal ID) of the requested key 

6 Key Authorization Size Size of authorization value of the key 

7 Key Authorization Value Authorization value of key 

8 Input Data Pointer to input data (to be verified MAC, or 

Data for creating MAC) 

9 Input Data Size Size of input data 

Table 12: Signature Verification API 

 

No Name  Description  

1 Output Data Pointer to Output data 

2 Output Data Size Size of Output data 

Table 13: Signature Verification API, Output 

2.4.1.6 Random Number Generation 

This method provides random number generation functionality. 

 

No Name  Description  

1 Algorithm identifier  Reference to associated asymmetric algorithm  

2 Requested Random bytes Size of requested random array 

Table 14: Random Number Generator API 

 

No Name  Description  

1 Output Data Pointer to Output data 

2 Output Data Size Size of Output data 

Table 15: Random Number Generator API, Output 



D2.2: Spec. of security services incl. virt. and firewall mech. 

13 

 

2.4.1.7 Counters 

The counter methods provide API’s for creating, reading incrementing and deleting counters. 

No Name  Description  

1 access_authorization_value  counter access authorization value (i.e., 
password hash)  

Table 16: Counter API, Create counter 

 

No Name  Description  

1 access_authorization_value  counter access authorization value (i.e., 
password hash)  

Table 17: Counter API, Delete counter 

 

No Name  Description  

1 Counter ID  counter id of counter to be incremented 

Table 18: Counter API, Output value create counter 

 

No Name  Description  

1 counter_identifier  counter id of counter to be incremented  

2 access_authorization_value  counter access authorization value (i.e., 

password hash)  

3 counter_incrementation  counter incrementation value  

Table 19: Counter API, Increment counter 

 

No Name  Description  

1 counter_identifier  counter id of counter  

Table 20: Counter API, Read counter 

 

No Name  Description  

1 Current Value  counter id of counter to be incremented 

Table 21: Counter API, Output value read counter 



D2.2: Spec. of security services incl. virt. and firewall mech. 

14 

 

2.4.2 Key Management API 

The key management API provides the necessary methods for key creation, importation 
and exportation. Furthermore this API provides services for creating and handling incoming 
certificates. 

2.4.3 Secure Storage API 

With the secure storage API files can be stored in a secure and encrypted manner in the user 
partition. The process of encryption is explained in chapter 2.3.5. The secure storage API 
mainly serves as an interface. 

 

No Name  Description  

1 Requesting Partition ID of partition requesting the service 

2 Data/File ID  reference to associated asymmetric algorithm  

3 Create Key Indicate new key creation for encryption 

4 Key handle Handle (internal ID) of the requested key for 
the random key encryption 

5 Key Authorization Size Size of authorization value of the key 

6 Key Authorization Value Authorization value of key 

7 Input Data/File Pointer to input data  

8 Input Data Size Size of input data 

Table 22: File encryption API 

 

No Name  Description  

1 Output Data/File Pointer to Output data 

2 Output Data Size Size of Output data 

Table 23: File encryption API, Output 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

15 

 

No Name  Description  

1 Requesting Partition ID of partition requesting the service 

2 Data/File ID  reference to associated asymmetric algorithm  

3 Key handle Handle (internal ID) of the requested key 

4 Key Authorization Size Size of authorization value of the key 

5 Key Authorization Value Authorization value of key 

6 Output Data/File Pointer to Output data 

7 Output Data Size Size of Output data 

Table 24: File decryption API 

 

No Name  Description  

1 Output Data/File Pointer to Output data 

2 Output Data Size Size of Output data 

Table 25: File decryption API, Output 

2.4.4 Alternative Secure Storage 

Additionally to the standard API a pseudo file system driver provides the user with a more 
convenient way to use the secure storage facility. The file system then acts as a transparent 
encryption layer for the user. Files written into the file system are encrypted in the 

background and written into a designated folder. Vice versa any read attempt also triggers a 
decryption of the requested file. 

This has some disadvantages: it is not appropriate for large files or random access on parts 
of files. 

Therefore, we will propose another alternative storage facility: One introduces a transparent 
encryption layer on ordinary block devices. This works as follows: 

The platform allocates a fixed amount of non-volatile storage to a block device. This is then 
encrypted using a common encryption algorithm for storage encryption, i.e. AES in XTS 
mode [21] and made available to a user partition as a pseudo device. That means every low 
level block the user partition writes to the pseudo device is transparently encrypted and 
then written to the real block device, whereas any block read on the pseudo device results in 

a read in the real device following a decryption. 

At this time neither such a secure file system nor a secure block device will explicitly be 
specified by oversee, but because of their transparency, we expect that it can easily be 
retrofitted on existing applications.  



D2.2: Spec. of security services incl. virt. and firewall mech. 

16 

 

2.4.5 Secure Communication API  

The secure communication functionality of the SSPM aims to provide high level protocols for 
security related communication. The module will interface with the virtual network interface 
in the user partition and act as an application level protocol layer. Each protocol will listen to 
dedicated port number. The protocols will be executed as a part of the SSPM in the user 
partition and access the security partition functionality when needed. 

The secure communication functionality of the SSPM also provides a flexible framework for 
the developer to integrate their own protocols into the building block, though OVERSEE will 
also provide some standard protocols within the design. 

 Diffie-Hellman Key Agreement PKCS #3 

 Certification Request Standard PKCS #10 

 TLS / SSL 

2.5 Secure Boot 

The trustworthiness and security of the services provided by OVERSEE depend highly on the 
authenticity and integrity of the platform. As defined by Peter Neumann “An object is 
trustworthy if and only if it is proven to operate as expected”. There are several existing 
procedures to assure a trusted platform like secure boot, authentic boot or remote 
attestation. 

The architecture of the OVERSEE platform enables various kinds of secure boot procedures. 
The selection and integration of a secure boot process is a critical design decision depending 
on many aspects like timing requirements, deployment of software, chosen runtime 

environments, chosen hardware platform and security requirements. Therefore we will not 
specify a specific and detailed secure boot process in this section but have a look on 
different techniques and options suitable for the OVERSEE architecture. The section aims to 
serve as a guide for the developer. 

2.5.1 Guideline for Providing Secure Boot in OVERSEE 

There are many methods to realize a secure boot process and the options depend also very 
much on the hardware platform used to implement OVERSEE. Still we will provide a 
guideline to realize a secure boot mechanism into OVERSEE. 

The key point of a secure boot process is an anchor of trust. This means there has to be an 
instance in the boot process, preferably the BIOS, which can be trusted and cannot be 

manipulated by any attacker. The rest of the trust chain will be built on this anchor. 

The next steps of the secure boot process are coupled to each other in a similar way in each 
step. The prior software module in the boot sequence measures (validates) the next 
software module in the boot sequence before executing it. The executed software module 
executes its own tasks, validates the following module in the boot sequence and executes it. 
This process is applied until the whole boot process is done. The validation of the modules 
can be done with hash digests or signatures of the modules.  



D2.2: Spec. of security services incl. virt. and firewall mech. 

17 

 

 The BIOS validates the hypervisor and starts it. 

 The hypervisor measures the boot loader of the partitions. 

 The boot loader measures the OS kernel after loading it. 

 The execution of the OS kernel is triggered. 

A complementary technique is an authenticated boot, which is rather a passive method. This 
method makes use of the ECR Registers of the HSM specified in chapter 2.2.3. The partition 
executing an authenticated boot is obliged to update the registers with the hash values of 
the software components. This process results with specific register values defining the state 
of the software. These register values can be compared with known register values stored in 
the HSM and the partition software can be assured to be in a known configuration. 

The result of a failed authentic boot depends on the design. A central management and/or 
the HSM could trigger some counteractive measure to deal with an unauthentic partition. 

OVERSEE could restrict access to specific key material, restrict access to I/O components or 
stop the partition from being executed. 

The result of an authentic boot can also be used for remote attestation informing the 
external stakeholder of the actual configuration status. Another important attestation path 
would be the proof of authenticity to the application running on the partition. To assure this 
a trusted path between the HSM and the application has to exist. Such a path can be created 
with the ECR value being signed by the HSM and by a challenge/response process among the 
application and the HSM assuring the freshness of the signatures. 

2.6 User Authentication and Authorization 

Many of the OVERSEE services require the authentication of the current user of the platform 
and the corresponding authorization for the services. Therefore, OVERSEE offers different 
authentication opportunities for different kinds of applications and user types with their 
associated access rights. 

2.6.1 User Model of OVERSEE 

The OVERSEE platform has to cope with a lot of persons getting in touch with the platform in 
order to use some features of the platform. Obviously, not all persons sharing the same 
access rights. Therefore, the following user roles with their corresponding access rights are 
defined for the first phase of OVERSEE. 

2.6.1.1 Integrator 

The integrator is not a single person but the organization, which is responsible for the whole 
platform (e.g., building the configuration file, defining the communication policies). The 
integrator is hence the first contact of the OVERSEE platform to the outside world during the 
setup process. This process that is under the full control of the integrator will be used to 
store the certificate of the integrator in a secure way into the secure key and certification 
store of the platform. Afterwards, the public key in this certificate can be used for the 
verification processes (e.g., secure software load as described within section 2.7). 



D2.2: Spec. of security services incl. virt. and firewall mech. 

18 

 

It is up to the integrator to decide whether or not he would like to be in charge of the 

authentication of the other users, as mentioned below, or if he would like to assign this task 
to another appropriate organization. If so, he has to store the certificate of the selected 
organization during the setup process in a secure way into the secure key and certification 
store of OVERSEE, too. For the sake of simplicity we would call the organization in charge of 
user authentication “authentication authority”. 

Please bear in mind: Since all certificates should have a validity period and there could also 
be the possible requirement to withdraw certificates (e.g., in case of private key lost), 
there is the need for a replacement process for the authentication authority and integrator 
certificates during the OVERSEE usage. The integrator is responsible for the 
implementation of this process. 

2.6.1.2 Service Staff 

Service staff is a group of users which are trained to maintain the OVERSEE platform. Hence, 
they have access to a lot of functionality (e.g., the diagnosis services as defined within [4]), 
which are out of scope of other users. Obviously, there is the need for a strong 
authentication process. Therefore, each service staff member owns his own private key and 
certificate, stating which OVERSEE platform configurations he is allowed to maintain. The 
certificate has to be issued by the authentication authority as defined within section 2.6.1.1. 
The authentication authority acts therefore also as the CA (certification authority). For the 
sake of simplicity we will still call it authentication authority although it fulfils the obligations 
of a classical CA. 

2.6.1.3 Owner of the Platform 

The owner of the OVERSEE platform has widely access to the platform features and some 
configuration options. Probably the owner of the platform is also the owner of the vehicle, 

while this is not mandatory (e.g., in cases of business cars). From now on we would call this 
user type for the sake of simplicity “owner”. Since the owner could also use features with 
strong security concerns (e.g., software load as described in section 2.7), there is the need 
for a strong authentication process. Because of that the owner also has a private key and a 
corresponding certificate, issued by the authentication authority, and also stored in the 
platforms certificate store. Thus a change owner process for the platform has to be 
implemented by the integrator of the platform, probably online. 

2.6.1.4 User of the Platform 

The user of the platform would be typically the driver of the vehicle. Therefore, we will call 
the platform user “driver”, which would also help to avoid misunderstandings by the 
frequently used term user for different types of users. Since, for example in the case of 
business or rental cars, there could be a lot of drivers using a car, there is surely the need for 
an easy-to-use authentication process. Indeed, it seems not reasonable that a driver would 



D2.2: Spec. of security services incl. virt. and firewall mech. 

19 

 

accept a complex authentication process each time he wants to drive a car. Hence, we 

provide the following simple authentication process during physical access to the platform1: 

 The driver authenticates himself with a freely selectable password, which will be 
verified based on a corresponding hash value stored in the secure key and 
certification store of the platform. 

 The authentication of the driver remains active, until he manually logs off from the 

platform. Hence, there is no need for entering the password each time a driver wants 
to drive his car. Nevertheless, there is the chance to protect the driver related 
information (e.g., routes in the navigation system) on driver changes, which would 
help to solve especially privacy concerns in shared cars, e.g., business cars. 

Some special functions of OVERSEE, e.g., the assignment of flash memory devices to 
partitions, would require an extra proof of authenticity by re-entering the password. 

New drivers could be only added to the platform while the platform owner is logged in (e.g., 
during a remote access session as described within [4]). For new drivers the hash value of 
the selected password will be stored in the secure key store of the platform. Additionally 

also a certificate containing the authentic public key of the driver could be stored in the 
certification store to provide drivers the capability to use the remote access features of the 
platform. 

2.6.1.5 Authentication of the Platform 

Achieving security is not only about being sure that the user is authentic. There is also a 
need to verify that the platform is authentic, especially in cases of remote access to avoid 
man in the middle attacks. Thus, there is the need to generate and store a private key in the 

secure key and certification store of the platform. This will be done during the secure setup 
process as described in section 2.6.1.1. The corresponding public key uniquely identifies the 
current platform and is provided using a certificate. This certificate has to be signed by the 
authentication authority and should be available for all users, for example by storing the 
certificate on the platform (possibly in an insecure memory area) or by distribution via a PKI 
of the authentication authority. 

2.6.2 Authentication Methods for OVERSEE 

As already mentioned in the sections above there is the need for different kinds of 
authentication opportunities for different types of users and use cases. The authentication 
methods, described within this section, will be supported by OVERSEE. The user 

authentication will be propagated to the generic OVERSSE components, so e.g., the security 
services partition allowing for example to grant or deny access to key material or protected 
data. Additionally the authentication could be also propagated to the partitions, which is of 
course only reasonable if the OS or application (in case of bare partitions) would offer a user 
management. 

                                                      

1 There is also the option to use public key authentication to enable remote access for drivers, which should not 

be possible based on generally weak password authentication. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

20 

 

2.6.2.1 Certificate Based Online Authentication 

The strongest authentication and therefore the mandatory authentication for the login of 
service staff and the owner of the platform is the certificate-based authentication with 
online access. It is very similar to the authentication used in TLS; see section about secure 
remote access in the D2.4 [4]. The following steps have to be fulfilled for a successfully 
authentication: 

 The communication parties (user and platform) exchange their certificates. 

 The communication parties verify the validity of the exchanged certificates. This 

includes verification of: Validity period, online check of CRL (Certification revocation 
list), certificate’s signature with the public key of the authentication authority 

 The communication parties authenticate each other with an challenge response 
mechanism, based on the private and public keys which will be implemented within 

the implementation phase of the OVERSEE project 

Furthermore, this authentication method could be generalized, e.g., to enable 
authentication between different OVERSEE platforms. 

2.6.2.2 Certificate Based Offline Authentication 

This authentication process is similar to the process in section 2.6.2.1. The only difference is 
that since there is no online connection available, there is no chance to download the 
current CRL. Hence, it could be possible that an already withdrawn certificate would be 
considered valid. Since online connections cannot be assumed to be available anytime, it 
would be possible to login with this method for owners and service staff. Nevertheless, the 
information that the authentication was only conducted in offline mode will be noted in the 

user session. It is up to the system integrator to decide whether or not he would like to lock 
some platform features in case of an offline authentication. However, the platform should 
download the current CRL as soon as an online connection is available. 

2.6.2.3 Authentication based on Extern Verification Process (optional) 

This authentication is introduced for the rarely occurring situation that a specific action has 
to be executed by a user with an insufficient authentication, for example in the following 
cases: 

 A service staff member has to upload an update for a buggy OVERSEE platform on 
the street and is not equipped with an appropriate device to conduct a certification 

based authentication scheme. 

 All network connections to the OVERSEE platform are down and the only available 

interface is the USB interface to upload a software patch. 

Although the current examples are only related to software load, this authentication method 
is not limited to this kind of use cases. 

The following steps have to be run through for a successful authentication: 



D2.2: Spec. of security services incl. virt. and firewall mech. 

21 

 

 The user chooses the action, which he would like to execute. Since a sufficient 

authentication is missing, the platform asks for his identity. Afterwards, the platform 
computes a challenge (based on the given identity, the selected action and a onetime 
value, e.g., a counter) and presents the user the following information: Unique 
identifier of the platform, unique identifier of the selected action, onetime value, his 
identity as entered as well as the calculated challenge 

 The user contacts the authentication authority, for example by phone or email, and 

authenticates himself (this process is in the responsibility of the authentication 
authority). After he is authenticated he transmits the information presented by the 
platform. The authentication authority calculates, based on the given information, an 
appropriate response and transmits this response to the user. 

 The user enters the response into the platform by using the HMI and if the response 
matches to the expected response by the platform, the user is authenticated. 

Attention: The user is only authorized to execute this action one time per 
authentication. 

Since this authentication method is optional no further details about the mentioned 
challenge response mechanism are given here.  

Please keep in mind that an authentication as described in this section inherently offers a 
lot of security weakness (e.g., it depends on the security of the authentication process 
between user and authentication authority and is only a one way authentication). 
Therefore, this method is no part of the generic OVERSEE implementation and would also 
not be recommended. Nevertheless, it is up to the integrator to decide whether or not he 
would need it. However, this authentication method should only be available during direct 
physical access to the platform. 

2.6.2.4 Pre-Shared Key Based Authentication 

This authentication process is very simple, since it is based on a hash value of a pre-shared 
key which has been already stored in the secure key and certification store of the OVERSEE 
platform, see section 2.6.1.4. Since it is only a one-way authentication with strong security 
weaknesses (e.g., the security level strongly depends on the selected passwords), it should 
only be used to authenticate drivers with physical access to the platform. The following 
steps have to be run through for a successful authentication: 

 The driver enters his password into the platform 

 The platform calculates the hash value of the entered password 

 If the hash value matches the stored hash value in the secure key and certification 

store the authentication process is successfully finished 

2.6.3 Extended Authorization Capabilities 

As already stated the different groups of users (integrator, service staff, owner and driver) 
owning different access rights for the platforms functionality. Beside this simple assignments 
based on user groups, there is also the capability to use additional fields in the users 
certificates, to enable a more precise assignment of access rights on a per user base. This 



D2.2: Spec. of security services incl. virt. and firewall mech. 

22 

 

option will be especially important for the service staff and owner group, e.g., to support 

different groups of service staff or allow remote feature activation mechanisms per owner. 

2.7 Secure Software Load 

Secure software load is the capability of a system to replace or upgrade its own software 
components during usage in a secure way. Secure means that only authorized users are able 
to start the software load process and that only proper new software could be loaded and 
installed. Software as referred to in this section is either a software component of the 
OVERSEE implementation (e.g., a new version of the OVERSEE management application) or 
the whole content of a partition (including applications, data and − if any − the operating 
system). It has to be stressed, that OVERSEE ensures security on partition level and not on 
application level. Hence, it is up to the responsible organization for a partition to provide an 

own application load concept if reasonable. Anyway, the responsible organizations are 
invited to reuse parts of the secure software load process as described in this section and be 
part of the generic OVERSEE implementation. 

2.7.1 Requirements for a Secure Software Load 

The following requirements have to be fulfilled to ensure that downloaded software can be 
installed without doubts. Obviously, the installation process can only be started if the vehicle 
is not moving and the platform is not running any critical service, since this could lead to 
safety critical implications. 

2.7.1.1 Authenticity and Authorization of Installing Person 

Two groups of persons should be able to download software and start or at least prepare the 
installation process: The platform owner and authorized service staff. The software 

download process could be either started with direct access to the platform or during a 
remote access session as described in the dedicated section in [4]. The following 
authentication methods are supported: 

 Certificate Based Online Authentication, as defined in section 2.6.2.1 

 Certificate Based Offline Authentication, as defined in section 2.6.2.2 

 Authentication based on external verification process (if implemented), as defined in 

section 2.6.2.3 

2.7.1.2 Integrity Check of the Downloaded Software and Configuration File 

After a successful authentication of the installing user the next step is to check the integrity 
of the downloaded software package. The package consists of the following parts: 

 Binary of the new software component 

 Configuration file for the installation process and compatibility checks as described in 
section 2.7.1.3 in XML format 



D2.2: Spec. of security services incl. virt. and firewall mech. 

23 

 

 Signature over the binary file and the configuration file, generated with the private 

key of the platform integrator 

The integrity check simply verifies the signature with the public key of the platform 
integrator stored in the secure key and certification store of the platform to verify the 
integrity of the downloaded software and configuration file. 

2.7.1.3 Compatibility Checks 

To ensure that only appropriate software versions will be installed on the platform, the 
configuration file at least states the following information: 

No Field Name  Description Applied Checks 

1 ID A unique ID of the software package Check installation log if 

the id occurs the first time 

2 Name The name of the software 
component contained in the 

package 

 

3 Version Version number of the software 
component 

 

4 Integrator Unique identifier of the integrator 
responsible for the platform, 

corresponding to the public key 
which was used to verify the 

signature 

Check if integrator 
matches 

5 Component 
ID 

Unique ID of the component as 
assigned by the integrator of the 
platform that should be updated 

Check if component ID 
matches to an installed 

component 

6 Old 
Versions 

List or range of old version numbers 
of the component, which could be 
updated with the current package 

Check if the current 
version matches to the 

updateable versions 

Table 26: Content of software download configuration file 

Since the configuration file is in XML format it could be easily adapted to the requirements 
of the platform integrator. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

24 

 

3 Specification of the Whole Virtualization Concept 

Partitioned software architectures can represent the future of secure systems. They have 
evolved to fulfil security and avionics requirements where predictability is extremely 
important. The separation kernel proposed in [22] established a combination of hardware 
and software to allow multiple functions to be performed on a common set of physical 
resources without interference. The MILS (Multiple Independent Levels of Security and 
Safety) initiative is a joint research effort between academia, industry, and government to 
develop and implement a high-assurance, real-time architecture for embedded systems. The 
technical foundation adopted for the so-called MILS architecture is a separation kernel. Also, 
the ARINC-653 [16] standard uses these principles to define a baseline operating 
environment for application software used within Integrated Modular Avionics (IMA), based 

on a partitioned architecture.  

Virtual machine technology can be considered the most secure and efficient way to build 
partitioned systems. A virtual machine (VM) is a software implementation of a machine 
(computer) that executes programs like a real machine. Hypervisor (also known as virtual 
machine monitor VMM [23]) is a small layer of software (or a combination of 
software/hardware) that enables to run several independent execution environments or 
partitions in a single computer. The key difference between hypervisor technology and other 
kind of virtualisation (such as java virtual machine or software emulation) is the 
performance. In bare-machine hypervisors the overhead can be very low maintaining the 
throughput of the virtual machines very close to the native hardware.  

Hypervisor is a new and promising technology, but has to be adapted and customized to the 
requirements of the target application. The low overhead and the reduced size of the 

hypervisor can be considered as an appropriated solution to achieve secure systems if it is 
designed following strict design criteria to meet security requirements. Its correctness can 
be sufficient to ensure the security of the system as a whole or, at least, the security of a set 
of trusted partitions. In a partitioned system, the partitions can accommodate different 
kinds of applications: real-time, trusted, non-trusted, etc. As consequence, the partition’s 
operating system can be customised to provide the specific services to its applications.  

A hypervisor is in charge of virtualisation services to partitions. It is executed in supervisor 
processor mode and virtualises the CPU, memory, interrupts and some specific peripherals. 

3.1 Partitions 

A partition is an execution environment managed by the hypervisor that uses the virtualised 

services. Each partition consists of one or more concurrent processes (implemented by the 
operating system of each partition), sharing access to processor resources based upon the 
requirements of the application. The partition code can be:  

 An application compiled to be executed on a bare-machine (bare-application) 

 A real-time operating system (or runtime support) and its applications (i.e. RTEMS, 

POSIX PSE compliant, ARINC653 compliant) 

 A general purpose operating system and its applications (i.e. Linux, Android, …) 



D2.2: Spec. of security services incl. virt. and firewall mech. 

25 

 

Partitions need to be virtualised to be executed on top of a hypervisor. Depending on the 

type of execution environment, the virtualisation implications in each case can represent 
low or significant efforts. A RTOS with a very well defined HAL (Hardware Access Layer) can 
require low effort to change the HAL services accessing directly to the hardware by 
hypervisor services. A Linux para-virtualisation could involve much more efforts. However, 
the Linux kernel has evolved to provide para-virtualisation services. In this case, the efforts 
required can be significantly reduced. 

The hypervisor approach permits to define partitions with different levels of security. Some 
partitions can have limited rights but others can access to special services as reset, start, 
stop, etc., other partitions. 

3.1.1 Virtualized Resources 

The hypervisor approach is based on the resource virtualisation to the partitions. So, 
partitions are virtual machines that access to the virtualised resources through the services 
provided by the hypervisor. The basic resources can be classified as: 

 Processor management: includes the processor and registers 

 Clock and timers: includes the clock device and timers 

 Interrupts: includes the interrupt lines and can add additional new interrupts (virtual 
interrupts) 

 Memory regions: areas of memory that can be allocated exclusively or shared to 

partitions. This also can include I/O memory areas 

 Basic peripherals: as serial lines or other basic devices 

This vision is complemented by the dedicated devices approach. This approach permits to 
define devices that are exclusively and directly managed by a specific partition. These 
devices are not virtualised by the hypervisor and the partition has the responsibility of their 
management. In this category are the network interface, disk, etc. 

3.1.2 Configuration and Deployment Overview 

A significant change in this approach that arises from partitioned system development is the 
system architect role. He or she has the responsibility of the system definition and 
configuration. It implies the definition of the partitions to be executed and the resources 
allocated to each partition. This specification is detailed in the configuration vector.  

It contains the information as: memory requirements, processor sharing, peripherals, health 

monitoring actions, etc. 

 Memory requirements: The amount of physical memory available in the board and 

the memory allocated to each partition.  

 Processor sharing: How the processor is allocated to each partition by specifying the 
scheduling policy or plan.  

 Native peripherals: Peripherals that are not virtualised and can be used by one 
partition. The I/O port ranges and the interrupt line if any. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

26 

 

 Health monitoring: How the detected error are managed: direct action, delivered to 

the offending partition, create a log entry, etc.  

 Inter-partition communication: The ports that each partition can use and the 

channels that link the source and destination ports.  

Since the configuration vector defines the resources allocated to each partition, it represents 
a contract between the system architect and the partition developers. 

The configuration vector has to be validated and integrated in the system deployment. As it 
is a contract, the hypervisor has to grant that the allocated resources are used as specified. 
The hypervisor has to guarantee that the resources are used by the right partitions. 

3.2 Concepts 

This section introduces the basic concepts defined in Common Criteria to fulfil the security 
requirements which are used in the SKPP. 

The TOE (Target Of Evaluation) is a virtualisation layer designed to instantiate and manage 
partitions that serve to host custom applications. The TOE manages access to memory, 
devices, communication resources and processor resources to ensure that partitions are 
completely isolated and can interact only with its resources allocated by the System 
Architect in the configuration vector. 

The System Architect creates one or several static configuration vectors that define the 
partitions of the system, the subjects and resources. The configuration vector also permits to 
specify the security functionalities (TSF) related to the partitions and resources. 

The virtualisation layer enforces that each virtualised and exported resource can be accessed 

by a partition at a time. To achieve this goal, the TSF ensures that partitions are executed 
according to a scheduling policy defined in the configuration vector. This plan can be 
analysed off-line to guarantee the temporal constraints of the applications through a 

schedulability analysis. 

For resources such as memory, which do not require mutual exclusion to the whole, the TSF 
provides full isolation by allocating physically distinct portions of the resource to different 
partitions. TSF ensures the spatial isolation of its internal resources. Subjects, and resources 
made available to subjects by the TSF, are called exported resources.  

The Partitioned Information Flow Policy (PIFP) defines the rules for isolation granted by the 
TOE. It defines the authorisations for information flow between partitions and between 
subjects (application using a resource) and exported resources (concrete resources used by 
the applications). An information flow is defined as a <partition/subject, partition/exported 

resource, mode> triplet. Note that the exported resource may be another subject. All the 
information flows have to be specified in the configuration vector. By default, no 
information flow between partitions or between subjects and exported resources is allowed. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

27 

 

3.2.1 Subjects, Objects and Privileges 

Based on the Common Criteria definitions:  

 Subject: active entity in the TOE that performs operations on objects. It can be 
categorised in two types: system and user.  

 Exported resources: passive entity in the TOE, that contains or receives information, 

and upon which subjects perform operations.  

 Operation Mode (on a resource) specific type of action performed by a subject on 
an exported resource.  

3.2.2 Subject Identification  

The virtualisation layer manages a partition as main active entity. Processes inside of a 
partition are handled internally and the virtualisation layer does not know their existence. It 
is the partition that is responsible of its management. Any operation performed by any of 
the internal active elements of a partition is seen as a partition operation. Based on this 
approach, the set S of subjects is formed by all the partitions defined in the configuration 
vector. 

3.2.3 Exported Resource Identification  

The virtualisation layer has the knowledge of the system via the configuration vector. In this 
configuration vector, all the subjects, exported resources and operations have to be defined. 

The list of exported resources is: 

 CPU registers: CPU and internal registers 

 CPU time: System clock 

 FPU: Floating point unit 

 Traps: Processor traps 

 Timers: System timers 

 Memory layout: Board available memory defining the allocations and sizes 

 Memory area: Memory areas allocated to partitions specifying the allocation and size 

 Shared Memory area: Memory areas shared between partitions. 

 Memory block area: Memory areas that are handled as devices 

 Scheduling Policy: Policy to schedule partitions 

 Channels: Links between partition ports. Two types of channels can be specified: 
Queuing and Sampling channels. Specific parameters associated to a channel can be: 
maximum meassage length, maximum number of messages, who is the 
reader/writer, etc. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

28 

 

 Devices: Specific devices as UART, VGA, etc. 

 I/O Ports:  Hardware IO ports. 

 Interrupts: Hardware interrupts 

3.2.4 Partitions and the Partitioned Information Flow Policy 

The identified operations on exported resources are: 

 Read: A subject can read from the exported resource. 

 Write: A subject can write to the exported resource. 

 Run: A subject is only allowed to use the exported resources during the run 
operation. 

The TOE provides partitions as abstraction implemented by the TSF. It is guest OS personality 
that is in charge of managing the internal subjects (threads or tasks or processes) that are 
not visible from the virtualisation layer. From this point of view, it is assumed the Partition 
Abstraction policy:  

The subjects in a partition have homogeneous requirements for 
access, on a per-partition basis, to exported resources.  

It is responsibility of the guest OS to define another policy. For instance, a guest OS could 
define a Least Privilege Abstraction which assumes that the subjects in a partition have 
heterogeneous requirements for access to exported resources. In this case, the guest OS 
could restrict the operations defined in the other policy to some internal subjects. Privileges 
of each resource are specified by means of an access matrix. 

3.2.5 Auditable Events 

Auditable events provide information to the security auditing to recognise, record, store, 
and analyse information related to security relevant activities. The resulting audit events can 
be examined to determine which security relevant activities took place and who is 
responsible for them. 

Audit events can be generated by the virtualisation layer as result of the 

 internal changes: secure/unsecure state, initialisation completed, partition 
started/stopped, etc. 

 exceptions captured by the Health Monitor: overflow, division by zero, illegal 
memory address, etc. 

These audit events are logged and can be analysed by a partition in order to perform an 
attestation. Event records will contain the following information: 

 eventId: the type of the event  

 initiator: virtualisation layer or partition 

 partitionId the identifier of the partition (if not a system event)  

 info: event specific information  



D2.2: Spec. of security services incl. virt. and firewall mech. 

29 

 

 timeStamp: time at which the event was detected 

3.3 Secure States 

3.3.1 Concepts 

The definition of the secure state is based on two separate properties: (A) that the TSF is 
capable of enforcing the security policy (i.e., its own data and mechanisms are intact); and 
(B) that exported resources are correctly separated (e.g., application data, and related 
descendants and copies, are associated with the correct data).  

Property (A) states that the "secure state" is strongly related to the integrity and coherence 
of the internal data and mechanisms. Internal data can be considered as: 

 Configuration vector as binary representation of the configuration file used to define 
the system that has been validated, compiled and included in the final system 
container. During execution, this configuration vector resides in the hypervisor 

(kernel) address space (not accessible by subjects) in a memory area that is write-
protected. Additionally, a digest (cryptographic hash function) is applied to the 
configuration vector, which is added to it. At any moment, the TOE can compute the 
digest of the configuration vector and validate its integrity.  

 Internal variables: state of the TOE. TOE status refers to the internal variable that 

maintains the execution status: current partition under execution, current plan, 
current slot and current time. The coherence of these variables is fundamental in the 
TOE operation. 

 The processor registers: MMU registers , interrupt vector, mode processor status  

 Channels: the consistency of the channel data structures can be determine with 
respect to the maximum values (message length and number of messages) defined in 
the configuration vector. 

 Stacks: The TOE maintains one stack for its own TOE operations and one stack per 

partition, which is used when the TOE executes a hypercall for a specific partition. 
The limits of these stacks can be validated. It is important to note that each partition 
maintains its own stack in the user space when the partition is executing operations 
at user level.  

Property (B) is related to the isolation properties (spatial and temporal) of subjects. The TOE 
will be designed so that the individual effects of operations that violate the policy are 
privileged operations (operations over virtualised resources) or by means of hypercalls with 

not allowed parameters (i.e. reset the system by a subject not authorised). It means that 
privilege instructions that can compromise the isolation (for instance change the interrupt 
mask) only can be performed by the TOE. In order to change it, a partition has to use the 
virtualised services and not access directly to the hardware. 

In the first case, the forbidden operation will generate a trap that will be captured by the 
TOE and generate a Health Monitor event which involves an HM action with the goal of 
maintain the TOE in the ”secure state” (i.e. the subject can be halted (disabled) or restarted 
according to the action defined in the configuration vector. In the second case, the hypercall 



D2.2: Spec. of security services incl. virt. and firewall mech. 

30 

 

with non-allowed parameters, the TOE will perform an exhaustive validation of the 

parameters according the configuration vector and refuse the operation (returns a code 
error in the hypercall to the subject invoking the hypercall). 

 

When the conditions stated previously cannot be validated, the TOE will be in an "insecure 
state". The following situations can determine that the TOE is in an "insecure state":  

 Configuration vector pollution. The digest of the configuration vector does not match 
with the correct value.  

 TOE code pollution. The digest of the TOE code does not match with the correct 

value.  

 Deviation of the internal state.  

 Access to non-exported resources for a partition. A partition can perform an 
operation to an exported resource that has not been defined in the configuration 
vector. (How can it be detected?). Note that if a partition requests an operation on a 
non-exported resource the hypercall should return a code error.  

 Limits exceeds. Stacks or channels data structures exceeds the limit values 

established in the configuration vector.  

 Underlying hardware: clock, timers, memory protection mechanisms, I/O protection 
mechanisms, FPU protection mechanisms.  

Any of these situations determine that the TOE is not in a "secure state". In these cases, it is 
not possible to change to a "secure state" and the system has to be reset. 

3.3.2 Operations 

Some aspects have to be considered:  

 TOE shall be non pre-emptable. When any of the entry-points is invoked, it is 

executed with disabled interrupts returning the control to a partition.  

 All exported resources are defined in the configuration vector.  

 Only the hypervisor can access processor registers and virtualised services.  

 Internal code of partitions is not relevant from the hypervisor point of view  

Additionally, we assume that the underlying hardware is trusted. It means that the internal 
processor registers will work properly if they are used in the correct way. For the temporal 
and spatial isolation purposes, it is assumed:  

 The access to the processor registers is only allowed when the processor is in 
privileged mode. The processor mode can set/unset by accessing the control 
processor status (PMS).  

 The MMU controls the memory areas and will raise an exception when an instruction 

tries to read or write in a memory area out of range.  

 A timer is used by XtratuM to control the slot duration.   



D2.2: Spec. of security services incl. virt. and firewall mech. 

31 

 

 The interrupt vector is handled exclusively by XtratuM. It can only be accessed or 

modified when the processor is in privileged mode. 

As result of the previous analysis the state of the TOE could be evaluated at different levels 
using different tests: 

 Basic test: Basic test relies with basic properties of the hypervisor and the trust 

enforcement from the trusted hardware. It includes:  

o Validation of the internal variables related to the TOE state  

o Processor registers 

o Stack limits  

o Monotonic clock  

This test requires few computation resources. It is validated each time the TOE 

performs a partition context switch.  

 Abstract machine test: In general the AMT refers to the proper operation of the 
hardware platform on which a TOE is running. This test permits to consider that the 
underlying hardware is trusted. It includes:  

o Timers test  

o Protection mechanisms test: MMU, privileged operation, I/O protection, FPU 
control.  

o Memory Read and Write: This test can read/write/read portions of memory to 
ensure the integrity of the values written remain unchanged.  

o Memory Separation and Protection: to ensure that user space programs 
cannot read and write to areas of memory that is protected.  

 Self-tests: Self tests are related with the self evaluation of the TSF with respect to 
some expected correct operation. It includes:  

o Stack limits: TOE and partition’s stacks.  

o Configuration vector (perform a digest of the current configuration vector and 
compare it with the deployed digest).  

o TOE code (perform a digest of the XtratuM code and compare it with the 
deployed digest).  

o Channel limits evaluation  

o Partition code pollution evaluation. This is an operation that should be 
performed by each partition.  

3.4 TOE Attestation 

TOE attestation is referred to the ability to access to the events that has been generated 
during the TOE execution. These events are logged in an internal data structure and can be 
accessed by a partition with the appropriated rights (system partition). Logged events can 
be: 



D2.2: Spec. of security services incl. virt. and firewall mech. 

32 

 

 Auditable events (described below). They are always logged. 

 Health Monitor events. Each event type should be logged or not. This decision 

corresponds to the designer and can be specified in the system configuration. 

 Traces and Logs generated by partitions. 

3.4.1 Health Monitor Events 

Health Monitor (HM) defines the action to be done by the TOE when an error or fault is 
detected. This action should be very clear and precise in order to limit the effects of the 
error and avoid its propagation. The purpose of the HM is to discover the errors at an early 
stage and try to solve or confine the faulting subsystem in order to avoid or reduce the 
possible consequences. 

The event occurrence, which implies, the action execution should be logged or not according 
to the nature and importance of the detected error. HM is executed as result of a HM event 
occurrence. The following scenarios can raise a HM event: 

 An exception has been raised by the CPU. The exception handler generates the 

associated HM event. 

 A native interrupt has been received and the temporal or spatial properties are not 
validated.  

 A trap has been received and the temporal or spatial properties are not validated.  

 A partition detects an abnormal internal situation and raises a HM event. For 

instance, the operating system inside of a partition detects that the application is 
corrupted. 

The HM event occurrence is the manifestation of an error. The TOE reacts to the error 
providing a simple set of predefined actions to be done when it is detected. 

As example, the following table shows some of the errors that can be handled by the TOE. 
Some of them can be generated by the TOE or partition operation and others can only be 
generated by the Partition. The first block involves the analysis of who is responsible for the 
error and the action can be different depending on the generator. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

33 

 

 

No TOE and partition operation 

1 WRITE_ERROR 

2 INST_ACC_EXCEPTION 

3 ILLEGAL_INST 

4 PRIVILEGED_INST 

5 FP_DISABLED 

6 CP_DISABLED 

7 REG_HW_ERROR 

8 MEM_ADDR_NOT_ALIG 

9 FP_EXCEPTION 

10 DATA_ACC_EXCEPTION 

11 TAG_OVERFLOW 

12 DIVIDE_EXCEPTION 

Table 27: Captured errors, TOE and partition operation 

 

No Partition operation 

1 MEM_PROTECTION 

2 PARTITION_INTEGRITY 

3 PARTITION_UNRECOV. 

4 OVERRUN 

5 SCHED_ERROR 

6 INTERNAL_ERROR 

7 UNEXPECTED_TRAP 

Table 28: Captured errors, Partition operation 

Actions have to be simple and precise in order to limit the effects of the error and not to 
introduce temporal interference with other partitions. If an action could require a significant 
amount of time, a partition could impact on the temporal isolation by generating 

continuously an error. Some of the predefined actions are detailed in the next table. 

 



D2.2: Spec. of security services incl. virt. and firewall mech. 

34 

 

No Predefined actions 

1 Cold_Reset 

2 Warm_Reset 

3 Ignore 

4 Propagate (to the partition) 

5 Stop_Partition 

6 Suspend_Partition 

7 Restart_Partition 

Table 29: Predefined actions 

3.4.2 Traces and Logs 

The TOE shall provide a mechanism to store and retrieve the traces generated by partitions. 
Traces can be used for debugging, during the development phase of the application, but also 
to log relevant events or states during the production phase.  

In order to enforce resource isolation, each partition (as well as TOE) will dedicated trace log 
streams to store the trace messages generated by each partition and TOE. Trace streams are 
stored in buffers (RAM or FLASH). Only system partitions should read from a trace stream. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

35 

 

4 OVERSEE Firewall 

Since a main topic of OVERSEE is the secure integration of a wide range of communication 
means, one of the main security issues is to isolate the different communication interfaces 
from each other and avoid intrusions through this interfaces. The current section describes 
the communication paths of OVERSEE, as defined within [18] and continues the security 
considerations towards these paths as mentioned in [4]. Following the OVERSEE firewall will 
be specified including a role model for policy specification and the policy language. 

4.1 Communication Paths and Interfaces 

Within [18] the communication capabilities of OVERSEE towards the environmental 

networks and the services towards the applications running within the OVERSEE runtime 
environments were defined. Based on the separate view per communication resource in that 
deliverable in Figure 3 all communication paths within OVERSEE will be presented. 

For Figure 3 the following meanings of symbols and colours apply: 

 

Figure 2: Key for OVERSEE communication paths 



D2.2: Spec. of security services incl. virt. and firewall mech. 

36 

 

 

Figure 3: OVERSEE communication paths 



D2.2: Spec. of security services incl. virt. and firewall mech. 

37 

 

4.1.1 Security Methods Concerning the Communication Paths to be Considered 
for the OVERSEE Firewall 

The following table summarises the security methods, belonging to the communication 
paths as depicted in [4], to be considered for the OVERSEE firewall. 

 

No 

Connection, 
Interface, 

Device, 

Service 

Description of security 
method 

Consequence for firewall 
implementation 

1 CAN  SVAS Restrict read / write access on 
a message based policy, 

according to white lists 
defined by the OEM 

Part of the OEM specific 
implementation part of SVAS, 

hence out of OVERSEE firewall 
scope 

2 SVAS Restrict access (read/write) 
on a data object based policy 
per partition, according to the 

rules defined by the OEM 

Set of rules will be part of the 
OVERSEE firewall 

configuration 

3 SVAS  SVAS 
API 

Restrict access to SVAS per 
partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

4 OSEK virtual CAN 
connection 

Only optional, hence not considered in this document 

5 Positioning 
service 

Restrict access to positioning 
service per partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

6 Positioning 
service  SVAS Restrict access according to 

rules defined in D2.4 [4] 

Fixed part of the generic 
OVERSEE implementation, 
hence out of scope of the 

OVERSEE firewall 

7 Bluetooth 
connection 

Restrict capability to use 
Bluetooth connections per 

partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

8 USB device Restrict capability to assign 
USB devices per partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

9 ITS 
communication 

Restrict delivery of CAM 
messages per partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

10  Restrict access to the LDM (if 
any) per partition 

Rule will be part of the 
OVERSEE firewall 

configuration 



D2.2: Spec. of security services incl. virt. and firewall mech. 

38 

 

11  Restrict delivery of DENM 

messages per partition 

Rule will be part of the 

OVERSEE firewall 
configuration 

12  Restrict delivery of DSRC 
messages per partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

13  Restrict write access to 
parameters for CAMs per 

partition 

Set of rules will be part of the 
OVERSEE firewall 

configuration 

14  Restrict sending of DENM 
messages per partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

15  Restrict sending of DSRC 
messages per partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

16 ITS 
communication 
 OVERSEE ITS 

API 

Restrict access to ITS 
communication service per 

partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

17 ITS 
communication 
 SVAS 

Read only access for a 
specified set of data objects 
by the ITS communication 

Set of rules will be part of the 
OVERSEE firewall 

configuration 

18 Security services Restrict access to security 

services (including S-MEM) 
per partition 

Rule will be part of the 

OVERSEE firewall 
configuration 

19 IP-Management Restrict access to IP 
connections based on the 

connection type per partition 

Set of rules will be part of the 
OVERSEE firewall 

configuration 

20  Do not route IP packets 
between the virtual IP 

connections towards the 
partitions 

Fixed part of the generic 
OVERSEE implementation, 

hence out of scope for 
OVERSEE firewall 

21  Restrict IP traffic based on the 
used ports per partition 

Set of rules will be part of the 
OVERSEE firewall 

configuration 

22 IP-Management 
 Virtual NICs 

in partitions 

Restrict access to IP 
management per partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

23 HMI and Audio 
Management 

Restrict use and setup of 
2G/3G voice connections per 

partition 

Rule will be part of the 
OVERSEE firewall 

configuration 



D2.2: Spec. of security services incl. virt. and firewall mech. 

39 

 

24  Restrict access to audio 

output and input per partition 

Rule will be part of the 

OVERSEE firewall 
configuration 

25  Restrict access to graphical 
output per partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

26  Restrict access to keyboard 
and pointing device input per 

partition 

Rule will be part of the 
OVERSEE firewall 

configuration 

Table 30: Security issues to be handled by the OVERSEE firewall 

Please consider the residual risks and counter measurements, which are out of project 
scope, mentioned in D2.4 [4], e.g., the suggested application layer firewall for IP 

connections. 

4.2 Specification of the OVERSEE firewall 

In section 4.1.1 we summarised the necessary security measurements per communication 
path and the consequences for the OVERSEE firewall. As stated for most of the 
measurements there will be a rule or a set of rules in the firewall configuration of OVERSEE 
to reduce the risk of misuse of the connections. To be able to define a holistic security 
concept, all the rules will be specified within one configuration file in XML format for each 
platform configuration. The XML file has to be signed by the platform integrator. Only 
configuration files with verified signature will be processed by the OVERSEE platform. 

During processing of the configuration file four configuration files will be build out of the 
original configuration file, corresponding to specific parts of the OVERSEE firewall: 

 Parts of the XtratuM configuration file [17], describing the available ports to specified 
channels per partition (methods number: 3,5,7,8,16,18,22,23,24,25,26) 

 Firewall configuration file for SVAS (methods number: 2,17) 

 Firewall configuration file for ITS communication (methods number: 
9,10,11,12,13,14,15) 

 Firewall configuration file for IP communication (methods number: 19,21) 

Since the used hypervisor XtratuM is able to guarantee that partitions only access channels if 
they have a corresponding port configured in the XtratuM configuration file, the restriction 
of access to the services is implemented by the first configuration file easily and secure. The 

other three configuration files belonging to separate parts of the OVERSEE firewall, executed 
within the corresponding domain, are the following: 

 SVAS access control module, executed within the SVAS service and processing the 

firewall configuration file for SVSA 

 ITS access control module, executed within the ITS communication service and 
processing the firewall configuration file for ITS communication 



D2.2: Spec. of security services incl. virt. and firewall mech. 

40 

 

 IP filter module, executed within the IP management service and processing the 

firewall configuration file for IP communication 

How to implement the access control and filter modules in the services will be defined 
within the implementation phase of the generic OVERSEE components in WP3. 

4.2.1 Role Model for Definition of Firewall Policies 

There are two roles for the definition of firewall policies in the context of OVERSEE: 

 OEM: Responsible for the definition of white lists for CAN read/write and the set of 

rules concerning the access of data objects within the SVAS 

 Integrator: Responsible for all other rules and the reliable integration of the rules 
concerning SVAS access as defined by the OEM into the OVERSEE firewall 

configuration file 

During the implementation phase of OVERSEE it will be determined if there is also the need 
for dynamic firewall policies, which could be selected based on the current status of the 
platform. However, the responsibilities for the definition of the applicable rules while be not 
affected by this decision. 

4.2.2 Policy language for the OVERSEE firewall 

As already mentioned, the firewall configuration file will be in XML format. The following 
DTD (document type definition) represents the current reflections concerning the definition 
of the rules as listed in section 4.1.1. Anyway, the policy language will surely be extended 
and adjusted during the implementation phase and also beyond the current project in real 

world implementations; luckily this is easily feasible due to the XML format of the 
configuration file. 

OVERSEE_firewal_policy_language.dtd, Beta, Version 0.1: 
<!ELEMENT ComRules (Services, SVAS, IP, ITS) > 

<!ELEMENT Services (Service)* > 

<!ELEMENT Service (Partition)*> 

<!ATTLIST Service 

          name CDATA #REQUIRED 

> 

<!ELEMENT Partition EMPTY> 

<!ATTLIST Partition        

          name CDATA          #REQUIRED 

 read (true|false)   #IMPLIED 

          write (true|false)  #IMPLIED 

> 

<!ELEMENT SVAS (DataObject)*> 

<!ELEMENT DataObject (Partition|IntConnection)*> 

<!ATTLIST DataObject 

          name CDATA #REQUIRED 

> 

<!ELEMENT IntConnection EMPTY> 

<!ATTLIST IntConnection        



D2.2: Spec. of security services incl. virt. and firewall mech. 

41 

 

          name CDATA          #REQUIRED 

 read (true|false)   #IMPLIED 

          write (true|false)  #IMPLIED 

> 

<!ELEMENT IP (ConTyp|FWRule)*> 

<!ELEMENT ConTyp (Partition)*> 

<!ATTLIST ConType 

          name (WiFi|2G3G)    #REQUIRED 

> 

<!ELEMENT FWRule (Partition)*> 

<!ATTLIST FWRule 

          portnumber CDATA    #REQUIRED 

> 

<!ELEMENT ITS (CAM|LDM|DENM|DSRC|ParamCAM)*> 

<!ELEMENT CAM (Partition)*> 

<!ELEMENT LDM (Partition)*> 

<!ELEMENT DENM (Partition)*> 

<!ELEMENT DSRC (Partition)*> 

<!ELEMENT ParamCAM (Partition)*> 

<!ATTLIST ParamCAM 

          name CDATA          #REQUIRED 



D2.2: Spec. of security services incl. virt. and firewall mech. 

42 

 

5 Secure Assurance of Prioritized Resource Access 

Parallel execution of multiple applications sharing common resources is one of the main 
features of OVERSEE. The executed applications could be from different domains (e.g., 
infotainment, comfort, ITS) and some of them are safety relevant. 

A short example of an ITS application, in this case a simplified2 version of eCall as described 
within [1], is shown in the following: 

 The vehicle internal eCall implementation detects sensor values that lead to the 
assumption that an accident has occurred (e.g., the airbag or some crash sensors 
have been activated). As an alternative the vehicle driver activates the eCall feature 
manually, because of an emergency situation (e.g., heart disease or feeling the risk of 

loss of consciousness). 

 The eCall application presents information that it connects to the next PSAP (Public 
Safety Answering Point) and a cancel button via the HMI to the driver. 

 The internal eCall implementation establishes a mobile phone voice connection to 

the next PSAP and transmitting specified information (among others positioning, 
direction, status of airbags) in-band to the PSAP. Afterwards, the voice connection to 
the PSAP will be forwarded to the vehicle driver. 

The simple (compared to complex ITS applications as intersection collision warning) use case 
already shows some safety relevant issues concerning shared resources: 

 Although other applications are executed on the OVERSEE platform it has to be 
ensured that the partition serving the eCall application is regularly invoked, to check 

if there are indications for an accident. 

 If an accident is detected or the eCall feature is activated manually the application 

has to inform the driver. Hence, exclusive access to the HMI has to be assigned to the 

partition serving the eCall application. 

 Since there is the necessity of a voice connection between driver and PSAP the eCall 
application has to interrupt all currently established voice connections. Hence, 
exclusive access to the 2G/3G and audio management module of OVERSEE has to be 
assigned to the partition serving the eCall application. 

This list of safety relevant issues, while it is not exhaustive, already leads to some first 
security concerns, related to the mentioned safety relevant issues: 

 How to avoid DoS (Denial of Service) attacks by applications avoiding the invocation 

of, in this case, the partition serving the eCall application. 

 How to avoid that malicious applications masquerade themselves (to be exactly their 

hosting partition) as eCall applications (to be exactly the partition serving the eCall 

                                                      

2 Although this description is simplified, compared to the use case description of eCall in [1], it fits to the eCall 

implementation approach recommended by the eSaftey Forum [20]. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

43 

 

application) and hence gathering exclusive access (e.g., on the 2G/3G connection 

management). 

Therefore, secure assurance of prioritized access to shared resources will be a feature of 
OVERSEE. Additionally, some resources offer advanced resource sharing techniques (e.g., 
sharing of data transmission rate by applications with QoS (Quality of Service) approaches). 
The secure assurance of advanced resource sharing techniques will be also part of the 
OVERSEE implementation. 

5.1 Classes of Resources Concerning Prioritized Resource Access 

As already mentioned, resources could be classified concerning prioritized resource access 
into two groups: 

5.1.1 Time shared resources 

The use of resources within this class requires exclusive access to the resource. Hence, the 
only possible solution is to share access to these resources over time. This could happen in a 
cyclic manner, granting access to the resources to consumers on a regular time base or 
dynamically according to the needs of the current costumers (e.g., applications). 

5.1.2 Resources capacity shared resources 

The resources within this class offer the capability to split of the capacity of the resource 
among the consumers. This could be for example the data transmission with configuration of 
adaptive rates offered by a network connection or the available memory. Often these 

systems are also able to assign the available resource capacity dynamically according to the 
current requirements of the consumers, referred to as QoS information for network 
connections. For the sake of simplicity we will call this techniques "sharing of resource 
capacity". 

Nevertheless, as a fact it has to be noticed that even resources offering sharing of resource 
capacity are mostly based on other components, which are only able to offer sharing over 
time (e.g., the SVAS using CAN which could indeed transport only one message at the same 
time). Since the consequences of these relations are typically known they are already 
considered in the capacity rates of the depending resources. We will hence consider issues 
related to this fact only if necessary in a security point of view. 

5.1.3 Classification of OVERSEE Resources Concerning Prioritized Resource Access 

In this section we will classify the resources of OVERSEE according to the two different 
groups, defined above. Please notice that resources are not the same as communication 
paths. Indeed, sometimes more than one resource builds a communication path and hence 
has to be evaluated separately. Obviously, parts of the communication paths, which are 
executed in partitions do not need resource sharing (keep in mind OVERSEE works on 
partition and not application level). This also applies to read only resources. Furthermore, 
we consider also resources, which are not related to communication (e.g., CPU time). 



D2.2: Spec. of security services incl. virt. and firewall mech. 

44 

 

Resource 

Shared 

over 
time 

Shared 

resource 
capacity 

Relevance for secure assurance of prioritized 

resource access in OVERSEE 

Controller Area 
Network Interface 

X  
Implementation out of scope, will not be 

considered 

SVAS  X 
Please see section 5.1.4 for more details on the 

shared resource capacity 

SVAS to CAN 
output queue 

Implement the queue in a manner that reflects the prioritization in 
CAN. 

Data Objects in 
SVAS 

X  
Demand for prioritized exclusive access 

per data object 

GPS Sensor Read only therefore no issue 

Positioning Service Read only therefore no issue 

Bluetooth Device 
Since the user selects to which partition the Bluetooth device should 

be assigned, there is no issue on prioritization.3 

USB Device 
Since the user selects to which partition the USB device should be 

assigned, there is no issue on prioritization. 

CEN DSRC 
Interface 

X  
Implementation out of scope, will not be 

considered 

ITS-G5 Network 
Interface 

X  
Implementation of prioritization within 

the ITS-G5 network is out of scope. 

ITS 
Communication 

 X 

The considerations of prioritization have 
to be on the level of write processes for 

parameters, used for the CAMs, and send 
of DENM and DSRC messages. 

Parameters for 
CAMs in ITS 

communication 
X  

Demand for prioritized exclusive access 
per parameter 

Send of DENM X  Demand for prioritized exclusive access 

Send of DSRC 
messages 

X  
Demand for prioritized exclusive access 

HSM Device X  
Implementation out of scope, will not be 

considered 

Security Services X  Demand for prioritized exclusive access4 

WiFi Network 
Interface 

X  
Implementation out of scope, will not be 

considered 

2G/G3 Network 
Interface 

X  
Implementation out of scope, will not be 

considered 

IP connection  X 
Demand for prioritized resource capacity 

sharing 

                                                      

3 The communication within the Bluetooth network will be under the responsibility of the used Bluetooth 

module. 

4 Additional measures in the implementation of the security services has to be considered to avoid side channel 

attacks by monitoring of the exclusive locks, caused by the exclusive access to the services. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

45 

 

Line Out X  Demand for prioritized exclusive access 

Line In Read only therefore no issue 

Graphical Out X  Demand for prioritized exclusive access 

Keyboard X  Demand for prioritized exclusive access 

Pointing Device X  Demand for prioritized exclusive access 

HMI and Audio 
Management 

 X 
Prioritization has to be considered on the 
level of the management interfaces, see 

rows before. 

CPU time X  
Sharing will be done by the virtualization 

subsystem, out of scope  

Memory  X 

Memory areas will be assigned to the 
partitions in a static manner by the 

virtualization subsystem and ensuring 
isolation, hence not an issue. 

Table 31: Classification of resources concerning prioritized resource access 

5.1.4 Special Issues concerning Prioritization in SVAS 

Assuming that there is enough computational power to process any incoming and outgoing 
messages in the SVAS, the available data transfer rate of the underlying CAN bus is the 
theoretical limit. Nevertheless, CAN messages have different priorities, which have to be 
reflected in the whole output communication stack. Furthermore, if more than one partition 
is allowed to write a data object, there is an issue about prioritization on this level. 

5.2 Concepts for Prioritized Resource Access in OVERSEE 

Based on the two groups defined above, two concepts to describe the expected prioritized 
access to shared resources are used: 

5.2.1 Resources shared over time 

 Determine number of partitions, which are allowed to access this resource. 

 Define a value for the priority of a partition concerning access to the current 
resource. The value should be between one (highest priority) and the number of 
partitions allowed to access this service. (identical values are allowed leading to a 
cyclic resource sharing between the partitions with the same priority value) 

The priority information per resource and partition will be noted in a static way in an 
OVERSEE configuration file. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

46 

 

5.2.2 Resources with shared Capacity 

 Perform the same steps as in section 5.2.1 

 Add for each partition the minimum amount of capacity (e.g., data transmission rate) 

necessary to conduct the obligations, which are associated to this partition. 

The implementation to follow this concept would assign the available capacity based on the 
priorities of the partitions for this resource. The main difference is that the implementation 
will only guarantee the defined minimum capacity. If a partition would need more capacity 
than defined, this capacity could only be provided if there is capacity left which was not 
requested within the minimum requirements by other partitions. See Figure 4 for a 
schematic view of an exemplary resource sharing. 

 

Figure 4: Example of prioritized capacity resource sharing 

5.3 Change of Resource Sharing During Operation 

If all partitions with high or highest priority for a resource would use this resource the whole 

time, obviously the whole concept does not make any sense. Therefore, it is important that 
the integrator, who is responsible for the allocation of the priority information, would be 
very careful, especially concerning the assignment of high priorities. Naturally, many 
applications (e.g., the depicted eCall application) would be in idle state most of the time, 
which leads to the current approach. 

Concerning the resources with shared capacity it should be mentioned that the defined 
minimum capacity per partition is indeed not the current. This means that if a partition does 
not need its defined minimum capacity, this free capacity can be assigned to the other, 
maybe still requesting, partitions. These assignments would be for sure also based on the 

priorities of the other partitions. Nevertheless, the integrator should be again careful with 
the value for the minimum capacity assigned to each partition, especially in the cases of 
general-purpose partitions with probably malicious applications. 

5.4 Policy Language for Definition of Prioritized Resource Access 

To avoid an additional configuration file the firewall configuration file is extended in order to 
add the necessary configuration values for the prioritized resource access. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

47 

 

Extract from adapted OVERSEE firewall configuration file: 

OVERSEE_firewal_policy_language.dtd, Beta, Version 0.2: 
<!ELEMENT Partition EMPTY> 

<!ATTLIST Partition        

          name CDATA          #REQUIRED 

 read (true|false)   #IMPLIED 

          write (true|false)  #IMPLIED 

          priority CDATA      #REQUIRED 

 mincapacity CDATA   #IMPLIED 

5.5 Security Challenges for Assurance of Prioritized Resources Access 

As already showed by the eCall example there are security issues concerning the assurance 

of prioritized resource access. In the following, some of them are listed; this investigation is 
work in progress, which will be continued during the next steps of the project: 

Denial of Service (DoS) attack 

Entities could try to consume more resource capacity than have been assigned to them, or 
lock resources for exclusive access without having the highest priority of the requesting 
entities. If the attack is successful this could lead to situations where other entities are not 
able to fulfil their obligations due to missing resources. 

Masquerading 

Entities could try to masquerade themselves to use resources with the priorities assigned to 
other entities. This could be an attack vector for a successful DoS attack. 

Forging of priority configuration 

Entities could try to modify the configuration of the platform concerning prioritization; 
hence they will be able to request more resource capacity or a prioritized exclusive access to 
resources. Besides the value of the exceeding resource access this attack could also be a 
preparation for a DoS attack. 

5.5.1 Residual Risks 

Obviously, the limits of the proposed concept for the assurance of prioritized resources 
access are the borders of the platform, indeed the borders are much more closer, since for 
example some implementations of network interface drivers are out of scope of the generic 
OVERSEE implementation. Hence, DoS attacks on the external connections of OVERSEE 
cannot be avoided by OVERSEE security means. 
Another residual risk is the question if the high level assurances of prioritized resource 
access could be preserved through the whole implementation (e.g., a communication path 
build out of different resources). This issue will be investigated within the rest of the project 
to discover possible additional security weaknesses. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

48 

 

6 Specification of internal communication requirements in the 
virtualized environment 

As already mentioned above, integrated systems contain a number of software modules 
with different safety and security levels on a single hardware module. Therefore it is 
essential to partition these software modules in time and memory, so that errors and 
malicious users are contained in the module where they show up, and to prevent the 
propagation into other software modules (of even higher criticality), in order to guarantee 
the robustness of the resulting system. 

Nevertheless many applications require the different software modules to communicate 
with each other. To guarantee a safe and secure communication channel, which does not 

allow erroneous/insecure software modules to influence the other software modules in the 
system, the interpartition communication system is used to monitor the communication and 
make sure that everything is all right. To prevent possible faulty software modules from 
directly or indirectly influencing other software modules, the interpartition communication 
system has to be designed properly. 

6.1 High-Level Requirements 

Some of the guiding criteria are: 

 ideally only exclusive access at any point in time (no sharing of physical address 
ranges) 

 Pre-defined communication end-points (no dynamic creation of communication 

channels) 

 Bounded resources per channel 

 All inter-partition synchronization happens at the application level (that is the core is 
lock-free) 

 System monitoring can detect violation of pre-defined communication patterns 

 Intervention allows to restrict violations of pre-defined communication patterns to a 
single partition 

(from the OS perspective - it might well not be possible to continue operation properly with 
a communication partner having failed) 

These high-level requirements are met best by re-using existing software concepts that were 

developed in the context of automotive and other HW and/or safety related systems (i.e. 
ARINC 653). 

Since OVERSEE intends to implement the well specified and tested interpartition 
communication mechanisms described in ARINC653, the internal communication will be 
possible mainly via queuing ports and sampling ports. For some special cases where a high 
data throughput is necessary, the ARINC653 communication mechanisms will be 
complemented by a shared memory. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

49 

 

The specification of the first two is rather simple, since queuing ports and sampling ports as 

specified by the ARINC653 specification, and therefore these two are already very well 
specified. 

Since shared memory is not specified in ARINC653, but is provided as a special feature for 
applications with a need for a communication mechanism with a high throughput, it has to 
be handled more rigorously. 

The communication mechanisms presented by safety standards as ARINC653 build a strong 
basis for a secure communication between the OVERSEE partitions. For example, the static 
configuration of communication channels and ports restricts the access of unauthorized 
users/applications to the channels/ports intended by the system integrator. A proper design 
and use of these features should suffice to eliminate sniffing, man in the middle attacks, 
denial of service attacks and the like - so if one of the partitions should get hijacked, these 
mechanisms are the basis to contain the attacker and restrict his access to partitions 

communicating with the hijacked partition. 

Furthermore the set of messages accepted by the receiving partition should be restricted to 
a well-defined set - this of course cannot be done within the OVERSEE project, but has to be 
left to the application developer, since messages are specific to the application. 

It is the role of the integrator to provide the most restrictive system level configuration with 
respect to communication properties to ensure the minimum possible impact of a 
failing/compromised partition on others. In the context of OVERSEE only the mechanism is 
under investigation that allows to actually enforce such restrictive policies. 

Although the communication between partitions as defined in ARINC653 follows a strict 
polling semantic, which also counteracts denial of service attacks, the traffic on the channels 
should be monitored and if partitions try to send more messages than the predefined 

threshold, actions should be taken (remove channel, discard messages, restart sending 
partition, etc.). 

While these methods were not initially designed for security purposes it should be noted 

that the monitoring proposed by ARINC 653 well fit generally used methods in security 
related intrusion detection systems, thus there is a strong overlap of safety related 
mechanisms that can be utilized in the context of OVERSEE. 

6.2 Available Communication Mechanisms 

Before we get started on the requirements for the internal communication in the virtualized 
environment, the available communication mechanisms are summarized shortly. 

6.2.1 Sampling Ports 

Sampling ports can be used to send messages at any time, but they are restricted to fixed 
length messages. There exists only one copy of the message, which is overwritten every time 
a partition sends a new message. There is no buffering supported, therefore messages can 
be lost, but the data a reader gets, always contains the newest available instance of the 
message. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

50 

 

The resource management for sampling ports is pretty simple, since ARINC653 does not 

require any buffers at the sending end, and one buffer to hold the last valid value at the 
receiving end. Because the length of the message is known a priori (from the XML 
configuration file), the buffers can be set up at initialization time. 

Messages, which are not of the right length are discarded, because ARINC653 [16] says in 
section 2.3.5.1: 

"At the application level, messages are atomic entities i.e., either the whole message is 
received, or nothing is received. Applications are responsible for assuring, data meets 
requirements for processing by that application. This might include range checks, voting 
between different sources, or other means." 

This paragraph precisely defines the border of jurisdiction between the application and the 
message passing system. The message passing system has to make sure that the message 
arrives in one piece at the receiver (which is definitely not possible, if the message has the 

wrong length), but it has no influence on the data itself, which is application specific, so the 
validity of the content cannot be of concern for the interpartition communication system. 

Another possibility how a message on a Sampling Port could get invalid is aging. Each port 
gets assigned a REFRESH_RATE at configuration time. This rate defines the maximum age of 
the message, which is acceptable. If the message gets too old, it becomes invalid. 

Sampling Ports support Uni-, Multi- and Broadcast. That means a message can be sent to 
one, multiple or all other nodes. 

6.2.2 Queuing Ports 

In contrast to Sampling Ports, Queuing Ports buffer the messages. The buffer shows FiFo 

behaviour and supports fixed as well as variable length messages. The buffering of the 
messages makes sure that no messages are lost, i.e. several instances of the same message 
are recognized by the receiving partition. 

One important part of Queuing Ports is the buffer management. In contrast to sampling 
ports, here at least 2 buffers are needed. Both buffers are managed as FiFo message queues. 
One is dedicated to the sending side, and filled up with messages by the send requests of the 
sender. The second buffer is dedicated to the receiver. The messages are copied from the 
first buffer into the second by the interpartition communication system, and are removed 
from the buffer, after a receive request of the receiver has been served. The interpartition 
communication system takes care that only valid messages are copied into the second 
buffer, and the rest is discarded. New messages may be discarded, if the buffer is full, and an 
appropriate return code is given back to the sender. 

In contrast to Sampling Ports, Queuing Ports support only Unicast Communication. 

6.2.3 Compliance with RTE API 

It should be noted that the semantics of queuing ports fits the semantic properties of 
standard high-level IPC mechanisms like POSIX message queues or sockets sufficiently well 
to allow a clean integration into high-level API models for the general purpose partitions. 
Further the mechanisms for communication used in OSEK/VDX can easily be mapped to the 



D2.2: Spec. of security services incl. virt. and firewall mech. 

51 

 

communication primitives specified in ARINC 653. The mapping will require some syntactic 

glue but the semantic mapping is sufficiently aligned to expect reuse of existing software 
components at the runtime environment level. While this is not directly part of the OVERSEE 
effort we see this as an important design criterion as a mismatch at the semantic level would 
make it very hard (or impossible) to migrate existing applications to OVERSEE - which would 
make this effort futile. 

6.2.4 Shared Memory 

One of the problems of sampling and queuing ports is that they focus on classical control 
data - which is generally streaming by nature. OVERSEE can't impose such restrictions on the 
general automotive application domain - thus a mechanism for sparse data is mandatory. 
Traditionally shared memory has been used to communicate sparse data objects between 

concurrent processes. 

Although a shared memory cannot be as robust as the sampling/queuing port mechanisms 
described above, the OVERSEE architecture offers a shared memory mechanism for 
applications that need a high throughput. An example would be data for the graphical 
interface. 

The problem with a shared memory is, that the strict polling policy, which is followed by the 
sampling/queuing ports as specified by ARINC653 is not followed, introducing a dependency 
between the writing and reading applications. 

Following a standardized shared memory API, as for example the POSIX shared memory API, 
would be a good choice. 

6.2.5 Design Discussion - Robust SHM: 

While this is not the place for a full design discussion we outline a preliminary concept for 
shared data.  



D2.2: Spec. of security services incl. virt. and firewall mech. 

52 

 

6.2.5.1 Asymmetric Bi-directional mapping (ABM) 

A possible resolution of this problem could be to include a bi-directional asymmetric 
mapping 

 

Figure 5: Asymmetric Bi-directional mapping (ABM) 

Each of the shared pages is only writable for one partition - enforced by the underlying 
hardware memory management unit (MMU) and mapped into the Virtual Memory Area 
(VMA) of the respective communicating process. This way, while allowing to communicate 
sparse data objects, the security properties can be improved compared to fully write-shared 
pages. 

6.2.5.2 Exchange Page Table Entry (XPTE) 

A further mechanism could be to actually exchange page-mapping between communicating 

partitions by allowing the core OS to manipulate the respective page-tables. This way any 
content stays uniquely mapped to a single partition at any point in time while allowing to 
share sparse data. 

 

Figure 6: Exchange Page Table Entry (XPTE) 

These mechanisms need further investigation - only early design efforts have been 
conducted to date. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

53 

 

6.3 Requirements on the Internal Communication 

In order to analyse the requirements of the interpartition communication system, we 
developed 5 scenarios showing all possible and necessary ways of communication between 
partitions. By combining these models all access patterns can be constructed for secure and 
non-secure communication to/from applications running in partitions. 

The figures in this section only depict ports, but these ports could also be shared memories. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

54 

 

6.3.1 Scenario1: Secure Communication - Dedicated Partition 

This first scenario describes how a secure connection from an application to the outside 
world is made. The application partition is connected to the secure I/O partition via a 
virtualized communication channel; the validity of this channel is checked by the 
hypervisor's interpartition communication system. The secure I/O partition then applies its 
security services to the traffic it is routing between the application and the outside world. In 
this scenario, the driver for the peripheral is integrated into the secure I/O partition; the 
hypervisor provides virtualized interrupts of the peripheral to the secure I/O partition. 

 

Figure 7: Secure Communication - Dedicated Partition 



D2.2: Spec. of security services incl. virt. and firewall mech. 

55 

 

6.3.2 Scenario2: Non/low-secure device access - integrate in guest OS partition 

The simplest scenario is an access to the outside world via an interface that is used by only 
one partition and where no or only low security measures are needed. In that case, the 
driver for the peripheral is integrated into the application partition, and all the hypervisor 
has to do is to route the virtualized interrupts for this peripheral to the application partition. 

(Sharing can be achieved by the guest-OS acting as a server - while not secure this is the 
most flexible solution and suitable for non-security related services - i.e. browsing the web 
or entertainment related applications). 

 

Figure 8: Non/low-secure device access - integrate in guest OS partition 



D2.2: Spec. of security services incl. virt. and firewall mech. 

56 

 

6.3.3 Scenario3: Device Multiple Access - Virtual Multiplexing 

Multiple applications can share a device via a channel multiplexer – the system partitions 
multiplexer need not be "intelligent" - it can simply duplicate all packets and present them 
to all partitions who then use what they see fit. Security is implemented at a different level 
in this model - if secure multiplexing were needed then the driver could be managed by a 
sufficiently "intelligent" partition that i.e. provides firewalling and routing services thus this 
is de-facto a virtual hub at the level of the VFB (in AUTOSAR taxonomy). 

 

Figure 9: Device Multiple Access - Virtual Multiplexing 



D2.2: Spec. of security services incl. virt. and firewall mech. 

57 

 

6.3.4 Scenario 4 - Virtual Device - Interpartition Communication 

The big difference to Scenario3 is that the secure I/O partition does not just send the packets 
to all the partitions, but does a route so that ever partition gets only the traffic that is really 
intended to be for this partition. Furthermore, secure I/O partition does not only offer a 
connection to the outer world, but a secure channel between two application partitions.  
This scenario can be identified with a layer-3 router in the IP network sense. 

 

Figure 10: Virtual Device - Interpartition Communication 



D2.2: Spec. of security services incl. virt. and firewall mech. 

58 

 

6.3.5 Scenario 5 - Scalability of the Architecture 

Essentially, scenario 5 is not a basic communication model as the other 4, but already a 
combination of scenarios. This scenario shows how composable the OVERSEE architecture is, 
and how independent applications are made from the other applications on the platform. As 
the figure shows, there are two applications located on two separate hardware nodes, which 
need to communicate with each other. For the applications it does not matter, whether the 
other application is located on the same hardware node (Scenario 4), or on another one, it 
just connects to the secure I/O partition and sends its data. The secure I/O partition is 
configured by the integrator at compile time. Therefore it has a priori knowledge on the 
location of the applications. In case the receiver is on another hardware node, it just uses its 
pre-configured knowledge to send the data to this second node. 

In this scenario the secure network service partition also has to maintain topology 
information or rely on external routing services (which could themselves have security 
implications). This scenario is currently not in scope for the on-going OVERSEE effort - 
though it is included to show that the generic nature of the driver abstraction model in 
principle allows to fully de-centralize computing capacity without, in principle, reducing 
security capabilities. 

 

Figure 11: Scalability of the Architecture 



D2.2: Spec. of security services incl. virt. and firewall mech. 

59 

 

7 Next Steps 

Since with the finalization of this deliverable and the other related deliverables in WP2 as 
well as the D3.1 "Selection for reuse of existing building blocks" the overall design for 
OVERSEE is available; the second milestone of the project has been reached. 

Next the project will enter a new phase, the OVERSEE implementation phase, which is 
mainly corresponding to WP3 and WP4. 

Anyway, since it is quite reasonable that during the implementation phase of the project 
new aspects and tasks will arise, it would be probably necessary to go back into the design 
phase for some aspects. Hence, we would follow an iterative process whenever necessary. 



D2.2: Spec. of security services incl. virt. and firewall mech. 

60 

 

References 

[1] OVERSEE Project: D1.1 Use Case Identification. 2010 

[2] OVERSEE Project: D1.4 Functional Requirement Analysis. 2010 

[3] OVERSEE Project: D2.2 Specification of security services incl. virtualization and firewall 

mechanisms. 2011 

[4] OVERSEE Project: D2.4 Specification of secure communication. 2011 

[5] XtratuM, www.xtratum.org/ 

[6] OSEK/VDX: www.osek-vdx.org 

[7] OSEK Operating System Specification 2.2.3: portal.osek-vdx.org/files/pdf/specs/os223.pdf 

[8] OSEK/VDX Operating System Test Plan:  

portal.osek-vdx.org/files/pdf/modistarc/ostestplan20.pdf 

[9] ETSI: TS 102 637-1 V1.1.1. Intelligent Transport Systems (ITS); Vehicular Communications; Basic 

Set of Applications; Part 1: Functional Requirements. Sep. 2010 

[10] ETSI: TR 102 893 V1.1.1. Intelligent Transport Systems (ITS); Security; Threat, Vulnerability and 

Risk Analysis (TVRA). Mar. 2010 

[11] ETSI: TR 102 638 V1.1.1. Intelligent Transport Systems (ITS); Vehicular Communications; Basic 

Set of Applications; Definitions. Jun. 2009 

[12] ETSI: EN 302 665 V1.1.1. Intelligent Transport Systems (ITS); Communications Architecture 

[13] ETSI: ES 202 663 V1.1.0. Intelligent Transport Systems (ITS); European profile standard for the 

physical and medium access control layer of Intelligent Transport Systems operating in the 5 

GHz frequency band 

[14] eSecurity Working Group: Vulnerabilities in Electronics and Communications in Road 

Transport: Discussion and Recommendations. Jun. 2010 

[15] National Marine Electronics Association: NMEA 0183 Standard. www.nmea.org 

[16] ARINC: Avionics Application Software Standard Interface 

[17] M. Masmano, I. Ripoll, A. Crespo, V. Brocal: XtratuM Hypervisor for LEON2 Volume2: User 

Manual. Sep. 2009 

[18] OVERSEE Project: D2.1 List of interfaces and specifications of information flow. 2010 

[19] W3C: Extensible Markup Language (XML). www.w3.org/TR/xml/ 

[20] eSafety Forum, "Recommendations of the DG eCall for the introduction of the pan-European  

eCall", Apr. 2006, Version 2.0 

[21] NIST Special Publication 800-38E: Recommendation for Block Cipher Modes of Operation: The 

XTS-AES Mode for Confidentiality on Storage Devices 

[22] J. Rushby. Design and verification of secure systems. volume 15, pages 12–21, Pacific Grove, 

California, Dec. 1981 

[23] R. Goldberg. Survey of virtual machine research. IEEE Computer Magazine, 7(6):34–45, 1974 


