Console Architecture

Overview

- What is a console?
- Console components
- Differences between consoles and PCs
- Benefits of console development
- The development environment
- Console game design
- PS3 in detail
- Console transitions

What is a Console?

- Consoles are dedicated game machines
 - Nintendo WiiU, Wii
 - Nintendo GameCube (NGC)
 - Nintendo64 (N64)
 - Nintendo DS / 3DS
 - Nintendo GameBoy Advanced (GBA)
 - Xbox One, Xbox 360, Xbox
 - Sony Playstation 4 (PS4), PS3, PS2, Playstation (PSX)
 - Playstation Portable (PSP)
 - Playstation Vita
 - Sega Dreamcast (DC)

Console Evolution

- Sony Playstation (1995)
 - 33 MHz MIPS R3000 derivative
 - 2 MB RAM
 - CD-based storage (~650 MB / disc)
- Sony Playstation 2 (2000)
 - 300 MHz MIPS R5000 derivative
 - 32 MB RAM
 - DVD-based storage (~9 GB / disc)
- Sony Playstation 3 (2006)
 - 3 GHz Cell processor (PowerPC core plus 7 custom SPUs)
 - 256 MB CPU RAM plus 256 MB Video RAM
 - Blu-ray-based storage (50 GB / disc)
- Sony Playstation 4 (2013)
 - 1.6 GHz 8-core x64 CPU
 - 8 GB Unified GDDR RAM
 - Blu-ray + 500GB HD

Differences from PC

- Output to TV rather than monitor
 - Lower resolution
 - Poor colour reproduction on older generations (NTSC)
- Limited permanent storage until this generation
 - No hard disk on Xbox and Wii
 - No virtual memory
 - Can implement it yourself on PS3 though
 - Slow physical media access
 - As compared to HD access
- No keyboard, mouse
 - Makes control systems for FPS and RTS games difficult
 - Some modern consoles have capability to use them, but can't generally depend on them

Console Benefits

- Fixed target
 - Makes it easier to eke out performance
 - More exposure of underlying hardware
- Consoles are dedicated to games
 - Dedicated hardware, dedicated software platform (e.g. Trophies)
- Bigger market
 - Consoles are cheaper
 - More accessible
 - More people have them
 - PC hardware market is bigger, but a lot of that is for businesses
 - Consoles are more secure
 - Less copyright infringement
 - More people buy games
 - More \$\$\$ for developers

Console Liabilities

- Underpowered
 - Particularly near the end of it's life
- Little, or no operating system
 - DIY memory management
 - Lots of hardware level programming
 - Interrupt handlers
 - DMA
 - Task scheduling
 - Assembly
- Less open production / distribution models

The Development Environment

- Games are written on a host machine
 - PC
 - Mac
 - Linux
- Compiled on the host with a cross-compiler
 - Visual Studio for Xbox
 - GCC and SN compilers for PS3
 - CodeWarrior for Nintendo Wii
- Downloaded to development system through a network or USB connection

Testing and Debugging

- The game runs on the development system.
- Debugging is done remotely
 - Can be across regular network connection (Xbox, PS3)
 - Integrated seamlessly into Visual Studio for Xbox
 - Separate app (SN Debugger) for PS3
 - Or custom connection (GameCube, all earlier consoles)
- Rather than burning disks, a DVD emulator is used to allow games to test streaming systems, etc.

Development Libraries

- There is little in the way of an operating system, but there are usually some libraries to help you get off the ground
- Lots of variation between consoles
- Support can be weak
 - Particularly early in lifecycle
 - Libraries coming in late
 - Poor documentation
 - Bugs

Game Design

- Console architecture can have a large effect on game design:
 - Limited memory:
 - Reduce size of world or stream from DVD
 - Lower resolution
- Different input mechanisms
 - Can only depend on gamepad, that affects design
 - Motion control getting pretty ubiquitous
- Console games are played in a different environment
 - Living room, TV, stereo
 - Party gaming
- Console gamers represent a different market
 - Some markets still live on PC (MMO, Strategy)
 - Wii has a much broader base of players

A Third Generation 3D Console

- Released in 2006
- 3.2 GHz CPU
- 8 CPU cores
- 2 × 256 MB RAM
- Blu-ray
- Up to 320 GB HDD
- Gigabit Ethernet
- WiFi
- Bluetooth
- USB

CPU

- 1 Power Processing Element (PPE)
 - PowerPC instruction set
 - 2 × 32k L1 caches
 - 512k L2 cache
 - 64 and 128 bit register sets
 - 2 hardware threads
- 7 Synergistic Processing Elements (SPE)
 - Custom instruction set
 - 256k embedded SRAM
 - 128 × 128 bit SIMD registers
 - Main memory access via DMA only
- High throughput, high latency design trade-off

Graphics

- Half the main memory is VRAM
 - Fast to read by GPU (22 GB/s)
 - Fast to write by CPU (4 GB/s)
 - Slow to read by CPU (16 MB/s)!
- RSX graphics chip
 - 550 MHz
 - Based on NV47 (GeForce 7800)
 - Parallel programmable shader pipelines
 - 8 vertex
 - 24 pixel
 - 24 texture filtering (TF) units
 - 8 texture addressing (TA) units
 - Peak theoretical pixel fill rate 4.4 Gpixel/s

Development Environment

- Compilers
 - GCC version provided by Sony
 - SNC provided by SN Systems (Sony's subsidiary)
- IDEs
 - Visual Studio integration plugin from SN Systems
- Debuggers
 - ProDG Debugger from SN System
- Graphics libraries
 - GCM
 - PSGL

PlayStation 3 Issues

- Memory dichotomy
 - All budgets need to be expressed in two values
 - CPU memory is premium
- Heterogeneous CPU architecture
 - Different compile/link/execute path for SPUs
 - Lack of direct addressing
 - Learning threshold for programmers
 - Big performance gains once you get over it
- RSX performance
 - Addition of RSX was an afterthought
 - Rendering is a bottleneck
 - Can/must be circumvented by better use of SPUs
 - But then the advantage of having the SPUs is less

Console transitions

Console transitions

- Because console are fixed targets, eventually they get out of date
- Refreshes generally happen to all ecosystems at once
 - Nobody wants to be (to far) behind
- Last transition
 - Started November 2005 (XBox 360)
 - Took roughly a year for all hardware to refresh
 - Some things lingered
 - Software takes a while to taper off
 - PS2 still manufactured till last year
- Current transition
 - Started November 2012 (Wii U)
 - Sony and Microsoft shipped new hardware in 2013
 - Hardware may have longer post replacement shelf life this time

Console transitions

- Lots of business turmoil during a transition
 - Last one started with Sony in a dominant position and Microsoft and Nintendo as also-rans
 - Finished with Nintendo out in front (but not as far as Sony had been), and MS narrowly beating Sony
 - Though split by territory was pretty dramatic
 - Could someone get 'Dreamcasted'?
- New platforms open up new possibilities
 - Last generation brought us motion controls
 - Nintendo is banking on multi-screen gaming this time out
 - Better hardware enables various enhancements
 - Means learning a bunch of new stuff

The next Sony and Microsoft consoles

- PS4 and XBox One shipped for Christmas 2013
- Predictable improvements in overall performance
- Architecturally very similar to a PC
 - Very little special games hardware
 - Mostly controller improvements
 - Some custom silicon on CPU/GPU
 - Significant improvements to software platform
 - Video Streaming, Play while installing, etc.
- Microsoft tried to switch to full digital distribution of games, but backed out due to customer complaints

Console transition

- From a development perspective, this transition was as easy as you could hope for
- No strange new architectures
- No new programming models

 Compute Shaders are more usable than previous consoles
- More performance, and more predictable performance
- Lots more memory
- It's less clear how the transition will work out from a business perspective, or who will "win" this generation

In Closing

- Consoles present many interesting challenges.
- The fixed platform that consoles offer is both advantageous and limiting.
- Consoles are entering a very turbulent year or two.