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ABSTRACT

There is a growing interest in developing non-destructive damage detection methods for damage assessment of
composite structures, especially in the aerospace and marine industries. Although damage detection of composite
laminates has been widely investigated, little work has been carried out on sandwich composite configurations. A
technique using the Lipschitz exponent, which is estimated by wavelet transforms, as a damage sensitive signal feature
is outlined here to identify damage in sandwich composites. It is based on the fact that damage causes singularities to
appear in the structure’s dynamic response which can be identified, and its severity estimated, using the Lipschitz
exponent. In order to demonstrate this technique, damage in cantilevered fibre reinforced plastic (FRP) sandwich beams
is investigated both numerically and experimentally.
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1. INTRODUTION

Damage is often observed in many engineering structures during their service life and at the time of manufacture. It can
occur internally or externally and may be caused by a number of factors such as overloading, long term accumulative
crack growth or impact by a foreign object. This could cause the mechanical properties of the structure to degrade
severely and can significantly reduce its residual strength or stiffness. This is important in the case of structures
constructed from composite materials, since a defect such as a delamination between layers, if allowed to progress
unchecked, could eventually reach an advanced stage and lead to the structure collapsing.

Therefore in order to avert a critical loss in structural integrity it is important that the structure be monitored
periodically throughout its service life. Since it is not practical to take the structure apart in order to identify damage,
non-destructive damage evaluation (NDE) methods are needed. Current NDE methods available to identify damage,
such as visual inspections and acoustic or ultrasonic measurement techniques, can be time consuming and costly. In
most cases these techniques are not practical, almost all of them require that the general location of the damage be
known in advance and that the portion of the structure being inspected is readily accessible.

The limitations of current NDE methods can be overcome by using an approach based on measuring structural vibration
characteristics, especially modal parameters, to identify damage. This is due to the fact that modal parameters are
functions of mass, stiffness and damping which are physical properties of the structure and hence sensitive to damage.
The main advantage of this approach lies in the fact that modal information is relatively cheap and easy to obtain.
However, it is not possible to use this approach directly to extract local information that relates to small defects in the
structure as it is only effective in characterizing the structure’s global behaviour.

Extensive research has been conducted on developing structural damage detection techniques based on the analysis of a
wide variety of modal parameters, although the analysis of natural frequencies and mode shapes have proved  to be the
most popular. These approaches attempt to highlight an association between damage and the specific modal parameter
concerned.



Cawley and Adams1 provided insight into using vibration data for non-destructive evaluation of a structure’s integrity
by proposing a method of using changes in natural frequency. They noted that damage is usually accompanied by a
local reduction in stiffness and an increase in damping ratio. These local or distributed changes in stiffness produce
changes in natural frequencies which affect each mode differently depending on the damage location. By comparing the
advantages and disadvantages of using natural frequencies as a structural diagnostic parameter, Salawu2 concluded in
his review that the low sensitivity of frequency shifts to damage requires either very precise measurements or large
levels of damage. Diverging away from using natural frequencies, Yuen3 proposed a method to utilize eigen frequencies
and eigen modes by using a finite element model of a cantilever beam.

The use of mode shapes as a damage indicator is based on the assumption that there would be a detectable change in the
mode shape after a damage event. Modal assurance criteria (MAC) and co-ordinate modal assurance (COMAC) criteria
are some of the methods that have been used by West4 and Fox5 to compare mode shapes in order to identify and locate
damage. An alternative method was demonstrated by Pandey6 to identify damage in finite element model (FEM) beams
based on curvature information obtained from the finite difference of displacement mode shapes. Maia7 extended the
curvature method and proposed the use of frequency response functions of curvature derived from the frequency
response functions of displacement. A method which only uses the Laplacian of the damaged mode shape was
demonstrated by Ratcliffe8 to successfully identify small defects in a beam. However, when the measured data is
corrupted by noise, the evaluation of the Laplacian is prone to large errors.

Recently, a great deal of attention has been focused on the use of wavelet transforms for structural damage detection.
This is due to the wavelet transforms unique zooming ability or localization property enabling the examination of a
signal at different scales which would highlight transient features in the signal that are otherwise undetectable. Although
most of the research into wavelet transform based structural damage detection has focused on the analysis of high
frequency signals9,10,11 there have been some instances where this approach has been applied to structural deflection
profiles such as mode shapes to identify damage.

Chung-Jen Lu12 used a string to simulate the original undamaged structure and several point masses, including a spring,
to simulate localised defects. Using the discrete wavelet transform to decompose the string’s vibration response at
different resolutions, the author observed that the maximum value of the deviation region, the area where the difference
in wavelet coefficients between the damaged and undamaged case is significant, is in close proximity to the location of
the defect. Quan Wang13 also used the same approach to locate transverse and through thickness cracks from
numerically simulated deflection responses of a beam and plate respectively. The author also noticed that the
perturbation in the wavelet coefficients resulting from the crack was sensitive to the spatial resolution or the number of
measurement points.

Although these methods demonstrated a wavelet based approach to identify damage from mode shapes, no attempt was
made to quantify the damage extent in a single parameter. Hong14 addressed this issue by applying the wavelet
transform to the fundamental mode shape of a beam in order to estimate the Lipschitz exponent so that the extent of
damage in the beam could be numerically characterised. In this approach it is envisaged that damage in the beam would
cause perturbations in the mode shape at the damage location. These local perturbations manifest themselves as
singularities and, although not apparent from the total measured response, can be identified from transient features in
the wavelet transformed mode shape response. Using numerical and experimental results the author observed that the
damage size is well correlated with the magnitude of the Lipschitz exponent which is a measure of the signals
regularity.

The work presented here consists of an extension of Hong’s work to the application of damage detection in cantilevered
FRP sandwich composite beams. The relationship between the estimated Lipschitz exponent and the damage extent in
the FRP sandwich beam is investigated numerically and experimentally using the fundamental flexural beam mode
shape. In both cases the continuous wavelet transform (CWT) utilising a second order Gaussian wavelet is applied to
the fundamental mode shape. In the experimental case damage is introduced to the FRP sandwich composite beam in
the form of a delamination between the core and the laminated skin. Fibre optic Bragg grating strain sensors are
embedded at specific points along the centre line of the beam between the core and the laminated skin to measure strain.



The ultimate goal of this investigation is to evaluate the feasibility of using the Lipschitz exponent as a damage
sensitive signal feature so that it could be used as an input into a neural network to perform real-time structural health
monitoring.

2. WAVELET TRANSFORM

2.1 Continuous wavelet transform

Current Fourier methods such as the short term Fourier transform are unable to provide a high degree of resolution in
the time and frequency domain simultaneously. Wavelet transforms on the other hand are able to achieve good time-
frequency resolution simultaneously due to its multi-resolution analysis property whereby a signal can be analysed at
different resolutions or scales simultaneously using a wavelet. Wavelets are a set of mathematical functions of zero
average that decompose a signal into its constituent parts using a set of wavelet basis functions. The family of basis
functions used for wavelet analysis is created by both dilating (scaling) and translating (in time) a mother wavelet,
thereby providing simultaneous time and frequency information about the analysed signal.

The CWT is an ideal tool to effectively analyse and identify local signal features, such as singularities or transients. As
defined by Mallat15, the CWT for any square-integrable signal ( )f x  is
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2.2 Lipschitz exponent and singularity measurement

By measuring the signal’s local regularity, the CWT is highly adept at identifying discontinuities in a signal. The
Lipschitz exponent α  is often used as a measure of a signals local regularity and can be defined as follows.

A function f is pointwise Lipschitz 0α ≥  at x v=  if there exists 0K >  and a polynomial vp  of degree m (where m

is the largest integer satisfying m α≤ ) such that

( ) ( )vf x p x K x v
α− ≤ − . (4)

A function that is bounded but discontinuous at v  is Lipschitz 0 at v . If the Lipschitz regularity is 1α <  at v , then f

is not differentiable at v  and α  characterises the singularity type at v . Therefore it can be inferred that if f is not

differentiable at x v= , 0 1α≤ < .



The presence of a defect in a structure causes its vibration mode shape to change. This change is dependent on the
defects location and severity. Small defects are difficult to identify using this approach, but introduce singularities into
the vibration mode shape.  These singularities can then be characterised using the Lipschitz exponent. Therefore, in
order to identify small structural defects, an effective tool is needed to estimate the Lipschitz exponent from the
vibration mode shape. In this study the CWT will be used to estimate the Lipschitz exponent.

In order to correctly apply the wavelet transform for Lipschitz exponent estimation, the concept of vanishing moments
needs to be introduced. The Lipschitz property in (4) approximates f with a polynomial vp in the neighbourhood of v

( ) ( ) ( )v vf t p x xε= + with ( )v x K x v
αε ≤ − . (5)

The CWT estimates the exponent α  by ignoring the polynomial vp . For this purpose a wavelet ( )xψ  having n α>
vanishing moments defined by equation (6) is used.
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It can be seen from equation (6) that a wavelet with n vanishing moments is orthogonal to polynomials of degree 1n− .
Therefore since nα < , the polynomial vp has degree of at most 1n−  which results in ( , ) 0vWp u s = . Thus the CWT of

(5) becomes

( , ) ( , )vWf u s W u sε= . (7)

Hence the vanishing moment property of the wavelet (with sufficiently large n  such that n α≥ ) allows the CWT to
focus on the singular part of the function f 14.

Mallat15 showed that if ( )f x  is Lipschitz nα ≤ at x v= , then the asymptotic behaviour of ( , )Wf u s near x v=
becomes
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If u is in the cone of influence of v , (8) reduces to

(1/ 2)( , )Wf u s Asα +≤ . (9)

High amplitude wavelet coefficients are therefore located within the cone of influence of the singularity. A more
convenient form of (9) to estimate the Lipschitz exponent α is
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In order to apply (9), singularities need to be identified by following the locus of wavelet transform modulus maxima
that converge towards fine scales.



Regions of reduced
stiffness

3. DAMAGE DETECTION OF COMPOSITE BEAM STRUCTURES

3.1 Wavelet selection

A representation of a FRP sandwich composite beam is shown in Fig. 1, where a defect is represented as a reduction in
stiffness. By applying the theory outlined above, the CWT is used to estimate the Lipschitz exponent from the
displacement mode shape of a sandwich composite beam in order to identify and quantify damage. The approach of
Hong14 is adopted to identify the range of the Lipschitz exponent which is derived using simple Euler beam theory.
Using this estimation a suitable wavelet is chosen in order to evaluate the Lipschitz exponent.

If x v=  is a point on the beam where there is an abrupt change in stiffness as a result of a defect, Hong14 used Euler
beam theory to define a continuity condition across the defect involving displacement, rotation, bending moment and
shear force.

Figure 1: A model of a damaged sandwich composite beam.

It was observed that a change in stiffness would cause the bending moment and shear force to be discontinuous
at x v= as they are functions of stiffness.  Therefore it was reasoned that only the lateral displacement and its first
derivative are continuous because the bending moment and shear force are also functions of the second and third
derivative of the lateral displacement. Therefore the Lipschitz exponent α extracted from the damaged beam mode
shapes should lie between

1 2α< < . (11)

Equation (11) places the condition that in order to estimate the Lipschitz exponent correctly using the wavelet
transform, the required minimum number of vanishing moments for the mother wavelet should be

2n ≥ . (12)

Hong15 noted that wavelets with large numbers of vanishing moments have longer support sizes, so a compromise
between vanishing moments and support sizes needs to be considered. Therefore in order to obtain the best localization
property for this application a wavelet with 2n =  vanishing moments is selected.

Also when considering wavelet selection the continuity of the modulus maxima of ( , )Wf u s needs to be taken into

account. If a wavelet ( )xψ  can be represented as the nth derivative of a Gaussian ( )xθ  such that

( ) ( 1) ( ( ) / )n n nx d x dxψ θ= − , the modulus maximum of ( , )Wf u s is then said to belong to a connected curve that is never

interrupted for fine scales (Mallat15). In addition the wavelet ( )xψ  is said to have n vanishing moments. Based on these

criteria the following wavelet is used as the mother wavelet in subsequent sections to perform CWT
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This wavelet is known as the second order Gaussian wavelet.
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A graph of ( )xψ  is shown in Fig. 2.

Figure 2: Gaussian wavelet of order two.

3.2 Lipschitz exponent estimation using numerical simulations

Numerical simulations of the sandwich beam’s mode shape provide a way of assessing the viability of using the
Lipschitz exponent as a signal feature for damage detection before it is applied to experimental mode shapes. The
ANSYS finite element (FE) simulation tool is used to obtain the fundamental mode shape of undamaged and damaged
FRP sandwich composite beams in order to identify the damage location and assess its severity using the Lipschitz
exponent.

The dimension of the beam used in the simulation has a length of 360mm and a width of 33mm. The total thickness of
the beam is 14mm which includes a core thickness of 12mm and a laminate skin thickness of 1mm on either side of the
core. The laminated skin consists of four equal layers with an orientation of 0º / 90º / 90º / 0º.

     

(a)                                                                              (b)

Figure 3: FE model of composite beam (a) and a zoomed view of the damage area (b).

Stiffness reduction



Modal analysis was performed on the beam in a cantilevered configuration. In order to simulate damage occurring in a
sandwich composite beam such as a delamination, an equal percentage reduction in stiffness is introduced to the core
and laminated skin 97.5mm away from the clamped end of the beam. The size of the damage introduced was 10mm in
length. The one dimensional displacement mode shape was obtained by selecting the nodes in the centre of the beam
along the span from the clamped end to the free end.

Figure 4: Comparison of fundamental mode shape for an undamaged and damaged beam.

       

Figure 5: Modulus maxima for the undamaged and damaged beam

Locus of the
modulus maxima



Comparing the fundamental mode shape for an undamaged beam and damaged beam with 50% stiffness reduction, no
obvious difference can be can be seen in Fig 4. Now the CWT is applied to the mode shapes in Fig 4. using a second
order Gaussian wavelet (19). Comparing the modulus maxima of ( , )Wf u s at fine dyadic scales it can be seen in Fig 5.

that, compared with the undamaged beam, the locus of the modulus maxima for the damaged beam’s mode shape
converge to the position of the damage (97.5mm) at fines scales. This indicates the presence of a singularity or
discontinuity at this position which can be attributed to damage which is indeed the case. This observation was verified
for a number of damage scenarios ranging from a twenty percent reduction in stiffness to a ninety percent reduction in
stiffness.

Now that the position of the damage in the beam has been identified, the next step is to estimate the Lipschitz exponent
along the modulus maxima line that lies within the cone of influence of the singularity and which converges to it at fine
scales. Using equation (10) and applying linear regression, the Lipschitz exponent α for the beam with a fifty percent
reduction in stiffness was estimated to be 1.67. This value lies between the range determined for α in (17) for a
damaged beam.

In order to investigate the relationship between the estimated Lipschitz exponent and the severity of damage, a number
of damage scenarios were simulated at a fixed position on the beam. The results obtained are shown in Fig. 6.

Figure 6: The estimates of the Lipschitz exponent for different degrees of stiffness reduction

It can be observed in Fig. 6 that as the severity of the damage increases the value of the Lipschitz exponent decreases.
This is consistent with the physical behaviour of the beam, because increasing the severity of the damage would cause
the effect of the singularity to get stronger. Therefore it can be concluded that there is a strong relationship between
damage severity in the beam and the Lipschitz exponent.

3.3 Lipschitz exponent estimation using experimental results

In order to validate the use of the Lipschitz exponent as a damage sensitive signal feature experimentally, three FRP
sandwich composite beams were manufactured. The beam dimensions were the same as the one used for the numerical
simulation. Damage was introduced into two of these specimens in the form of small (width 20mm) and large (width
40mm) debonds between the core and the skin laminate 20mm and 60mm away from the root of the beam respectively.



During manufacture, fibre optic Bragg grating strain sensors were embedded between the core and the laminate at
10mm, 50mm, 145mm and 185mm from the root in order to monitor dynamic strain along the beam.

Figure 7: Experimental rig

Figure 8: Time varying Lipschitz exponent for undamaged specimen



Figure 9:  Time varying Lipschitz exponent for specimen with small delamination

Figure 10: Time varying Lipschitz exponent for specimen with large delamination



The beams were excited in the first mode using a laboratory shaker in a cantilevered configuration. The experimental
arrangement is shown in Fig 7. Due to the insufficient number of sensing points the mode shape of the beam could not
be obtained. However, it was envisaged that the sensor closest to the damage position would pick up irregularities in the
beam vibration due to the effect of delamination close to the sensor.

 It is proposed that these irregularities or singularities can be identified as sharp peaks in the variation of the Lipschitz
exponent with respect to time and can be quantified using the Lipschitz exponent since the dynamic strain measured is
related to the lateral displacement.

The CWT using a second order Gaussian wavelet was applied to samples of the vibration signal, taken from the sensor
closest to the damage location, for all three cases and their time dependent Lipschitz exponent calculated and plotted. It
can be seen in Fig. 8 that for the undamaged case the sharp peaks, marked with circles, in the Lipschitz exponent do not
lie within the range quoted in (11), but in the two damaged cases (Fig. 9 and Fig. 10) the peaks lie within the quoted
range forα . Also it can be seen that for the large delamination (Fig. 10), the peaks in the Lipschitz exponent have a
slightly lower average value compared with the small delamination (Fig. 9). This confirms the relationship between the
Lipschitz exponent and the damage severity predicted in the numerical study.

4. CONCLUSION

The intention of this investigation was to highlight the feasibility of using the Lipschitz exponent, estimated using the
continuous wavelet transform, as a damage sensitive signal feature for real-time structural health monitoring of FRP
sandwich composites. Taking a sandwich composite beam as an example, we deduced that damage in the beam would
cause the magnitude of the Lipschitz exponent to lie between 1 and 2. This result was initially verified using numerical
simulations of the first mode shape for composite beams with varying degrees of stiffness reduction at a particular
position. A strong relationship between the damage severity and the magnitude of the Lipschitz exponent was also
observed. Although the first mode shape couldn’ t be obtained experimentally, the dynamic strain information recorded
by the sensor closest to the damage location was used to verify the numerical result. As a result of this study further
work is underway to implement this technique using digital signal processing hardware for real-time processing of
sensor information.
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