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4 Stellar Evolution and Stellar Remnants 

So far, we have considered only stars in static equilibrium, and found that a star of a 

given mass and composition has a unique, fully determined, structure. However, it is 

now also clear that true equilibrium cannot exist. Nuclear reactions in the central regions 

synthesize hydrogen into helium, and over time change the initial elemental composition. 
Furthermore, convection may set in at some radii and mix processed and unprocessed gas. 
The equations of pressure, opacity, and nuclear power density all depend sensitively on 

the abundances. Indeed, at some point, the hydrogen fuel in the core will be largely used 

up, and the star will lose the energy source that produces pressure, the gradient of which 

supports the star against gravitational collapse. It is therefore unavoidable that stars evolve 

with time. In this chapter, we discuss the various processes that stars of different masses 

undergo after the main sequence, and the properties of their compact remnants—white 

dwarfs, neutron stars, and black holes. We then study the phenomena that can occur when 

such compact objects accrete material from a companion star in a binary pair. 

4.1 Stellar Evolution 

Stellar evolution, as opposed to equilibrium, can be taken into account by solving a series 

of equilibrium stellar models (called a stellar evolution track), in which one updates, as a 

function of a star’s age since formation, the gradual enrichment by elements heavier than 

hydrogen at different radii in the star. It turns out that the observed properties of stars on 

the main sequence change little during the hydrogen-burning stage, and therefore they 

make only small movements on the H-R diagram. 
From scaling arguments, we can find the dependence of the main-sequence lifetime, 

tms, on stellar mass. We previously derived the observed dependence of luminosity on 

mass, 

L ∼ Mα . (4.1) 
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We now also know that the energy source is nuclear reactions, whereby a fraction of a star’s 

rest mass is converted to energy and radiated away. The total radiated energy is therefore 

proportional to mass, 

Ltms ∼ E ∼ M, (4.2) 

and 

αtms ∼ 
M ∼ M1− . (4.3)
L 

For intermediate-mass stars, which obey a mass–luminosity relation with α ∼ 3, tms ∼ 

M−2. Thus, the more massive a star, the shorter its hydrogen-burning phase on the main 

sequence. Detailed stellar models confirm this result. For example, the main-sequence 

lifetimes of stars with initial solar abundance and various masses are 

0.5M� → ∼5 × 1010yr;


1.0M� → ∼1010yr;


10M� → ∼2 × 107yr. (4.4)


The Sun is therefore about halfway through its main-sequence lifetime. We saw that, 
for the most massive stars, α ∼ 1, the result of electron-scattering opacity and radia­
tion pressure. The lifetime tms therefore becomes independent of mass and reaches a 

limiting value, 

>30M� →∼ 3 × 106yr. (4.5) 

The lifetimes of massive stars, ∼106–107 yr, are short compared to the age of the Sun or 
the age of the Universe (which, as we will see in chapters 7–9, is about 14 gigayears [Gyr], 
where 1 Gyr is 109 yr). The fact that we observe such stars means that star formation is an 

ongoing process, as we will see in chapter 5. 
Once most of the hydrogen in the core of a star has been converted into helium, the 

core contracts and the inner temperatures rise. As a result, hydrogen in the less-processed 

regions outside the core starts to burn in a shell surrounding the core. Stellar models 

consistently predict that at this stage there is a huge expansion of the outer layers of the 

star. The increase in luminosity, due to the gravitational contraction and the hydrogen 

shell burning, moves the star up in the H-R diagram, while the increase in radius lowers 

the effective temperature, moving the star to the right on the diagram (see Fig. 4.1). This 

is the red giant phase. The huge expansion of the star’s envelope is difficult to explain by 

means of some simple and intuitive argument, but it is well understood and predicted 

robustly by the equations of stellar structure. The red-giant phase is brief compared to the 

main sequence, lasting roughly one-tenth the time, from a billion years for solar-mass 

stars, to only of order a million years for ∼10 M� stars, and a few 105 years for the most 
massive stars. 

As the red-giant phase progresses, the helium core contracts and heats up, while 

additional helium “ash” is deposited on it by the hydrogen-burning shell. At some point, 
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Figure 4.1 Illustration of post-main-sequence evolution on the H-R diagram. Top: Observed H-R dia­
gram for stars in the globular cluster M3 (more on star clusters in section 5.1.5). The main-sequence 
turnoff marks the point at which stars are now leaving the main sequence and evolving on to the 
red-giant branch. All the stars in the cluster formed together about 13 Gyr ago, and the cluster has 
not experienced subsequent star formation. As a result, all stars above a certain mass, corresponding 
to the turnoff point, have left the main sequence, while those below that mass are still on the main 
sequence. The density of points in each region of the diagram reflects the amount of time spent by stars 
in each post-main-sequence evolution stage. Bottom: Theoretical stellar evolution tracks for stars of 
various initial main-sequence masses (with an assumed initial metal abundance of Z = 0.0004). Each 
track begins at the lower left end on the zero-age main sequence. After leaving the main sequence, stars 
evolve along, and up to the tip of, the red-giant branch. They then move quickly on the diagram to the 
left edge of the horizontal branch, where helium core burning and hydrogen shell burning take place, 
and evolve to the right along the horizontal branch. Once all the helium in the core has been converted 
to carbon and oxygen, the star rises up the “asymptotic giant branch” where double shell burning—a 
helium-burning shell within a hydrogen burning shell—takes place. Note the good correspondence 
between the theoretical track for the 0.8M� initial-mass star (solid line) and the observed H-R dia­
gram on top. For clarity, the theoretical horizontal and asymptotic giant branches are not shown 
for the other initial masses. Data credits: S.-C. Rey et al. 2001, Astrophys. J., 122, 3219; and L. Girardi, 
et al. 2000, Astron. Astrophys. Suppl., 141, 371. 

the core will reach a temperature of about T ∼ 108 K and a density ρ ∼ 104 g cm−3, where 

helium burning can become effective through the triple-alpha reaction, 

4He +4He +4He →12 C + γ (7.275 MeV). (4.6) 

Triple-alpha is the only reaction that can produce elements heavier than helium in the 

presence of only hydrogen and helium, because no stable elements exist with atomic mass 

numbers of 5 or 8. The beryllium isotope 8Be, formed from the fusion of two 4He nuclei, 
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has a lifetime of only ∼10−16 s. Nevertheless, a small equilibrium abundance of 8Be can be 

established, and capture of another 4He nucleus then completes the triple-alpha process. 
The last stage would have an extremely low probability, were it not for the existence of 
an excited nuclear energy level in 12C, which, when added to the rest mass energy of 
12C, happens to have almost exactly the rest mass energies of 4He +8Be. This resonance 

greatly increases the cross section for the second stage of the reaction. In fact, from the 

existence of abundant carbon in the Universe (without which, of course, carbon-based life 

would be impossible) Hoyle predicted the existence of this excited level of 12C before it 
was discovered experimentally. 

Along with carbon production, some oxygen and neon can also be synthesized via the 

reactions 

4He +12C →16 O + γ (4.7) 

and 

4He +16O →20 Ne + γ . (4.8) 

At the same time, hydrogen continues to burn in a shell surrounding the core. When 

helium ignition begins, the star moves quickly on the H-R diagram to the left side of 
the horizontal branch, and then evolves more slowly to the right along this branch, as 

seen in Fig. 4.1. Horizontal branch evolution last only about 1% of the main-sequence 

lifetime. Once the helium in the core has been exhausted, the core (now composed mainly 

of oxygen and carbon) contracts again, until a surrounding shell of helium ignites, with a 

hydrogen-burning shell around it. During this brief (∼107 yr) double-shell-burning stage, 
the star ascends the asymptotic giant branch of the H-R diagram—essentially a repeat of 
the red-giant branch evolution, but with helium + hydrogen shell burning around an inert 
carbon/oxygen core, rather than hydrogen shell burning around an inert helium core. 

Evolved stars undergo large mass loss, especially on the red-giant branch and on the 

asymptotic giant branch, as a result of the low gravity in their extended outer regions 

and the radiation pressure produced by their large luminosities. Mass loss is particularly 

severe on the asymptotic giant branch during so-called thermal pulses—roughly periodic 

flashes of enhanced helium shell burning. These mass outflows, or stellar winds, lead to 

mass-loss rates of up to 10−4M� yr−1, which rid a star of a large fraction of its initial mass. 
Giants are highly convective throughout their volumes, leading to a dredge-up of newly 

synthesized elements from the core to the outer layers, where they are expelled with the 

winds. In these processes, and additional ones we will see below, the nuclear reactions 

inside post-main-sequence stars create essentially all elements in the Universe that are 

heavier than helium. 
In stars with an initial mass of less than about 8M�, as the giant phase progresses, the 

dense matter in the core reaches equilibrium in a new state of matter called a degenerate 

electron gas. As we will see in the next section, regions of the core that are in this state 

are supported against further gravitational contraction, even in the absence of nuclear 
reactions. As a result, the cores of such stars do not heat up to the temperatures required 

for the synthesis of heavier elements, and at the end of the asymptotic giant phase they 

remain with a helium/carbon/oxygen core. 
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Figure 4.2 Several examples of planetary nebulae, newly formed white dwarfs that irradiate the shells of gas 
that were previously shed in the final stages of stellar evolution. The shells have diameters of ≈0.2–1 pc. Photo 
credits: M. Meixner, T. A. Rector, B. Balick et al., H. Bond, R. Ciardullo, NASA, NOAO, ESA, and the Hubble 
Heritage Team. 

At this point, the remaining outer envelopes of the star expand to the point that they are 

completely blown off and dispersed. During this very brief stage (∼104 yr), the star is a 

planetary nebula1 (see Fig. 4.2), in which ultraviolet photons from the hot, newly exposed, 
core excite the expanding shells of gas that previously constituted the outer layers of the 

star. Finally, the exposed remnant of the original core, called a “white dwarf,” reaches the 

endpoint of stellar evolution for stars of this mass. In the white-dwarf region of the H-R 

diagram, these stars move with time to lower temperature and luminosity as they slowly 

radiate away their heat. White dwarfs are the subject of the next section. 
Stars with an initial mass greater than about 8M� continue the sequence of core con­

traction and synthesis of progressively heavier elements, which eventually (and quickly) 
ends in a supernova explosion. We shall return to this class of stars in section 4.3. 

4.2 White Dwarfs 

In the 19th and early 20th centuries, it was discovered that the nearby (2.7 pc) A-type star 
Sirius, the brightest star in the sky, is a visual binary, with a white dwarf companion that 
was named Sirius B. (In fact, Sirius B is the nearest known white dwarf, and was the first 

1 Planetary nebulae have nothing to do with planets, and the name has a purely historical origin. 
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Figure 4.3 Observed motion on the sky, over the past century, of the visual binary consist­
ing of Sirius A and its faint white dwarf companion, Sirius B. On the left are the observed 
positions due the orbital motions around the center of mass, combined with the proper 
motion of the system as a whole. On the right side, only the positions of Sirius B relative 
to Sirius A are shown. The maximum projected separation of the pair is 10 arcseconds. 
Using Kepler’s law, a mass close to 1M� is derived for the white dwarf. 

one ever found.) An orbital period of about 50 years was observed (see Fig. 4.3), allowing 

the first measurement of the mass of a white dwarf, which turned out to be close to 1M�. 
Like all white dwarfs, Sirius B’s low luminosity and high temperature imply a small radius 

of about 6000 km, i.e., less than that of the Earth. The mean density inside Sirius B is 

therefore of order 1 ton cm−3. In this section, we work out the basic physics of white 

dwarfs and of matter at these extremely high densities. 

4.2.1 Matter at Quantum Densities 

We saw in the previous section that when the core of a star exhausts its nuclear energy 

supply, it contracts and heats up until reaching the ignition temperature of the next avail­
able nuclear reaction, and so on. After each contraction, the density of the core increases. 
At some point, the distances between atoms will be smaller than their de Broglie wave­
lengths. At that point, our previous assumption of a classical (rather than quantum) ideal 
gas, which we used to derive the equation of state, becomes invalid. To get an idea of the 

conditions under which this happens, recall that the de Broglie wavelength of a particle of 
momentum p is 

h h h 
λ = = ≈ , (4.9) 

p (2mE)1/2 (3mkT )1/2 
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where we have represented the energy with the mean energy of a particle, E ∼ 3kT/2. 
Since electrons and protons share the same energy, but the mass of the electron is much 

smaller than the mass of the proton or of other nuclei, the wavelengths of the electrons 

are longer, and it is the electron density that will first reach the quantum domain. At 
interparticle separations of order less than half a de Broglie wavelength, quantum effects 

should become important, corresponding to a density of 

mp 8mp(3mekT )3/2 

ρq ≈ = . (4.10)
(λ/2)3 h3 

For example, for the conditions at the center of the Sun, T = 15 × 106 K, we obtain 

8 × 1.7 × 10−24 g (3  × 9 × 10−28 g × 1.4 × 10−16 erg K−1 × 15 × 106K)3/2 

ρq ≈ 
(6.6 × 10−27 erg s)3 

= 640 g cm−3 (4.11) 

The central density in the Sun is ρ ≈ 150 g cm−3, and thus the gas in the Sun is still in 

the classical regime. Even very dense gas can remain classical, if it is hot enough. For 
example, for T = 108 K, i.e., E ∼ kT ∼ 10 keV, 

ρq ≈ 11,000 g cm−3. (4.12) 

Instead of the Maxwell-Boltzmann distribution, the energy distribution at quantum den­
sities will follow Bose-Einstein statistics for bosons (particles with spin that is an integer 
multiple of −h) or Fermi-Dirac statistics for fermions (particles with spin that is an uneven 

integer multiple of −h/2). Let us develop the equation of state for such conditions. 

4.2.2 Equation of State of a Degenerate Electron Gas 

Heisenberg’s uncertainty principle states that, due to the wave nature of matter, the posi­
tion and momentum of a particle are simultaneously defined only to within an uncer­
tainty 

�x�px > h. (4.13) 

Similar relations can be written for each of the coordinates, x, y, and z. Multiplying the 

relations, we obtain 

�x�y�z�px �py�pz > h3, (4.14) 

or 

d3pdV > h3. (4.15) 

The constant h3 thus defines the six-dimensional volume of a “cell” in position– 

momentum phase space. The uncertainty principle implies that two identical particles 
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Figure 4.4 Approach to degeneracy of the Fermi-Dirac occupation fraction, f (E), as 
kT → 0, shown for kT = Ef /2, Ef /5, Ef /10, and Ef /40. At kT � Ef , all particles occupy 
the lowest energy state possible without violating the Pauli exclusion principle. The distri­
bution then approaches a step function, with all energy states below Ef occupied, and all 
those above Ef empty. 

that are in the same phase–space cell are in the same quantum state. According to Pauli’s 

exclusion principle, two identical fermions cannot occupy the same quantum state. Thus, 
fermions that are closely packed and hence localized into a small volume, dV , must each 

have a large uncertainty in momentum, and have momenta p that are different from those 

of the other fermions in the volume. This necessarily pushes the fermions to large p’s, 
and large momenta mean large pressure. 

The Fermi-Dirac phase–space distribution, embodying these principles for an ideal gas 

of fermions, is 

2s + 1 d3pdV 
dN = � � , (4.16) 

exp E−µ(T ) + 1 h3 

kT 

where s is the spin of each fermion in units of −h, and µ(T ) is the chemical potential2 of the 

gas. When T → 0, then µ(T ) approaches an assymptotic value, Ef . When kT � Ef , the first 
term in the Fermi-Dirac distribution (the occupation fraction) approaches a step function 

(see Fig. 4.4) in which all particles occupy the lowest energy states possible without violating 

the Pauli principle. This means that all energy states up to an energy Ef are occupied, and 

all above Ef are empty. Under such conditions, the gas is said to be degenerate. For 

2 The chemical potential of a thermodynamic system is the change in energy due to the introduction of an 
additional particle, at constant entropy and volume. 
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Figure 4.5 Calculation of the pressure exerted by particles of an ideal gas with 
momentum p that are reflected off the side of a container. 

degenerate electrons, which are s = 1/2 particles, having an isotropic velocity field, the 

phase–space distribution will be 

2 dpdV 

dN(p)dp =
� 

2 × 4πp h3 if |p| ≤ pf , (4.17)
0  if  |p| > pf 

where pf , called the Fermi momentum, is the magnitude of the momentum corresponding 

to the Fermi energy Ef . Dividing by dV , we obtain the number density of electrons of a 

given momentum p: 

2 dp 

ne(p)dp =
� 

8πp h3 if |p| ≤ pf . (4.18)
0  if  |p| > pf 

Integrating over all momenta from 0 to pf gives a relation between the electron density 

and pf : 

ne =
� pf 8π 

p2dp = 
8π 

pf 
3. (4.19)

h3 3h3 
0 

Next, let us derive a general expression for the pressure exerted by any ideal gas. By 

definition, an ideal gas consists of particles that interact only at short distances, and 

hence can transfer momentum only during an “impact” with another particle. Consider 
ideal gas particles impinging on the side of a container, with a mean interval dt between 

consecutive impacts (see Fig. 4.5). Set the x axis perpendicular to the surface. Particles 

with an x component of momentum px will transfer a momentum 2px to the surface with 

each reflection. The force per unit area due to each collision is then 

dFx 2px 2px vx 2px vx = = = , (4.20)
dA dAdt dAdx dV 

where vx = dx/dt. The pressure is obtained by summing the forces due to all particles of 
all momenta: 

P =
� ∞ 

dN(p) 
px vx 

dp, (4.21)
dV0 
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where we have divided by 2 because, at any given time, only half of all the particles will 
have a vx component toward the side of the container, rather than away from it. But 

px vx = mvx 
2 = 1

3 mv2 = 1
3 pv , (4.22) 

where we have utilized vx 
2 + vy 

2 + vz 
2 = v2 and assumed that the velocities are isotropic so 

that, on average, vx 
2 = vy 

2 = vz 
2. Since dN/dV ≡ n, 

1 
� ∞ 

P = n(p)pv dp. (4.23)
3 0 

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical equation of 
state, 

P = nkT . (4.24) 

For a nonrelativistic3 degenerate electron gas, however, we replace n(p) with the Fermi-
Dirac distribution in the degenerate limit (Eq. 4.18). Taking v = p/me, we obtain instead 

1 
� pf 8π p4 8π pf 

5 � 
3 
�2/3 h2 

Pe = dp = = n5/3, (4.25)
3 0 h3 me 3h3me 5 8π 5me 

e 

where we have used Eq. 4.19 to express pf in terms of ne. To relate ne to the mass density 

appearing in the equations of stellar structure, consider a fully ionized gas composed of 
a particular element, of atomic number Z and atomic mass number A, and a density of 
ions n+. Then 

ρ 
ne = Zn+ = Z . (4.26)

Amp 

Substituting into Eq. 4.25, we obtain a useful form for the equation of state of a degenerate 

nonrelativistic electron gas: 

� �2/3 � �5/33 h2 Z 5/3Pe = ρ . (4.27)
π 20memp 

5/3 A 

The important feature of this equation of state is that the electron pressure does not 
depend on temperature. Indeed, in our derivation of this equation, we have assumed 

that kT is effectively zero. (More precisely, kT is very low compared to the energy of the 

most energetic electrons at the Fermi energy, which are prevented from occupying lower 
energy states by the Pauli principle—see Problem 1.) 

In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107 K. White dwarfs are generally 

composed of material that was processed by nuclear reactions into helium, carbon, and 

oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27, we find 

3 Note that, although we have used nonrelativistic considerations (Eq. 4.22) to derive Eq. 4.23, it holds in the 
relativistic case as well. We can easily verify that, for an ultrarelativistic gas with particle energies E, by replacing 
p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation P = U/3, which we derived in Eq. 3.74. 
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Pe ∼ 
(6.6 × 10−27 erg s)2 

0.55/3(106 g cm−3)5/3 

20 × 9 × 10−28 g (1.7 × 10−24 g)5/3 

= 3 × 1022 dyne cm−2. (4.28) 

As opposed to the electrons, the nuclei at such densities are still completely in the classical 
regime. The thermal pressure due to the nuclei, assuming a helium composition, is 

ρ 106 g cm−3 × 1.4 × 10−16 erg K−1 × 107 K 
Pth = n+kT = kT ∼ 

4mp 4 × 1.7 × 10−24 g 

= 2 × 1020dynes cm−2. (4.29) 

The degenerate electron pressure therefore completely dominates the pressure in the star. 

4.2.3 Properties of White Dwarfs 

Next, we can see what the degenerate electron pressure equation of state, combined with 

the other equations of stellar structure, implies for the properties of white dwarfs. Let us 

start with the relation between mass and radius. 

4.2.3.1 Mass–Radius Relationship 

The equations of mass continuity and hydrostatic equilibrium, expressed as scaling rela­
tions (see Eqs. 3.80 and 3.81), suggest 

ρ ∼ 
M 

r3 
, (4.30) 

and 

P ∼ 
GMρ 

r 
∼ 

GM2 

r4 
. (4.31) 

The degenerate electron-gas equation of state is 

M5/3 

P ∼ bρ5/3 ∼ b
r5 

, (4.32) 

where the constant factor b is given in Eq. 4.27. Equating the pressures gives 

b 
r ∼ M−1/3. (4.33)

G 

In other words, the radius of a white dwarf decreases with increasing mass. An order-of­
magnitude estimate of the radius is therefore 

b h2 � Z 
�5/3


rwd ∼ M−1/3 ∼ M−1/3


G 20memp 
5/3G A


∼ 
(6.6 × 10−27 erg s)2(2 × 1033 g)−1/3 � Z 

�5/3 � 
M 
�−1/3 

20 × 9 × 10−28 g (1.7 × 10−24 g)5/3 6.7 × 10−8 cgs A M� 

� Z 
�5/3 � 

M 
�−1/3 

= 1.2 × 109cm , (4.34) 
A M� 
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i.e., about 4000 km for Z/A = 0.5 and M = 1M�, as deduced for observed white dwarfs 

from their luminosities and temperatures. A full solution of the equations of stellar 
structure for the degenerate gas equation of state gives 

rwd = 2.3 × 109cm 

� Z 
�5/3 � 

M 
�−1/3 

. (4.35)
A M� 

4.2.3.2 The Chandrasekhar Mass 
The larger the white-dwarf mass that we consider, the smaller rwd becomes, implying 

larger densities, and therefore larger momenta to which the electrons are pushed. When 

the electron velocities become comparable to the speed of light, we can no longer assume 

v = p/m in Eq. 4.23. Instead, v , which dictates the rate at which collisions transfer momen­
tum to the container wall, approaches c. In the ultrarelativistic limit, we can replace v with 

c. Equation 4.25 is then replaced with 

1 
� pf 8π 8πc pf 

4 

Pe = p2pcdp = . (4.36)
3 0 h3 3h3 4 

Again using Eqs. 4.19 and 4.26, we obtain the equation of state for an ultrarelativistic 

degenerate spin-1/2 fermion gas: 

Pe = 

� 

8

3 

π 

�1/3

4m

hc

p 
4/3 

� Z 

A 

�4/3 

ρ4/3. (4.37) 

Compared to the nonrelativistic case (Eq. 4.27), note the 4/3 power, but also the fact that the 

electron mass does not appear, i.e., this equation holds for any ultrarelativistic degenerate 

ideal gas of spin-1/2 particles. This comes about because, for ultrarelativistic particles, 
the rest mass is a negligible fraction of the total energy, E = (m2c4 + p2c2)1/2, and hence 

p ≈ E/c. As we go from small to large white-dwarf masses there will be a gradual transition 

from the nonrelativistic to the ultrarelativistic equation of state, with the power-law index 

of ρ gradually decreasing from 5/3 to 4/3. 
This necessarily means that, as we go to higher masses, and the density increases due 

to the shrinking radius, the pressure support will rise more and more slowly, so that the 

radius shrinks even more sharply with increasing mass.4 To see what happens as a result, 
let us rederive the scaling relations between mass and radius, but with an index (4 + ε)/3, 
and then let ε approach 0. Thus, 

P ∼ ρ(4+ε)/3 , (4.38) 

so 

M(4+ε)/3 M2 

r4+ε 
∼ 

r4 
, (4.39) 

4 Sirius B, with a mass of 1M�, is among the more massive white dwarfs known, and its equation of state is 
already in the mildly relativistic regime. Its radius, 5880 km, is therefore smaller than would be expected based 
on Eq 4.35, but is fully consistent with the results of a relativistic calculation. 
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or 

rε ∼ M(ε−2)/3 , (4.40) 

and 

r ∼ M(ε−2)/3ε . (4.41) 

When ε → 0, 

r → M−∞ = 0. (4.42) 

In other words, at a mass high enough so that the electrons become ultrarelativistic, the 

electron pressure becomes incapable of supporting the star against gravity, the radius 

shrinks to zero (and the density rises to infinity), unless some other source of pressure 

sets in. We will see that, at high enough density, the degeneracy pressure due to protons 

and neutrons begins to operate, and it can sometimes stop the full gravitational collapse, 
producing objects called neutron stars. 

The above argument implies that there is a maximum stellar mass that can be supported 

by degenerate electron pressure. It is called the Chandrasekhar mass. To estimate it, recall 
from the virial theorem that 

P̄V = −  13 Egr. (4.43) 

Substituting the ultrarelativistic electron degeneracy pressure for P̄, and the usual 
expression for the self-energy Egr, we can write 

3 hc Z 1 GM2� 

8π 

�1/3

4mp 
4/3 

� 

A 

�4/3 

ρ4/3V ∼ 
3 r 

. (4.44) 

With 

M 
ρ ∼ (4.45)

V 

and 

4π 3V = r , (4.46)
3 

r cancels out of the equation and we obtain 

� �2 
� �3/2 Z hc 

M ∼ 0.11 mp. (4.47)
A Gm2 

p 

A full solution of the equations of stellar structure for this equation of state gives a 

somewhat larger numerical coefficient, so that the Chandrasekhar mass is 

� �2 
� �3/2 Z hc 

Mch = 0.21 mp. (4.48)
A Gm2 

p 
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The expression Gmp 
2/(hc) that appears in the Chandrasekhar mass is a dimensionless 

constant that can be formed by taking a proton’s gravitational self-energy, with the proton 

radius expressed by its de Broglie wavelength, and forming the ratio with the proton’s rest 
energy: 

Gm2 Gm2 

αG ≡ 
p = 

p 

h/(mpc)mpc2 hc 

6.7 × 10−8 cgs (1.7 × 10−24 g)2 

≈ 10−39= . (4.49)
6.6 × 10−27 erg s × 3 × 1010 cm s−1 

The constant αG expresses the strength of the gravitational interaction, and is the gravi­
tational analog of the fine-structure constant, 

e2 1 
αem = − 

≈ , (4.50)
hc 137 

which expresses the strength of the electromagnetic interaction. Equation 4.48 says that 
the maximum mass of a star supported by electron degeneracy pressure is, to an order of 
magnitude, the mass of αG 

−3/2 protons (i.e., ∼1057 protons). Since Z/A ≈ 0.5, 

2Mch = 0.21 × 0.52 × 1039 3 × 1.7 × 10−24 g = 1.4M�. (4.51) 

In fact, no white dwarfs with masses higher than Mch have been found. 
There is also a lower bound to the masses of isolated5 white dwarfs that have been 

measured, of about 0.25M�. This, however, is a result of the finite age of the Universe, 
1.4 × 1010 yr. Stars that will form white dwarfs having masses smaller than this (namely, 
stars that have an initial mass on the main sequence smaller than about 0.8M�) have not 
yet had time to go through their main-sequence lifetimes, even if they were formed early 

in the history of the Universe. 

4.2.3.3 White Dwarf Cooling 

Due to the good thermal conduction of the degenerate electrons in a white dwarf (similar 
to the conduction in metals, which arises in the same way), the temperature inside a 

white dwarf is approximately constant with radius. The temperature can be estimated by 

recalling that a white dwarf forms from the contraction of a thermally unsupported stellar 
core, of mass M, down to the radius at which degeneracy pressure stops the contraction. 
Just before reaching that final point of equilibrium, from the virial theorem, the thermal 
energy will equal half the gravitational energy: 

1 GM2 

Eth ∼ . (4.52)
2 r 

5 In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes lower 
the mass of a white dwarf, or even destroy the white dwarf completely. See section 4.6.3. 
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For a pure helium composition, the number of nuclei in the core is M/4mH , and the 

number of electrons is M/2mH . The total thermal energy (which, once degeneracy sets it, 
will no longer play a role in supporting the star against gravity) is therefore 

3 3 M 
� 

1 1 
� 

9 M 
Eth = NkT = + kT = kT , (4.53)

2 2 mp 2 4 8 mp 

and so 

4 GMmp
kT ∼ . (4.54) 

9 r 

Substituting the equilibrium rwd of white dwarfs from Eq. 4.34 yields 

80G2memp 
8/3 � Z 

�−5/3 

M4/3kT ∼ 
9h2 A 

= 
80(6.7 × 10−8 cgs)2 9 × 10−28 g (1.7 × 10−24 g)8/3 

0.5−5/3(1 × 1033 g)4/3 

9(6.6 × 10−27 erg s−1)2 

= 1.1 × 10−8erg, (4.55) 

for a 0.5M� white dwarf. The temperature is thus kT ∼ 70 keV, or T ∼ 8 × 108 K, and a 

just-formed degenerate core is a very hot object, with thermal emission that peaks in the 

X-ray part of the spectrum. As such, once the core becomes an exposed white dwarf, its 

radiation ionizes the layers of gas that were blown off in the various stages on the giant 
phase. As already noted, this produces the objects called planetary nebulae. 

A white dwarf is an endpoint in stellar evolution, devoid of nuclear reactions. It there­
fore cools by radiating from its surface the thermal energy stored in the still-classical gas 

of nuclei within the star’s volume. (The degeneracy of the electron gas limits almost com­
pletely the ability of the electrons to lose their kinetic energies.) The radiated luminosity 

will be 

2L = 4πrwdσ TE 
4, (4.56) 

where TE is the effective temperature of the white-dwarf photosphere. Although electron 

heat conduction leads to a constant temperature over most of the volume, there is a thin 

nondegenerate surface layer (of order 1% of the white-dwarf radius) that insulates the star. 
This layer lowers TE relative to the interior temperature and slows down the rate of energy 

loss. 
However, to obtain a crude upper limit on the rate at which a white dwarf cools by 

means of its radiative energy loss, let us assume a constant temperature all the way out to 

the surface of the star, so that TE ∼ T . The radiative energy loss rate is then 

24πrwdσ T 4 ∼ 
dEth = 

3Mk dT 
(4.57)

dt 8mp dt 
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(where we have included in the right-hand term only the contribution of the nuclei to 

the thermal energy from Eq. 4.53). Separating the variables T and t, and integrating, the 

cooling time to a temperature T is 

3Mk

τcool ∼ 2 σ 3T 3
8mp4πrwd

3 × 1 × 1033 g × 1.4 × 10−16 erg K−1 

= 
8 × 1.7 × 10−24 g 4π (4 × 108 cm)2 × 5.7 × 10−5 cgs × 3T 3 

= 3 × 109yr 
� 

T 
�−3 

, (4.58)
103 K 

where we have taken M = 0.5M� and rwd = 4000 km. (We have abbreviated the units of 
the Stefan-Boltzmann law’s σ as cgs.) Alternatively, we can write the temperature as a 

function of time as 

T 
� 

t 
�−1/3 

∼ (4.59)
103 K 3 × 109 yr 

Thus, even with the unrealistically efficient cooling we have assumed, it would take a 

0.5M� white dwarf several gigayears to cool to 103 K. In reality, the insulation of the 

nondegenerate surface layer results in an effective temperature that is significantly lower 
than the interior temperature, and hence an even lower cooling rate. Furthermore, at some 

point in the cooling evolution, crystallization of the nucleons inside the white dwarf takes 

place, and the latent heat that is released and added to the thermal balance further slows 

down the decline in temperature. Detailed models have been calculated that take these 

and other processes into account for various masses and chemical compositions of white 

dwarfs (a carbon/oxygen core is usually assumed, surrounded by helium and hydrogen 

envelopes). The models show that over 1010 yr, comparable to the age of the Universe, 
white dwarfs cannot cool below ∼3000–4000K. This explains why most white dwarfs are 

observed to have high temperatures, and hence their blue to white colors. The coolest 
white dwarfs known have effective temperatures of ∼3500 K. 

4.2.3.4 Brown Dwarfs 
Let us digress for a moment from the subject of stellar remnants, and use the equations we 

have developed to see that electron degeneracy and its consequences also dictate a minimal 
initial mass that a star must have to shine. Consider a newly forming star (or “protostar”) 
composed of a collapsing cloud of hydrogen. Nuclear ignition of hydrogen requires a 

minimal temperature of about Tign ≈ 107K. Recall the relation between temperature and 

mass of a white dwarf, obtained by arguing that the contraction of the core will halt at 
the radius when degeneracy pressure sets in (Eq. 4.55). However, for fully ionized hydro­
gen (as opposed to helium), N = 2M/mp, (rather than N = 3M/4mp; Eq. 4.53). There 

are 8/3 times more particles, and the temperature is correspondingly lower, so Eq. 4.55 

becomes 

10G2memp 
8/3 � Z 

�−5/3 

M4/3kT ∼ . (4.60)
3h2 A 
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If the mass of the protostar is small enough such that contraction halts before Tign is 

attained, the object will never achieve true stardom on the main sequence. The limiting 

mass is 

10G2memp Z 
Mmin ∼ (kTign)3/4 

� 

3h2

8/3 
�−3/4 � 

A 

�5/3 

= 0.09M�, (4.61) 

where we have assumed Z/A = 1, appropriate for hydrogen. A full solution of the stellar 
structure equations gives 

Mmin ≈ 0.07M�. (4.62) 

Such “failed stars,” with masses lower than this limit, are called brown dwarfs. As noted 

in section 2.2.2, stars of this type have indeed been found, and are labeled with spectral 
types L and T. 

4.3 Supernovae and Neutron Stars 

4.3.1 Core Collapse in Massive Stars 

We now return to stars with initial masses (i.e., their masses when they begin their lives 

on the main sequence) of about 8M� or more. This corresponds to spectral types O and 

“early” B. After exhausting most of the hydrogen in their cores, such stars move to the 

giant branch. They then begin a sequence of steps, each consisting of the contraction and 

heating of the inner regions, resulting in the ignition of new nuclear reactions. As time 

advances, shells at various inner radii attain the temperatures and the densities required 

for the reactions that produce progressively heavier elements. Apart from the reactions 

already discussed for lower-mass stars, 

4He +12C →16 O + γ (4.63) 

and 

4He +16O →20 Ne + γ , (4.64) 

these massive stars can also burn carbon via the reactions 

12C +12C →20 Ne +4He + γ , (4.65) 
12C +12C →23 Na + p, (4.66) 

and 

12C +12C →23 Mg + n. (4.67) 
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Figure 4.6 Simplified schematic view of the layered structure of a massive star and the 
distribution of the main elements that compose it, at the onset of core collapse and the 
ensuing supernova explosion. 

Carbon burning is followed by neon, oxygen, and silicon burning. Each of these stages 

takes less and less time. For example, for a 25M� star, the duration of each burning 

stage is 

H ∼ 5 × 106 yr


He ∼ 5 × 105 yr


C ∼ 500 yr


Ne ∼ 1 yr 


Si ∼ 1 day.


Massive stars undergo all the stages of nuclear burning up to the production of elements 

in the “iron group” with atomic mass number around A = 56, consisting of isotopes of 
Cr, Mn, Fe, Co, and Ni. At this stage, the star’s outer envelope has expanded to about 
1000r�, and it has a dense core of radius ∼104 km with an onion-like layered structure 

(see Fig. 4.6). The outer layers of this core are still burning hydrogen. Looking inward, the 

core consists of concentric shells composed primarily of helium, carbon, oxygen, neon, 
silicon, and iron, respectively. 

Figure 4.7 shows, for all the chemical elements, the binding energy per nucleon (i.e., 
the binding energy of a nucleus divided by its mass number A). Energy can be gained 

by fusing or fissioning elements with low binding energy per nucleon into elements with 

high binding energy per nucleon. The iron group elements are the most tightly bound 

nuclei, and are therefore a “dead end” in nuclear energy production. Synthesis of iron-
group elements into heavier elements consumes, rather than releases, thermal energy. 
This fact is at the root of the “iron catastrophe” that ensues. 

When the central iron core continues to grow and approaches Mch, two processes begin: 
nuclear photodisintegration and neutronization. 
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Figure 4.7 Binding energy per nucleon as a function of atomic mass number. Several ele­
ments are marked. The iron-group elements with A ≈ 56 have the highest binding energy 
per nucleon, 8.8 MeV, and therefore nuclear fusion of these elements into heavier elements 
does not release thermal energy, but rather consumes it. 

Nuclear Photodisintegration: The temperature is high enough for energetic photons to be 

abundant, and they get absorbed in the endothermic (i.e., energy-consuming) nuclear 
reaction 

γ +56Fe → 134He + 4n, (4.68) 

with an energy consumption of 124 MeV. The helium nuclei are further unbound in the 

process 

γ +4He → 2p + 2n, (4.69) 

consuming 28.3 MeV (the binding energy of a 4He nucleus). The total energy of the star 
is thus reduced by (124 + 13 × 28.3)/56 ≈ 8.8 MeV= 1.4 × 10−5 erg per nucleon. With 

about 1057 protons in a Chandrasekhar mass, this corresponds to a total energy loss of 
1.4 × 1052 erg, ∼10 times the energy radiated by the Sun over 1010 yr. 

Neutronization: The large densities in the core lead to a large increase in the rates of 
processes such as 

e− + p → n + νe, (4.70) 

e− +56Fe →56 Mn + νe, (4.71) 

e− +56Mn →56 Cr + νe. (4.72) 

This neutronization depletes the core of electrons, and their supporting degeneracy 

pressure, as well as of energy, which is carried off by the neutrinos. 
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The two processes lead, in principle, to an almost total loss of thermal pressure support 
and to an unrestrained collapse of the core of a star on a free-fall timescale. For the typical 
core densities prior to collapse, ρ ∼ 109 g cm−3 (calculated from stellar evolution models), 
this timescale is (Eq. 3.15) 

� �1/23π 
τff = ∼ 0.1 s. (4.73)

32Gρ̄

In practice, at these high densities, the mean free path for neutrino scattering becomes of 
order the core radius. This slows down the energy loss, and hence the collapse time, to a 

few seconds. 
As the collapse proceeds and the density and the temperature increase, the reaction 

e− + p → n + νe (4.74) 

becomes common, and is infrequently offset by the inverse process of neutron decay 

n → p + e− + ν̄e, (4.75) 

leading to an equilibrium ratio of densities of 

≈ 1ne = np 200 nn. (4.76) 

Thus, most of the nucleons become neutrons, and a neutron star forms, in which degen­
erate neutrons, rather than electrons, provide the pressure support against gravity. 

4.3.2 Properties of Neutron Stars 

The properties of neutron stars can be estimated easily by replacing me with mn in 

Eqs. 4.34 – 4.35, describing white dwarfs. Thus, 

rns ≈ 2.3 × 109 cm 
me 

� Z 
�5/3 � 

M 
�−1/3 

≈ 14 km 

� 
M 

�−1/3 

. (4.77) 
mn A M� 1.4M�

Here we have set Z/A = 1, since the number of particles contributing to the degeneracy 

pressure (i.e., the neutrons) is almost equal to the total number of nucleons. Since the 

radius of a neutron star is about 500 times smaller than that of a white dwarf, the mean 

density is about 108 times greater, i.e., ρ ∼ 1014 g cm−3. This is similar to the density of 
nuclear matter. In fact, one can consider a neutron star to be one huge nucleus of atomic 

mass number A ∼ 1057. 
Our estimate of the radius is only approximate, since we have neglected two effects 

which are important. First, at these interparticle separations, the nuclear interactions play 

an important role in the equation of state, apart from the neutron degeneracy pressure. 
The equation of state of nuclear matter is poorly known, due to our poor understanding 

of the details of the strong interaction. In fact, it is hoped that actual measurements of 
the sizes of neutron stars will provide experimental constraints on the nuclear equation 
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of state, which would be important input to nuclear physics. Second, the gravitational 
potential energy of a test particle of mass m at the surface of a ∼1.4M� neutron star, of 
radius r ∼ 10 km, is a significant fraction of the particle’s rest-mass energy: 

Egr GM 6.7 × 10−8 cgs × 1.4 × 2 × 1033 g


mc2 
= 

rc2 
≈ 

10 × 105 cm (3 × 1010 cm s−1)2 
≈ 20%. (4.78)


This means that matter falling onto a neutron star loses 20% of its rest mass, and the 

mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the total mass 

that composed it. Thus, a proper treatment of the physics of neutron stars needs to be 

calculated within the strong-field regime of general relativity. More detailed calculations, 
including these two effects, give a radius of about 10 km for a 1.4M� neutron star. 

The Chandrasekhar mass, 

� �2 
� �3/2 Z hc 

Mch = 0.2 mp, (4.79)
A Gm2 

p 

can be used to estimate a maximal mass for a neutron star, beyond which the density is so 

high that even the degenerate neutron gas becomes ultra-relativistic and unable to support 
the star against gravity. Again replacing the Z/A = 0.5, appropriate for white dwarfs, with 

Z/A = 1, describing neutron stars, gives a factor of 4, or 

Mns,max = 1.4M� × 4 = 5.6M�. (4.80) 

Taking into account general relativistic effects lowers this estimate to about 5M�. This 

reduction come about because, in the regime of strong gravity, the pressure itself con­
tributes significantly to the gravitational field, and thus pressure gradually loses its 

effectiveness in counteracting gravitation. Detailed calculations that attempt also to take 

into account the strong interaction of nuclear matter further lower the maximal mass to 

2–3M�, but this is still highly uncertain. 

4.3.3 Supernova Explosions 

The fall of the layers of matter that surrounded the core onto the surface of a newly formed 

neutron star sets off a shock wave that propagates outward and blows off the outer shells 

of the star, in what is observed as a supernova explosion (see Fig. 4.8). The details of how 

exactly this occurs are not understood yet. In fact, sophisticated numerical simulations of 
the collapse are presently still unable to reproduce the “explosion,” i.e., the ejection of the 

star’s outer regions. A kinetic energy of about 3 × 1051 erg is imparted to the material flying 

out (as determined from measurements of the mass and velocity of ejecta in supernova 

remnants). About 3 × 1049 erg can be observed over a period of order one month as 

luminous energy, driven primarily by the decay of radioactive elements synthesized during 

the last few moments before collapse, during the collapse, and during the explosion. 
Although the luminous energy is only 1% of the kinetic energy, it nevertheless makes a 

supernova an impressive event; the mean luminosity is of order 
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Figure 4.8 Optical-light image of the supernova SN1994D, below and to the left of its host galaxy, NGC 4526. 
For several weeks around its peak brightness, the luminosity of a supernova is comparable to that of an entire 
galaxy, with L ∼ 1010L�. (The spikes emerging from the supernova are due to diffraction.) Photo credit: NASA, 
ESA, the High-Z Supernova Search Team and the Hubble Key Project Team. 

LSN ∼ 
3 × 1049 erg ∼ 1043 erg s−1 ∼ 3 × 109L�, (4.81)

30 d × 24 hr × 60 m × 60 s 

comparable to the luminosity of an entire galaxy of stars (see chapter 6). 
However, the total gravitational binding energy released in the collapse of the core to a 

neutron star is 

GM2 M rns
Egr ∼ 

rns 
= 5 × 1053 

� 

1.4M�

�2 � 

10 km 

�−1 
erg. (4.82) 

The kinetic and radiative energies are just small fractions, ∼10−2 and ∼10−4, respectively, 
of this energy. The bulk of the energy released in the collapse is carried away by neutrino– 

antineutrino pairs. The density is so high that photons cannot emerge from the star, and 

they undergo frequent photon–photon collisions. These produce electron–positron pairs, 
which form neutrino pairs: 

γ + γ → e+ + e− → νe + ν̄e, νµ + ν̄µ, ντ + ν̄τ (4.83) 
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(the µ and τ neutrinos are neutrinos related to the muon and the tauon, which are heavy 

relatives of the electron.) The neutrinos can pass through the star with few scatterings 

(see Problem 3), and can therefore drain almost all of the thermal energy. 
A striking confirmation of this picture was obtained in 1987, with the explosion of 

Supernova 1987A in the Large Magellanic Cloud, a satellite galaxy of our Galaxy (the 

Milky Way; see chapter 6), at a distance of 50 kpc from Earth. This was the nearest 
supernova observed since the year 1604. A total of 20 antineutrinos (several of them with 

directional information pointing toward the supernova) were detected simultaneously in 

the span of a few seconds by two different underground experiments. Each experiment 
consisted of a detector composed of a large tank filled with water and surrounded by 

photomultiplier tubes. These experiments were initially designed to search for proton 

decay. The experiments discovered the antineutrinos, and measured their approximate 

energies and directions via the reaction 

ν̄e + p → n + e+ , (4.84) 

by detecting the Cerenkov radiation emitted by the positrons moving faster than the speed 

of light in water. The typical energies of the ν̄e’s were 20 MeV. The detection of 20 particles, 
divided by the efficiency of the experiments to antineutrino detection (which was a function 

of antineutrino energy), implied that a fluence (i.e., a time-integrated flux) of 2 × 109 cm−2 

electron antineutrinos had reached Earth. The electron antineutrinos, ν̄e’s, are just one 

out of six types of particles (νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ ) that are produced in similar numbers and 

carry off the collapse energy. Thus, the total energy released in neutrinos was 

Eneutrino ∼ 2 × 109 cm−2 × 6 × (20 MeV × 1.6 × 10−6erg MeV−1) 
× 4π (5 × 104 pc × 3.1 × 1018 cm pc−1)2 ∼ 1053 erg, (4.85) 

close to the total energy expected from the collapse of a stellar core. 
We note here that there is an altogether different avenue for stars to pass the Chan­

drasekhar limit and explode, in events that are called type Ia supernovae. White dwarfs 

that are in close binaries, where mass transfer takes place from a companion onto the 

white dwarf, can reach Mch. At that stage, or possibly even before actually reaching Mch, 
thermonuclear ignition of the carbon core occurs. However, this happens under degen­
erate conditions, without the thermostatic effect of a classical equation of state. With a 

classical equation of state, a rise in temperature produces a rise in pressure that leads to 

an expansion of the star, a lowering of the temperature, and a decrease in the nuclear reac­
tion rates. Instead, under degenerate conditions, the white dwarf structure is insensitive 

to the rise in temperature, which raises the nuclear reaction rates more and more, ending 

in a thermonuclear runaway that blows up the entire star. As opposed to core-collapse 

supernovae, which leave a neutron star remnant (or a black hole, see below), it is believed 

that type Ia supernovae leave no stellar remnant (see Problem 4). It is presently unknown 

what kind of star is the companion of the white dwarf in the systems that are the progeni­
tors of of type Ia supernovae. It is also possible that a type-Ia explosion is actually the result 
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of the merger of two white dwarfs—see Problem 6. The supernova shown in Fig. 4.8 was a 

type Ia event. We will return later to the physics of accretion in close binaries (section 4.6) 
and to the use of type Ia supernovae in cosmology (chapters 7 and 9). 

Finally, there exists a class of objects even more luminous than SNe, though very tran­
sient, called gamma-ray bursts (GRBs). These explosions release of the order of 1051 erg 

over a period of just a few seconds. As their name implies, much of this energy is 

released at gamma-ray frequencies, but the rapidly fading “afterglows” of the explosions 

can sometimes be detected at longer wavelengths on longer timescales—minutes in X-
rays, days in the optical, and weeks at radio wavelengths. A GRB occurs about once a 

day in the observable Universe. It is now known that at least half of these explosions 

occur in star-forming galaxies, i.e., galaxies that have massive young stars. This argues 

that some GRBs result from the core collapse of massive stars of a particular type or in 

a particular configuration, i.e., that they are a certain kind of core-collapse supernova. In 

recent years, evidence has been accumulating that actually links some GRBs to super­
novae observed at the same location. The nature and mechanisms of GRBs are still widely 

debated. The large energy outputs, as well as indirect evidence of the existence of highly 

relativistic bulk motions of material, suggest that GRBs involve the formation of black 

holes. 
The material expelled by the mass outflows from giants and by both types of 

supernovae—core-collapse and Ia—is essentially the only source of all “heavy” elements. 
Except for helium and trace amounts of the next few lightest elements, which were syn­
thesized early in the history of the Universe (as we will see in chapter 9), all nucleosynthesis 

takes place inside stars during their various evolution stages, or during their explosions 

as supernovae. 

4.4 Pulsars and Supernova Remnants 

Many neutron stars have been identified as such in their manifestation as pulsars. Pulsars 

were first discovered with radio telescopes in the 1960s as point sources of periodic pulses 

of radio emission, with periods of the order of τ ∼ 10−3 to 1 s. Today, over 1000 pulsars 

are known. The periods of most pulsars are observed to grow slowly with time in a very 

regular manner. The predictability of the pulse arrival times is comparable to that of the 

most accurate man-made clocks. Figure 4.9 shows a typical pulsar time series. One of 
the best studied pulsars, which we shall use as an example, is the Crab pulsar, at the 

center of the Crab nebula (see Fig. 4.10). The Crab nebula, an example of a supernova 

remnant, is an expanding cloud of gaseous fragments at the same location in the sky 

where a bright supernova explosion was observed and documented in the year 1054 by 

Chinese, Japanese, and Korean astronomers. The Crab pulsar, from which pulsations are 

detected at radio, optical, and X-ray wavelengths, has a pulsation period of τ = 33 ms, i.e., 
an angular frequency 

ω = 
2π = 190 s−1. (4.86)
τ 
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Figure 4.9 Flux at 430 MHz vs. time from PSR J0546+2441, a typical radio pul­
sar, over several periods. The pulse period is 2.84385038524 s (i.e., measured to 
12 significant digits). Note the variable strength, and occasional disappearance of 
the pulses. The inset shows a zoom-in on the pulse profile, averaged over many 
periods. Data credit: D. Champion, see Mon. Not. Royal. Astron. Soc. (2005), 363, 
929. 

The period derivative is 

dτ 

dt 
= 

1 ms  

75 yr 
= 4.2 × 10−13 , (4.87) 

or 

dω 

dt 
= −  

2π 

τ 2 

dτ 

dt 
= −2.4 × 10−9 s−2 . (4.88) 

The total luminosity of the Crab nebula, integrated over all wavelengths, is 

Ltot ≈ 5 × 1038erg s−1 , (4.89) 

and is mostly in the form of synchrotron radiation, i.e., radiation emitted by relativistic 

electrons as they spiral along magnetic field lines. 

4.4.1 Identification of Pulsars as Neutron Stars 

To see that the Crab pulsar (and other pulsars) are most plausibly identified with spin­
ning neutron stars, let us consider possible mechanisms for producing periodicity of the 

observed magnitude and regularity. Three options that come to mind, of astronomical phe­
nomena associated with periodicity, are binaries, stellar pulsations, and stellar rotation. 
For binary orbits, the angular frequency, masses, and separation are related by Kepler’s 

law, 
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Figure 4.10 The Crab nebula, the remnant of a core-collapse supernova that exploded in the year 1054, 
at a distance of 2 kpc. Top: Image in optical light. Image scale is 4 pc on a side. Bottom: Zoom in on the 
area marked in the top photo, in optical light (left), with the pulsar at the center of the remnant indicated 
by the arrow; and in X-rays (right), showing the pulsar, bidirectional jets, and a toroidal structure formed by 
synchrotron emission from energetic particles. Note that a similar emission morphology is faintly discernible 
also in the optical image on the left. Photo credits: European Southern Observatory; and NASA/CXC/ASU and 
J. Hester et al. 
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G(M1 + M2)
ω = 

a3 
, (4.90) 

or 

[G(M1 + M2)]1/3 

a = 
ω2/3 

= [6.7 × 10−8 cgs (4 × 1033 g)]1/3 

= 2 × 107 cm = 200 km, (4.91)
(190 s−1)2/3 

where we have assumed two solar-mass objects and inserted the Crab pulsar’s frequency. 
The separation a is much smaller than the radii of normal stars or of white dwarfs. Only a 

pair of neutron stars could exist in a binary at this separation. However, general relativity 

predicts that two such masses orbiting at so small a separation will lose gravitational 
binding energy via the emission of gravitational waves (see Problems 5 and 6). This loss 

of energy will cause the separation between the pair to shrink, and the orbital frequency 

to grow, contrary to the observation that the pulsar frequencies decrease with time. Thus, 
orbital motion of stellar-mass objects cannot be the explanation for pulsars. 

A second option is stellar pulsations. Stars are, in fact, observed to pulsate regularly 

in various modes, with the pulsation period dependent on density as6 τ ∝ ρ−1/2. Normal 
stars oscillate with periods between hours and months, and white dwarfs oscillate with 

periods of 100 to 1000 s. Neutron stars, which are 108 times denser than white dwarfs, 
should therefore pulsate with periods 104 times shorter, i.e., less than 0.1 s. However, the 

most common period for pulsars is about 0.8 s. There is thus no known class of stars with 

the density that would produce the required pulsation period. 
Finally, let us assume that the rapid and very regular pulsation is produced via 

anisotropic emission from a rotating star. The fastest that a star can spin is at the angular 
frequency at which centrifugal forces do not break it apart. This limit can be found by 

requiring that the gravitational force on a test mass m, at the surface, be greater than the 

centrifugal force: 

GMm 2> mω r , (4.92) 
r2 

or 

M ω2 

> , (4.93) 
r3 G 

and therefore 

ρ̄ = 
3M 

> 
3ω2 

= 
3(190 s−1)2 

= 1.3 × 1011 g cm−3, (4.94) 
4πr3 4πG 4π × 6.7 × 10−8 cgs 

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying apart, its 

mean density must be at least five orders of magnitude larger than that of a white dwarf, 

6 It is easy to see from a dimensional argument that this must be the case for radial pulsations. Consider a 
star that is “squeezed” radially, and then released. The restoring force due to the pressure has dimensions of 
pressure times area, F ∼ PA ∼ (GMρ/r)r2, where we have used the equation of hydrostatic equilibrium (Eq. 3.19) 
to express the dimensions of the pressure. Equating this to the mass times the acceleration, Ma ∼ Mr/τ 2, gives 
the required result. Note that the pulsation period, τ ∼ (Gρ)−1/2, is essentially the same as the free-fall timescale, 
Eq. 3.15. 
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but consistent with that of a neutron star. Note that the pulsars with the shortest periods 

known, of about 1 ms (rather than the Crab’s 33 ms), must have mean densities 1000 

times larger to avoid breaking apart, i.e., ∼ 1014 g cm−3. This is just the mean density we 

predicted for neutron stars. 
Next, let us presume that the luminosity of the Crab nebula is powered by the pulsar’s 

loss of rotational energy as it spins down. (The observed luminosity of the pulsar itself, 
∼1031 erg s−1, is much too small to be the energy source of the extended emission.) Since 

Erot = 2
1 Iω2, (4.95) 

where I is the moment of inertia, 

dErot dω 
Ltot = −  = −Iω . (4.96)

dt dt 

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-density 

sphere, I = 5
2 Mr2. Then 

Mr2 ∼ −  
5 Ltot = −  

5 × 5 × 1038 erg s−1 

= 3 × 1045 g cm2. (4.97)
2 ωdω/dt 2 × 190 s−1( − 2.4 × 10−9 s−2) 

A 1.4M� neutron star of radius 10 km has just this value of Mr2: 

Mr2 = 1.4 × 2 × 1033 g × (106 cm)2 = 2.8 × 1045 g cm2. (4.98) 

By comparison, a normal star like the Sun has Mr2 of order 109 larger than the value in 

Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that when a stellar 
core of solar mass and solar radius collapses to a radius of about 10 km, it will spin up 

by a factor of order 109. The rotation period of the Sun is 25.4 days, or 2 × 106 s, which 

is typical of main-sequence stars. Collapse of a stellar core to neutron-star proportions is 

thus expected to produce an object with a spin period of order milliseconds, as observed 

in pulsars. 
Thus, we see that if we identify pulsars as rapidly spinning stars, then their spin rate 

is that expected from the collapse of the cores of main-sequence stars to neutron star 
dimensions; their mean densities are those of neutron stars; and their loss or rotational 
energy accounts for the luminosity of the supernova ejecta in which they are embedded, if 
they have the moments of inertia of neutron stars. Finally, the location of pulsars at the sites 

of some historical supernovae, an explosion that is expected to accompany the formation 

of a neutron star (in terms of the energy released, even if the details of the explosion are 

not yet fully understood), leaves little doubt that pulsars are indeed neutron stars. 

4.4.2 Pulsar Emission Mechanisms 

The details of how pulsars produce their observed periodic emission are still a matter of 
active research. However, it is widely accepted that the basic phenomenon is the rotation 

of a neutron star having a magnetic field axis that is misaligned with respect to the star’s 
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rotation axis by some angle θ . A spinning magnetic dipole radiates an electromagnetic 

luminosity 

L = 
1 

B2r6ω4 sin2 θ , (4.99)
6c3 

where B is the magnetic field on the surface of the star, at a radius r , on the magnetic pole. 
Solving Eq. 4.99 for B, with the observed properties of the Crab, a typical neutron-star 
radius, and sin θ ≈ 1, 

B ∼ 
(6c3L)1/2 

∼ [6(3 × 1010 cm s−1)3 × 5 × 1038 erg s−1]1/2 

∼ 8 × 1012 G. (4.100) 
r3ω2 sin θ (106 cm)3(190 s−1)2 × 1 

Magnetic fields of roughly such an order of magnitude are expected when the ionized 

(and hence highly conductive) gas in a star is compressed during the collapse of the iron 

core. The originally small magnetic field of the star (e.g., ∼1 G in the Sun) is “frozen” into 

the gas. When the gas is compressed, the flux in the magnetic field lines is amplified in 

proportion to r−2, corresponding to ∼ 1010 between the core of a main sequence star and 

a neutron star. 
In a process that is not yet fully agreed upon, the complex interactions between mag­

netic and electric fields, particles, and radiation in the neighborhood of the neutron star 
power the nebula, and also lead to the emission of radiation in two conical beams in the 

direction of the magnetic axis. As the star spins and the magnetic axis precesses around 

the rotation axis, each beams traces an annulus of angular radius θ on the sky, as seen 

from the neutron star (see Fig. 4.11). Distant observers who happen to lie on the path 

of these “lighthouse beams” detect a pulse once every rotation, when the beam sweeps 

past them. This implies, of course, that we can detect only a fraction of all pulsars, namely 

those for which the Earth lies in the path of one of the beams. 
Evidence that magnetic dipole radiation is the basic emission mechanism can be found 

from the age of the Crab pulsar. If such radiation is leading to the pulsar’s loss of rotational 
energy, then, combining Eqs. 4.96 and 4.99, we find 

dErot dω 4= Iω ∝ ω , (4.101)
dt dt 

and 

dω 3= Cω . (4.102)
dt 

The constant C can be determined from the present values of dω/dt and ω, 

ω̇0
C = 

ω3 . (4.103) 
0 

Separating variables in Eq. 4.102 and integrating, we obtain for the age of the pulsar 

1 1 
tpulsar = 

2 

ω

ω̇

0
3

0 

� 

ω2 
− 

ωi 
2 

� 

, (4.104) 
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Figure 4.11 Schematic model of a pulsar. Biconical beams of radiation emerge 
along the magnetic axis of a neutron star. The magnetic axis is inclined by an angle 
θ to the star’s spin axis. Observers in a direction, as viewed from the star, that is 
within one of the two annular regions swept out by the beams as the star rotates 
will detect periodic pulses. 

where ωi is the initial angular frequency of the neutron star upon formation. Thus, an 

upper limit on the current age of the Crab pulsar is obtained by taking ω = ω0 and ωi = ∞, 

ω0 190 s−1 

tpulsar < 
2ω̇0 

= 
2 × 2.4 × 10−9 s−2 

= 4 × 1010 s = 1260 yr. (4.105) 

This limit is consistent with the historical age, 950 yr, of the supernova of the year 1054. 
The pulsar age will equal 950 yr if we set τi = 2π/ωi = 2.5 ms, close to the expected spin 

rate of newly formed neutron stars. 

4.4.3 Neutron Star Cooling 

As already noted, according to the above picture, we observe only a fraction of all pulsars, 
those for which the Earth is in the rotating pulsar beam. More significantly, pulsars 

slow down and lose their rotational energies, and as a result, at some point in time, will 
become undetectable as pulsars. However, there should exist a large population of old, 
spun-down, neutron stars—the remnants of all massive stars that have undergone core 

collapse to this state. In section 4.2.3.3, we saw that the small surface areas of white dwarfs 

result in very long cooling times. The surfaces of neutron stars, smaller by five orders of 
magnitude compared to those of white dwarfs, mean that old neutron stars will be “stuck” 

at temperatures of order 105 K, with thermal radiation peaking at photon energies of tens 

of electron volts (called the extreme UV range). 
Detailed calculations of neutron star cooling are considerably more uncertain than those 

for white dwarfs, partly due to the poorly constrained equation of state on nuclear matter, 
which leads to uncertainty in the structure and composition of a neutron star. A cooling 
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calculation also needs to take into account many different physical processes, not all fully 

understood, that may play a role under the extreme conditions of gravity, temperature, 
density, and magnetic field inside and near the surface of a neutron star. Interstellar gas 

atoms falling onto a neutron-star surface also have an effect, and are likely to heat it to 

X-ray temperatures. To date, only several candidate isolated old neutron stars have been 

found in X-ray surveys. The small surface areas of neutron stars mean that their optical 
luminosities are very low, and hence such objects can be found only when they are near 
enough. X-ray surveys do reveal a large population of accreting neutron stars in binary 

systems, called X-ray binaries, which we will study in section 4.6. 

4.5 Black Holes 

In the case of a stellar remnant with a mass above the maximum allowed mass of a neutron 

star, no mechanism is known that can prevent the complete gravitational collapse of the 

object. In fact, general relativity predicts that even if some new form of pressure sets in 

at high densities, the gravitational field due to such pressure will overcome any support 
the pressure gradient provides, and the collapse of the star to a singularity, or black hole 

is unavoidable. 
As its name implies, matter or radiation cannot escape from a black hole. An incorrect 

derivation, giving the correct answer, of the degree to which a mass must be compressed 

to become a black hole can be obtained by requiring that the escape velocity, ve, from a 

spherical mass of radius r be greater than c (and hence nothing can escape), 

GM 1 2 1 2> v = c , (4.106) 
r 2 e 2 

and therefore the Schwarzschild radius is 

2GM M 
rs = 

c2 
= 3 km  

M� 
. (4.107) 

Photons cannot escape from an object with a mass M that is concentrated within a radius 

smaller than rs. The above derivation is incorrect because the kinetic energy of a photon 

is not mc2/2, nor is the gravitational potential accurately described by the Newtonian 

limit, GM/r . 
A correct derivation of rs, which we shall only outline schematically, begins with the 

Einstein equations of general relativity, 

8πG 
Gµν = Tµν . (4.108) 

c4 

The Einstein equations relate the geometry and curvature of spacetime to the distribution 

of mass–energy. Tµν is the energy–momentum tensor. It is represented by a 4 × 4 matrix, 
and each of its indices runs over the four spacetime coordinates. This is the “source” 

term in the equations and includes mass–energy density and pressure. Gµν is the Einstein 
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tensor consisting of combinations of first and second partial derivatives, with respect to the 

spacetime coordinates, of the metric, gµν . (A more detailed description of Tµν and Gµν is 

given in chapter 8.) The metric describes the geometry of spacetime via the line element 

(ds)2 =
�

gµν dxµdxν , (4.109) 
µ,ν 

where ds is the interval between two close spacetime events. For example, the metric 

(familiar from special relativity) that describes spacetime in a flat (Euclidean) region of 
space, far from any mass concentration, is the Minkowski metric, with a line element 

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2. (4.110) 

The nonzero terms of the 4 × 4 matrix describing gµν in this case are 

g00 = 1, g11 = −1, g22 = −1, g33 = −1. (4.111) 

In spherical coordinates, the Minkowski metric has the form, 

(ds)2 = (cdt)2 − (dr)2 − (rdθ )2 − (r sin θdφ)2, (4.112) 

i.e., 

g00 = 1, g11 = −1, g22 = −r2, g33 = −r2 sin2 θ . (4.113) 

Since Gµν and Tµν are symmetric 4 × 4 tensors (e.g., Gµν = Gνµ), there are only 10, 
rather than 16, independent Einstein equations, and a zero-divergence condition on Tµν 

(implying local energy conservation) further reduces this to six equations. 
A solution of the Einstein equations for the geometry of spacetime in the vacuum 

surrounding a static, spherically symmetric, mass distribution, as viewed by an observer 
at infinity (i.e., very distant from the mass) is the Schwarzschild metric: 

� � � �−1 

(ds)2 = 1 − 
2GM 

(cdt)2 − 1 − 
2GM 

(dr)2 − (rdθ )2 − (r sin θdφ)2, (4.114) 
rc2 rc2 

where r , θ , and φ are spherical coordinates centered on the mass, and t is the time measured 

by the distant observer. The time shown by any clock can be found from the proper time 

τ , defined as 

ds 
dτ ≡ . (4.115) 

c 

For a clock at rest (i.e., dr = dθ = dφ = 0), 
� �1/2 � �1/22GM rs

dτ = 1 − dt = 1 − dt. (4.116) 
rc2 r 

Consider now a stellar remnant that is compact enough that its radius is within rs, and 

hence the Schwarzschild metric (which applies only in vacuum) describes spacetime in 
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the vicinity of rs. When a clock is placed at r → rs, dτ approaches zero times dt. During 

a time interval of, say, dt = 1 s, measured by a distant observer, the clock near rs advances 

by much less. In other words, clocks appear (to a distant observer) to tick more and 

more slowly as they approach rs, and to stop completely at rs. This is called gravitational 
time dilation. 

The electric and magnetic fields of a light wave emitted by a source near rs will also 

appear to oscillate more slowly due to the time dilation, and therefore the frequency of 
light will decrease, and its wavelength λ will increase, relative to the wavelength λ0 of light 
emitted by the same source far from the black hole. This gravitational redshift is 

λ 
�

2GM 
�−1/2 � rs 

�−1/2 = 1 − = 1 − . (4.117)
λ0 rc2 r 

When the light source is at rs, the wavelength becomes infinite and the energy of the 

photons, hc/λ, approaches zero. 
In general relativity, once we know the metric that describes spacetime, we can find 

the trajectories of free-falling particles and of radiation. In particular, massless parti­
cles and light move along null geodesics, defined as paths along which ds = 0. Setting 

ds = 0 in Eq. 4.114, the coordinate speed of a light beam moving in the radial direction 

(dθ = dφ = 0) is 

dr 
�

2GM 
� � rs 

�
= ±c 1 − = ±c 1 − . (4.118)

dt rc2 r 

At r 
 rs, the speed is ±c, as expected. However, as light is emitted from closer and closer 
to rs, its speed appears to decline (again, to a distant observer), going to zero at rs. Gravity 

works effectively as an index of refraction, with n = ∞ at rs. As a result, no information 

can emerge from a radius smaller than rs, which constitutes an event horizon around the 

black hole. We have thus rederived (correctly, this time) the Schwarzschild radius and its 

main properties. 
Because of gravitational time dilation, a star collapsing to a black hole, as viewed by a 

distant observer, appears to shrink in progressively slower motion, and gradually appears 

to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an infinite time for the 

star to cross rs, and therefore, formally, black holes do not exist, in terms of distant static 

observers such as ourselves. (They certainly can exist, even in the “present” of observers 

who are near enough to a black hole.) However, for all practical purposes, there are no 

differences in observed properties between such “frozen stars” and truly collapsed black 

holes. This comes about because, as a source of light falls toward rs, the rate at which 

photons from the source reach the observer declines as (1 − rs/r)1/2. Furthermore, the 

energy of each photon declines due to the gravitational redshift also as (1 − rs/r)1/2. The 

equation of motion for a radially free-falling light source, r(t), can be roughly estimated 

by noting that, as the source approaches rs, it will move with a velocity close to c, and 

hence its geodesic (i.e., its path in spacetime) will be close to that of the null geodesic of 
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photons. Let us take the negative solution in Eq. 4.118 (the source is falling to smaller 
radii). Separating the variables, 

rdr 
cdt = −  , (4.119) 

r − rs 

changing variables to x = r − rs, and integrating gives 

x + rs 
c(t − t0) = −

� 
dx = −(x + rs ln x) = −[r − rs + rs ln (r − rs)]. (4.120) 

x 

As r − rs → 0, the logarithmic term becomes dominant, and we can write the equation of 
motion, r(t), as viewed by the distant observer, as 

c(t − t0) 
r − rs ∼ exp − . (4.121) 

rs 

Inserting this dependence into the expression for the decline in the observed photon 

emission rate due to gravitational time dilation, we find that 

dNph 
� rs 

�1/2 
� 

r − rs 
�1/2 �

ct 
�

∼ 1 − = ∝ exp − (4.122)
dt r r 2rs 

(where in the last step we have substituted r ∼ rs in the denominator, and r − rs in the 

numerator using Eq. 4.121). 
For example, for a 5M� stellar core undergoing its final collapse, the characteristic time is 

2rs = 
2 × 5 × 3 km  × 105 cm km−1 

= 10−4 s = 0.1 ms. (4.123)
3 × 1010 cm s−1 

Thus, after a mere 20 ms, the photon rate will decline by a factor exp(–200) = 10−87. The 

photon emission rate from a Sun-like star emitting in the optical range, at a typical photon 

energy of hν = 1 eV, is of order 

dNph ∼ 
L ∼ 

3.8 × 1033 erg s−1 

∼ 1045 s−1. (4.124) 
dt hν 1 eV  × 1.6 × 10−12 erg eV−1 

A factor of 1087 decrease in photon flux implies that, after just 20 ms, the photon emis­
sion rate from the star will decrease to ∼10−42 s−1. The time between the emission of 
consecutive photons will thus be ∼1042 s, many orders of magnitude larger than the age 

of the Universe, which is of order 1010 yr ∼1017 s. The “frozen star” is truly “black,” and 

no photons emerge from it after a timescale of milliseconds. 
Theoretically, quantum mechanics allows an exception to this rule, and small amounts 

of so-called Hawking radiation can escape a black hole, even causing it to “evaporate” 

completely if it is small enough. However, it is unclear if black hole evaporation has any 

astronomical relevance. 
Observationally, there are many objects considered to be stellar-mass black hole candi­

dates, consisting of members of binary systems in which the minimum mass of one of the 

members is significantly larger than 3M�, yet a main-sequence or giant star of such mass 
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is not seen. Presumably, black holes form from the core collapse of stars with an initial 
mass above some threshold (which is currently thought to be about 25M�). In some of 
these binary systems, accretion of matter onto the black hole is taking place. Such systems 

are discussed in more detail in section 4.6. Finally, there is evidence for the existence 

of supermassive black holes, with masses of ∼106–109M�, in the centers of most large 

galaxies. These are discussed in chapter 6. 

4.6 Interacting Binaries 

Until now, stars were the only luminous objects we considered. However, there exists 

an assortment of objects that are powered not by nuclear reactions, but by the accretion 

of matter onto a gravitational potential well. Objects in this category include pre-main­
sequence stars, interacting binaries, active galactic nuclei and quasars, and possibly some 

types of supernovae and gamma-ray bursts. While all these objects are rare relative to 

normal stars, they are interesting and important for many physical and observational 
applications. The physics of accretion is similar in many of these objects. In this sec­
tion, we will focus on interacting binaries, which are the best-studied accretion powered 

objects. 
As already noted, many stars are in binary systems.7 Pairs with an orbital period of less 

than about 10 days are usually in orbits that are circular, “aligned” (i.e., the spin axes of 
the two stars and the orbital plane axis are all parallel), and synchronized (i.e., each star 
completes a single rotation about its axis once per orbit, and thus each star always sees the 

same side of its companion star). This comes about by the action of the strong tidal forces 

that the stars exert on each other at small separations. The force per unit mass on a mass 

element at the surface of a star, at distance �r from the center, due to the mass M1 of the 

star itself is 

Fgrav = 
GM1 . (4.125) 

m (�r)2 

The tidal force on this mass element, due to the influence of the second star of mass M2 

at a distance r (assuming �r � r) is  

Ftide 

m 
= GM2 

� 
1 

r2 
− 

1 

(r + �r)2 

� 

≈ 
2GM2�r 

r3 
. (4.126) 

The ratio between the forces is 

Ftide 

Fgrav 
= 

2M2 

M1 

� 
�r 

r 

�3 

. (4.127) 

Thus, the larger �r/r , the more tidal distortion of the shapes of the stars occurs, such that 
they become two ovals pointing at each other. As long as the stars are not tidally locked (i.e., 

7 Current evidence is that the binary fraction among stars depends on stellar mass, with most of the massive 
stars being in binaries, but most low-mass stars being single. About one-half of solar-mass stars are in binaries. 
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Figure 4.12 Equipotential surfaces (dotted curves) in the corotating reference frame of a binary system 
with mass ratio M1/M2 = 5. Left: In this example, both stars are inside their respective Roche lobes, 
but are tidally distorted. Loss of energy to tidal friction will cease only when the orbits about the center 
of mass become circularized, and aligned and synchronized with the rotations, so that there is no 
motion in the corotating frame. Right: Here, the secondary star, on the right, fills its Roche lobe. 
Matter flows through the L1 point and falls onto the primary star, which is now a compact object. 
Viewed from an inertial frame, the falling material possesses angular momentum, and hence an 
accretion disk is formed around the compact primary star. 

synchronized and circularized), energy is continuously lost to friction while the different 
parts of each star are deformed during the orbit. Once tidal locking is achieved, everything 

appears stationary in a reference frame rotating at the binary frequency, and the system 

achieves its minimum energy.8 

If we draw the surfaces of constant potential energy in the rotating frame of such a 

binary, the isopotential surfaces close to each of the stars will be approximately spherical, 
but at larger radii they are more and more oval shaped, due to the gravitational pull 
of the companion (see Fig. 4.12). There is one particular isopotential surface for which 

projections onto any plane passing through the line connecting the stars traces a “figure 8”, 
i.e., the surface is pinched into two pointed “lobes” that connect at a point between the two 

stars. These are called Roche lobes and the point where they connect is the first Lagrange 

point, L1. At  L1, the gravitational forces due to the two stars, and the centrifugal force in 

the rotating frame due to rotation about the center of mass, all sum up to zero.9 

In any star, surfaces of constant gas density and pressure will be parallel to surfaces 

of constant potential (which is why isolated stars are spherical). Thus, a member of a 

close binary that evolves and grows in radius, e.g., into a red giant, will have a shape that 

8 The same kind of tidal deformation is applied by the Sun and the Moon to the Earth, especially to the Earth’s 
liquid water surface layer. The deformation is maximal when the three bodies are approximately aligned, during 
full Moon and new Moon. During one daily Earth rotation, a point on the Earth goes through two “high tide” 
locations and two “low tide” locations. Due to the loss of energy to tidal friction, the Earth–Moon system is by 
now largely circularized, but only partly synchronized. On the one hand, the Moon’s orbital and rotation periods 
are exactly equal, and hence we always see the same (“near”) side of the Moon. Although the Moon is solid, 
synchronization was achieved by means of the solid tidal stresses and deformations imposed on it by the Earth. 
The Earth’s rotation, on the other hand, is not yet synchronized with either the Sun’s or the Moon’s orbital 
periods. See Problem 8 for some quantitative assessments of ocean tides. 

9 Note that L1 is generally not at the center of mass. The center of mass is closer to the more massive star in the 
binary system, while L1 is closer to the less massive star. Only in equal-mass binaries do the two points coincide. 
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is increasingly teardrop shaped. If the star inflates enough to fill its Roche lobe, stellar 
material at the L1 point is no longer bound to the star, and can fall onto the companion. 
Three configurations are thus possible: 

In a detached binary neither of the stars fills its Roche lobe; in a semi-detached binary 

one of the stars fills its Roche lobe; and in a contact binary both stars fill their Roche lobes. 
In the last case the binary system looks like a single, peanut-shaped object with two stellar 
cores and a common envelope. 

In the semi-detached case there is always transfer of matter from the Roche-lobe-filling 

star to its companion. Different observational phenomena result, depending on the nature 

of the receiving star. If it is a main-sequence star, an Algol-type binary system results. If the 

receiving star is a white dwarf, the resulting phenomena are called cataclysmic variables, 
novae, and type Ia supernovae. If the receiver is a neutron star or black hole, the system is 

called an X-ray binary. 
Viewed from an inertial reference frame, the accreted material possesses angular mo­

mentum having the direction of the system’s orbital angular momentum. (In the rotating 

frame, the matter experiences a Coriolis force as it falls toward the receiving star.) If the 

receiving star is compact, the accreted material will not reach the surface immediately, but 
rather go into orbit around the star. The gas particles on different coplanar, elliptical orbits 

will collide with each other, and eventually an accretion disk forms around the receiving 

star. 

4.6.1 Accretion Disks 

In an accretion disk, particles move on approximately circular orbits, and lose energy 

and angular momentum due to viscous interaction with particles moving along orbits 

at adjacent radii. The particles therefore slowly drift to progressively smaller radii, until 
reaching the surface of the star (or the Schwarzschild radius, if the accretor is a black 

hole). The frictional heat is radiated away. Although the exact process by which viscous 

friction operates in accretion disks is still a matter of debate, we can nonetheless derive 

some general properties of these objects. 
Consider a mass element, dM, in the accretion disk around a star of mass M. To fall 

from a circular Keplerian orbit of radius r + dr to an orbit at radius r , the mass element 
must lose some potential energy. Half of the lost potential energy is necessarily converted 

to additional kinetic energy at the smaller radius with its higher Keplerian velocity, and 

the remaining half can be converted to heat.10 The gain in thermal energy of the mass 

element will thus be 

1 
� 

GMdM GMdM 
�

dEth = − , (4.128)
2 r r + dr 

10 Note that this result, while following directly from Newtonian mechanics for a particle in a circular orbit, 
is just another instance of the virial theorem for a classical nonrelativistic system of particles in gravitational 
equilibrium—in this case a system of one particle. 
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where we neglect the gravitational self-binding energy of the disk itself. Assuming that the 

hot gas radiates its thermal energy as a blackbody at the same radius where the gravitational 
energy is liberated, the luminosity from an annulus in the disk will be 

dL = 
dE = 

1 
GM 

dM 
� 

1 − 
1 

� 

= 
1 

GMṀ
dr = 2(2πr)drσT 4, (4.129)

dt 2 dt r r + dr 2 r2 

where Ṁ is the mass accretion rate through a particular annulus of the disk, σ is the 

Stefan-Boltzmann constant, and the factor of 2 on the right-hand side is because the area 

of the annulus includes both the “top” and the “bottom.” Taking the two right-hand terms 

and isolating T , we find for the temperature profile of an accretion disk 

� 
GMṀ

�1/4 
−3/4T (r) = r . (4.130)

8πσ  

In a steady state, Ṁ must be independent of r (otherwise material would pile up in the 

disk, or there would be a shortage of material at small radii), and must equal the accretion 

rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning that the inner regions 

of the disk are the hottest ones, and it is from them that most of the luminosity emerges. 
The total luminosity of an accretion disk with inner and outer radii rin and rout is found by 

integrating over the luminosity from all annuli, 

L = 
� rout 

2(2πr)σT 4(r)dr = 
1 

GMṀ

� 
1 − 

1 
� 

. (4.131) 
r in 

2 r in rout 

This result could have, of course, been obtained directly from conservation of energy.11 If 
rout 
 r in, the result simplifies further to 

1 GMṀ
L = . (4.132)

2 r in 

It is instructive to evaluate the radiative efficiency of accretion disks by dividing the 

luminosity above by Ṁc2, the hypothetical power that would be obtained if all the accreted 

rest mass were converted to energy: 

1 GM 
η = . (4.133)

2 c2r in 

If the accreting object is, e.g., a 1.4M� neutron star with an accretion disk reaching down 

to the stellar surface at a radius of 10 km, then r in is about 2.5 times the Schwarzschild 

radius, rs = 2GM/c2 (Eq. 4.107), that corresponds to such a mass (recall that rs ≈ 3 km for  

11 Note that, in addition to energy conservation, a full treatment of accretion disk structure must also conserve 
angular momentum. The angular momentum per unit mass of a disk particle at radius r , in a circular Keplerian √ 
orbit with velocity vc , is  J/m = rvc = GMr . Thus, a particle descending to an orbit at smaller r must get rid 
of angular momentum by transfering it to other particles in the disk. Those particles gain angular momentum, 
and hence move to larger radii. Some of the gravitational energy released by the inflow will power this outflow 
of matter, at the expense of the energy that can be radiated by the disk. 
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1M�). The rest-mass-to-radiative energy conversion efficiency is then about 0.10. For black-
hole accretors, it turns out from solution of the general relativity equations of motion that 
gas particles have a last stable orbit at which they can populate the accretion disk. At smaller 
radii, a particle quickly spirals in and crosses the event horizon, carrying its remaining 

kinetic energy with it. The last stable orbit for a nonrotating black hole12 is at 3rs. Accretion 

disks around such black holes will therefore have an efficiency of 1/12 ≈ 0.08, somewhat 
lower than accretion disks around neutron stars. (A solution of the problem using the 

correct general relativistic, rather than Newtonian, potential, gives an efficiency of 0.057). 
The point to note, however, is that, in either case, the efficiency is an order of magnitude 

higher than the efficiency of the nuclear reactions operating in stars, η = 0.007 or less. 
Furthermore, only a tiny fraction of a main-sequence star’s mass is involved at any given 

time in nuclear reactions, whereas an accretion disk can extract energy with high efficiency 

from all of the mass being channeled through it. Under appropriate conditions, accretion 

disks can therefore produce high luminosities. 
Let us calculate the typical luminosities and temperatures of accretion disks in various 

situations. In cataclysmic variables, the accretor is a white dwarf, with a typical mass of 
1M� and a radius of 104 km. A typical accretion rate13 is 10−9M� yr−1. This produces a 

luminosity of 

1 GMṀ 6.7 × 10−8 cgs × 2 × 1033 g × 10−9 × 2 × 1033 g
L = = 

2 rin 2 × 3.15 × 107 s × 109 cm 

= 4 × 1033 erg s−1 ≈ L�. (4.134) 

The luminosity from the accretion disk thus completely overpowers the luminosity of the 

white dwarf. The disk luminosity can be much greater than that of the donor star (for 
low-mass main-sequence donors, the most common case), comparable to the donor star 
(for intermediate-mass main sequence stars) or much smaller than the donor luminosity 

(for high-mass main sequence and red-giant donors). At the inner radius (which dominates 

the luminosity from the disk) the temperature is (Eq. 4.130) 

� 
GMṀ

�1/4 
−3/4T (r) = r

8πσ  � �1/4 

= 
6.7 × 10−8 cgs × 2 × 1033 g × 10−9 × 2 × 1033 g 

(109 cm)−3/4 

3.15 × 107 s × 8π × 5.7 × 10−5 cgs 

= 5 × 104 K. (4.135) 

12 A black hole is fully characterized by only three parameters—its mass, its spin angular momentum, and its 
electric charge (the latter probably not being of astrophysical relevance, because astronomical bodies are expected 
to be almost completely neutral). Spacetime around a rotating black hole is described by a metric called the Kerr 
metric, rather than by the Schwarzschild metric. Black-hole spin is accompanied by the general relativistic 
phenomenon of “frame dragging,” in which spacetime outside the event horizon rotates with the black hole. In 
a rotating black hole, the last stable orbit and the event horizon are at smaller radii than in the nonrotating case. 

13 The accretion rate can be limited by the rate at which the donor star transfers mass through the L1 point, 
by the efficiency of the viscous process that causes material in the accretion disk to fall to smaller radii, or by the 
radiation pressure of the luminosity resulting from the accretion process—see section 4.6.2. 
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The thermal spectrum from the disk therefore peaks in the far UV part of the spectrum, 
and is usually different from the spectrum of the main-sequence or red-giant donor star 
(which of course generally has a red spectrum). The integrated spectrum of the system 

will therefore have at least two distinct components. 
When the orbits of cataclysmic variables are sufficiently inclined to our line of sight, 

monitoring the total light output over time, as the systems rotate, reveals changes due 

to mutual eclipses by the various components: the donor star, the accretion disk, and 

sometimes a “hot spot” where the stream of matter from the donor hits the disk. The 

changing projected area of the distorted donor star also affects the light output. Analysis 

of such data allows reconstructing the configurations and parameters of these systems. In 

addition to the periodic variability induced by eclipses and changes in orientation, accreting 

systems reveal also aperiodic variability, i.e., variations with a “noise-like” character. These 

variations likely arise from an unstable flow of the material overflowing the donor’s Roche 

lobe, causing changes in Ṁ, as well as from instabilities and flares in the accretion disk 

itself. 
In a class of cataclysmic variable called novae there are also outbursts of luminosity 

during which the system brightens dramatically for about a month. The outbursts occur 
once every 10–105 yr, as a result of rapid thermonuclear burning of the hydrogen-rich (and 

hence potentially explosive) accreted material that has accumulated on the surface of the 

white dwarf. Assuming again an accretion rate of 10−9M� yr−1, over a period of 1000 yr, 
a mass of 10−6M� will cover the surface of the white dwarf. If completely ignited, it yields 

an energy 

Enova = 0.007mc2 = 0.007 × 10−6 × 2 × 1033 g × (3 × 1010 cm s−1)2 ≈ 1046 erg. (4.136) 

When divided by a month (2.5 × 106 s), this gives a mean luminosity of 4 × 1039 erg s−1 = 

106L�, i.e., 106 times the normal luminosity of the accretion disk. In reality, only partial 
processing of the accreted hydrogen takes place, and the energy is also partly consumed 

in unbinding some material from the underlying white dwarf. On the other hand, for 
longer recurrence times between outbursts, the mass of accumulated hydrogen can be 

larger than assumed above. The gamma-ray spectra of novae reveal emission from the 

radioactive decay of elements that are synthesized in these explosions, providing direct 
evidence of the process at hand. 

As discussed in section 4.3.3, under certain conditions (likely involving the reaching of 
the Chandrasekhar mass by the accreting white dwarf) an extreme, runaway version of the 

nova eruption, called a type Ia supernova, occurs. In such an event, a large fraction of 
the white dwarf mass (i.e., of order 1M� of carbon, rather than the 10−6M� of hydrogen 

in the nova case) is ignited and is explosively synthesized into iron-group elements. The 

total energy is, correspondingly, 106 times larger than that of a nova, i.e., 1051−52 erg. As 

in the core-collapse supernova explosions that end the life of massive stars, the ratio of 
kinetic to luminous energy is about 100, and thus type Ia supernovae, with a luminos­
ity of about 1010L�, can outshine their host galaxies for a period of about a month (see 

Problem 4). Although core-collape supernovae and type Ia supernovae have similar lumi­
nous and kinetic energy outputs, one should remember that in core-collapse supernovae 
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99% of the energy is carried away by neutrinos, and therefore core-collapse supernovae 

are intrinsically far more energetic events. Type Ia supernovae have a narrow range of 
observed optical luminosities, probably as a result of the fact that they generally involve 

the explosion of about 1.4M� of white dwarf material. These supernovae are therefore very 

useful as “standard candles” for measuring distances. In chapters 7 and 9 we will see how 

they have been used in this application. 
When the receiving star in an interacting binary is a neutron star or a black hole, the 

inner radius of the accretion disk is of order 10 km, rather than 104 km, and therefore 

the luminosity is much greater than in a white-dwarf accretor. For example, scaling from 

Eq. 4.134, if the accretor is a 1.4M� neutron star with the same accretion rate, the accretion-
disk luminosity is of order 1037 erg s−1. The temperature at the inner radius, scaling as 

M1/4r−3/4 (Eq. 4.135), is T = 107 K. The emission therefore peaks in the X-rays, and hence 

the name X-ray binaries. In reality, due to the extreme matter and radiation densities, 
temperatures, and magnetic fields near the surface of a neutron star, the accretion disk 

may not actually reach the surface, and accreting material is sometimes channeled to the 

poles, forming a hot-spot where it hits the surface. In addition to the thermal emission 

from the accretion disk, other, nonthermal, radiation components are observed in such 

systems, e.g., synchrotron emission from relativistic electrons spiraling along magnetic 

field lines. Some accreting white dwarfs also possess strong magnetic fields that funnel 
the accretion flow directly onto hot spots on the white dwarf. Such magnetic cataclysmic 

variables also appear then as X-ray sources. 

4.6.2 Accretion Rate and Eddington Luminosity 

The above discussion shows that the properties of accreting systems are largely determined 

by three parameters, M, Ṁ, and r in. M and r in are limited to particular values by the 

properties of stars and stellar remnants. However, the accretion rate, Ṁ, also cannot 
assume arbitrarily large values. To see this, consider an electron at a radius r in an ionized 

gas that is taking part in an accretion flow toward some compact object of mass M. The 

accretion flow produces a luminosity per frequency interval Lν , and therefore the density 

of photons with energy hν at r is 

Lν 
nph = . (4.137)

4πr2chν 

The rate at which photons of this energy are scattered via Thomson scattering on the 

electron is 

Rscat = nphσT c, (4.138) 

where σT is the Thomson scattering cross section. Each scattering event transfers, on 

average, a momentum p = hν/c to the electron. The rate of momentum transfer to the 

electron, i.e., the force exerted on it by the radiation, is then 

dp hν LνσT = Rscat = . (4.139)
dt c 4πr2c 
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The total radiative force on the electron is obtained by integrating over all frequencies ν, 

LσT
Frad = . (4.140)

4πr2c 

The electron would be repelled from the accreting source of luminosity, were it not for 
the gravitational attraction of the accreting object. This force will be much greater on pro­
tons than on electrons. However, the Coulomb attraction between electrons and protons 

prevents their separation, and therefore the gravitational attraction on a proton effectively 

operates on neighboring electrons as well. The attractive force on the electron is therefore 

GMmp
Fgrav = 

r2 
. (4.141) 

The accretion flow, and its resulting luminosity, can proceed only if the radiative force 

does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two forces, using 

Eqs. 4.140 and 4.141, we obtain the maximum luminosity possible in a system powered 

by accretion, 

4πcGMmp
LE = (4.142)

σT 

4π × 3 × 1010 × 6.7 × 10−8 cgs × 2 × 1033 g × 1.7 × 10−24 g M = 
6.7 × 10−25 cm2 M� 

= 1.3 × 1038 erg s−1 M = 6.5 × 104 L� 
M 

. 
M� M� 

This limiting luminosity is called the Eddington luminosity. 
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an accretion 

disk around a 1.4M� neutron star with an accretion rate Ṁ = 10−9M� yr−1, we see that 
an accretion rate, say, 100 times larger would bring the system to a luminosity of several 
times LE , and is therefore impossible. This is not strictly true, since in the derivation 

of LE we have assumed spherical accretion and an isotropically radiating source. Both 

assumptions fail in an accretion disk, which takes in matter along an equatorial plane, 
and radiates preferentially in directions perpendicular to that plane. Nevertheless, detailed 

models of accretion disk structure show that disks become unstable when radiating at 
luminosities approaching LE . The Eddington limit is therefore a useful benchmark even 

for nonspherical accreting systems. Finally, note that LE applies to systems undergoing 

steady-state accretion. Objects of a given mass can have higher luminosities (see, e.g., the 

luminosities of novae and supernovae that we calculated above), but then an outflow of 
material is unavoidable, the object is disrupted, and the large luminosity must be transient. 

4.6.3 Evolution of Interacting Binary Systems 

The transfer of mass between members of interacting binaries can have drastic effects 

on both members. We recall that isolated neutron stars power their pulsar emission and 
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their surrounding supernova remnant emission at the expense of their rotational energy, 
and thus gradually slow down. A neutron star in a binary system, if accreting matter from 

its companion, under suitable conditions can gain angular momentum, which can spin 

the pulsar back up. Thus, many pulsars in binary systems are spinning at millisecond 

frequencies, i.e., close to the maximal spin possible for a neutron star, and have negative 

period derivatives, Ṗ (if they are still being spun up by the accretion; see Problem 9). 
The neutron star can also affect the donor star. The jets and beams present in pulsars 

may hit one side of the donor star (the binaries are tidally locked), heat it, ablate it, or 
completely destroy it. Several examples of such black-widow pulsars are known, in which 

an old millisecond pulsar has no companion, or in which the companion is a white 

dwarf of much too small a mass to have evolved in isolation from the main sequence 

(i.e., white dwarfs of such mass form after a time that is much greater than the age of 
the Universe). 

The transfer of mass and angular momentum in an interacting binary can also lead to 

complex evolution of the parameters of the system, such as binary separation and accretion 

rate. Changes in those parameters can then affect the future evolution of the system. Let 
us see how this works. The orbital angular momentum of a circular binary composed of 
masses M1 and M2 with separation a is 

J = Iω = µa2ω, (4.143) 

where I is the moment of inertia, and µ is the reduced mass, 

M1M2 
µ = . (4.144) 

M1 + M2 

(For simplicity, we will ignore the spin angular momentum of the stars.) Substituting ω 

from Kepler’s law (Eq. 2.35), 

G(M1 + M2)
ω2 = , (4.145) 

a3 

we get 

J = µ
�

G(M1 + M2)a. (4.146) 

Assuming conservation of total mass and angular momentum, the time derivative of 
J equals zero, 

dJ � � 
dµ √ µ da 

�
= G(M1 + M2) a + √ = 0, (4.147)

dt dt 2 a dt 

or 

2 dµ 1 da − = . (4.148) 
µ dt a dt 
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Expressing µ̇ in terms of its constituent masses gives 

dµ 

dt 
= 

1 

M1 + M2 

� 
dM1 

dt 
M2 + M1 

dM2 

dt 

� 

. 

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence 

dµ 

dt 
= 

Ṁ1 

M1 + M2 
(M2 − M1). 

Replacing in Eq. 4.148, we finally get 

2 Ṁ1 
M1 − M2 

M1M2 
= 

1 

a 

da 

dt 
. 

(4.149) 

(4.150) 

(4.151) 

Equation 4.151 determines how the period and separation of the system evolve, depend­
ing on the constituent masses, the accretion rate, and its sign. For example, consider a 

system that starts out with two close main sequence stars, with M1 > M2. M1 will therefore 

be the first to become a red giant, fill its Roche lobe, and transfer mass to M2. Since M1 

loses mass, Ṁ1 is negative. From Eq. 4.151, ȧ is then negative. In other words, the two 

stars approach each other. The decrease in separation a means that the Roche lobe around 

M1 moves to a smaller radius, and the accretion rate grows further. If this trend is not 
interrupted (e.g., by the end of the giant stage of M1), the system reaches a common enve­
lope stage. Evolution resumes once M1 becomes a white dwarf, or at a later stage, when 

M2 becomes a red giant, if it fills its Roche lobe. Accretion will now be in the opposite 

sense, and Ṁ1 is therefore positive. If, despite the earlier accretion phase and the individ­
ual stellar evolution, M1 is still larger than M2, then ȧ will now be positive. If the Roche 

lobe size of M2 overtakes the star’s radius, accretion will stop. Alternatively, if by this time 

M2 > M1, the two stars will again approach each other and there may be a second common 

envelope phase. Obviously, there are many other possible evolution paths, depending on 

the initial parameters. Moreover, in reality stars lose mass throughout their evolution by 

means of winds, and therefore the total mass and angular momentum of a binary system 

will generally not be conserved, opening further binary evolution paths. 

Problems 

1.	 In a fully degenerate gas, all the particles have energies lower than the Fermi energy. 
For such a gas we found (Eq. 4.19) the relation between the density ne and the Fermi 
momentum pf : 

8π 3ne = pf . 3h3 

a. For a nonrelativistic electron gas, use the relation pf =
�
2meEf between the Fermi 

momentum, the electrom mass me, and the Fermi energy Ef, to express Ef in terms 

of ne and me. 
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b. Estimate a characteristic ne under typical conditions inside a white dwarf. Using 

the result of (a), and assuming a temperature T = 107 K, evaluate numerically the 

ratio Eth/Ef, where Eth is the characteristic thermal energy of an electron in a gas of 
temperature T, to see that the electrons inside a white dwarf are indeed degenerate. 

2.	 Cold, planetary-mass objects such as Jupiter are mostly devoid of internal thermal 
energy sources, as is the case of white dwarfs. However, planets are supported against 
gravity by repulsive atomic electrostatic forces rather than by free electron degeneracy 
pressure. Estimate the maximum mass that can be supported by atomic electrostatic 

forces, as follows. 
a. Approximate the typical pressure inside a planet by means of the electrostatic 

Coulomb energy density due to each atom’s repulsion of its adjacent atoms. Ignore 

the effect of nonadjacent atoms, whose charges are screened. Assume a pure atomic-
hydrogen composition. Assume further that the atoms are distributed on a static 

grid of constant density with separations r, and hence there are six neighboring 

atoms surrounding each atom, with the centers of their electron clouds separated 

by ∼r from the center of the electron cloud of the central atom. 
b. Express the planet radius in terms of the planet mass M, the hydrogen atom mass, 

mH, and the “rigid” interatomic spacing r, and then write the gravitational binding 

energy density of the planet in terms of these parameters. 
c. Equate the electrostatic energy density you found to the gravitational binding energy 

density. The interatomic spacing r should cancel out from the equation (why?). 
Find the mass at which this equality occurs, and compare to Jupiter’s mass, 
MJ ≈ 0.001M�. 
Answer: 8MJ. For larger masses, the gravitational energy density will overcome the 

atomic electrostatic repulsion, the planet radius will stop growing with mass as fast 
as M1/3, the density will increase, and quantum degeneracy pressure of the electrons 

will set in as the main source of pressure. From there on, the planet’s radius will 
decrease as its mass increases, as M−1/3 (Eq. 4.34). 

3.	 Most of the energy released in the collapse of a massive star to a neutron star (a 

core-collapse supernova) is in the form of neutrinos. 
a. If the just-formed neutron star has a mass M = 1.4M� and a radius R = 10 km, 

estimate the mean nucleon density, in cm−3. Find the mean free path, in cm, of a 

neutrino inside the neutron star, assuming the density you found and a cross section 

for scattering of neutrinos on neutrons of σνn = 10−42 cm2. 
b. How many seconds does it take a typical neutrino to emerge from the neutron star 

in a random walk? 
Hint: Neutrinos travel at a velocity close to c. Recall that the radial distance d covered√

in a random walk of N steps, each of length l, is  d = N l.


c. Twelve	 electron antineutrinos from Supernova 1987A were detected by the 

Kamiokande neutrino detector in Japan. This experiment consisted of a tank filled 

with 3 kton of water, and surrounded by photomultiplier tubes. The photomultipliers 
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detect the Cerenkov radiation emitted by a recoiling positron that is emitted after a 

proton absorbs an antineutrino from the supernova. Estimate how many people on 

Earth could have perceived a flash of light, due to the Cerenkov radiation produced 

by the same process, when an antineutrino from the supernova traveled through 

their eyeball. Assume that eyeballs are composed primarily of water, each weighs 

about 10 g, and that the Earth’s population was 5 billion in 1987. 

4.	 Type Ia supernovae are probably thermonuclear explosions of accreting white dwarfs 

that have approached or reached the Chandrasekhar limit. 
a. Use the virial theorem to obtain an expression for the mean pressure inside a white 

dwarf of mass M and radius R. 
b. Use the result of (a) to estimate, to an order of magnitude, the speed of sound, s = � √ 

dP/dρ ∼ P/ρ, inside a white dwarf. In an accreting white dwarf with a carbon 

core that has reached nuclear ignition temperature, a nuclear burning “flame” 
encompasses the star at the sound velocity or faster. Within how much time, in sec­
onds, does the flame traverse the radius of the white dwarf, assuming R = 104 km, 
M = 1.4M�? Note that this sound-crossing timescale is ∼(Gρ)−1/2, which is also 

the free-fall timescale (Eq. 3.15.) 
c. Calculate the total energy output, in ergs, of the explosion, assuming that the entire 

mass of the white dwarf is synthesized from carbon to nickel, with a mass-to-energy 
conversion efficiency of 0.1%. Compare this energy to the gravitational binding 

energy of the white dwarf, to demonstrate that the white dwarf explodes completely, 
without leaving any remnant. 

d. Gamma rays from the radioactive decays 56Ni →56 Co + γ →56 Fe + γ drive most 
of the optical luminosity of the supernova. The atomic weights of 56Ni and 56Fe 

are 55.942135 and 55.934941, respectively. Calculate the total energy radiated in 

the optical range during the event. Given that the characteristic times for the two 

radioactive decay processes are 8.8 days and 111 days, respectively, show that the 

typical luminosity is ∼1010L�. 

5.	 General relativity predicts that accelerated masses radiate gravitational waves, thereby 
losing energy, in analogy to the emission of electromagnetic radiation by accelerated 

charges. There is indirect evidence for the existence of such waves from the orbital 
time evolution of some binary pulsars. If gravitational radiation were also responsible 

for the loss of rotational energy Erot of isolated pulsars (e.g., the Crab pulsar), then a 

dependence 

dErot 6∝ ω
dt 

would be expected, where ω is the angular rotation velocity. 
a. Under the above assumption, find an expression for ω(t). 
b. For the time dependence found in (a), derive an upper limit for the age of the Crab 

pulsar. Given that the supernova that marked the Crab’s formation occurred in the 

year 1054, is gravitational radiation a viable braking mechanism for the Crab pulsar? 
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6.	 A type Ia supernova is thought to be the thermonuclear explosion of an accreting white 

dwarf that goes over the Chandrasekhar limit (see Problem 4). An alternative scenario, 
however, is that supernova Ia progenitors are white dwarf binaries that lose orbital 
energy to gravitational waves (see Problem 5) until they merge, and thus exceed the 

Chandrasekhar mass and explode. 
a. Show that the orbital kinetic energy of an equal-mass binary with separation a and 

individual masses M is 

GM2 

Ek = ,
2a 

and the total orbital energy (kinetic plus gravitational) is minus this amount. 
b. The power lost to gravitational radiation by such a system is 

2c5 � 
2GM 

�5 

Ėgw = −  . 
5G c2a 

By equating to the time derivative of the total energy found in (a), obtain a differential 
equation for a(t), and solve it. 

c. What is the maximum initial separation that a white-dwarf binary can have, if the com­
ponents are to merge within 10 Gyr? Assume the white dwarfs have 1M� each, and 

the merger occurs when a = 0. 
Answer: 0.016 AU. 

7.	 A star of mass m and radius r approaches a black hole of mass M to within a distance 

d 
 r. 
a. Using Eq. 4.127, express, in terms of m, r, and M, the distance d at which the New­

tonian radial tidal force exerted by the black hole on the star equals the gravitational 
binding force of the star, and hence the star will be torn apart. 

b. Find the black-hole mass M above which the tidal disruption distance, d, is smaller 
than the Schwarzschild radius of the black hole, and evaluate it for a star with 

m = M� and r = r�. Black holes with masses above this value can swallow Sun-like 

stars whole, without first tidally shredding them. 
Answer: 108M�. 

c. Derive a Newtonian expression for the tangential tidal force exerted inward on the 

star, in terms of m, r, M, and d, again under the approximation r � d. The combined 

effects of the radial tidal force in (a) and and the tangential tidal force in (c) will lead 

to “spaghettification” of stars, or other objects that approach the black hole to within 

the disruption distance. 
Hint: Remember that the star is in a radial gravitational field, and hence there is a 

tangential component to the gravitational force exerted on regions of the star that 
are off the axis defined by the black hole and the center of the star. The tangential 
component can be found by noting that the small angle between the axis and the 

edge of the star is ≈r/d. 
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8.	 Practitioners of some schools of yoga are warned not to perform yoga during the full 
or the new Moon, citing the tidal effect of the Moon at those times on other “watery 
bodies” such as the oceans. Let us investigate this idea. 
a. Verify the dramatic tidal effect of the Moon on the oceans by using Eq. 4.127 to cal­

culate the ratio of the tidal “lifting force” Ftide and the Earth’s gravitational attraction 

Fgrav, for a point mass on the surface of the Earth and on the Earth–Moon line. Use 

this ratio to estimate the change in water height, in cm, between high tide and low 

tide, due to the moon alone. Repeat the calculation for the tidal effect due to the 

Sun alone. 
Hint: The surface of the oceans traces an equipotential surface, gR = constant, where 

R is the distance from the Earth’s center to the ocean surface at every point, and g 

is the effective gravitational acceleration at every point on the surface. Translate the 

tidal-to-gravitational force ratio into a relative change in g between a point at high 

tide (which experiences the full tidal force) and a point at low tide (which experiences 

no tidal force), and thus derive the relative change in R. 
Answers: 77 cm due to Moon, 33 cm due to Sun. 
Note: While the Sun and Moon are the drivers of ocean tides, a reliable calculation 

of tides at a particular Earth location must take into account additional factors, 
including the varying distances between Earth, Moon, and Sun (due to their elliptical 
orbits), their inclined orbital planes, the latitude, coastline shape, beach profile, 
ocean depth, water viscosity and salinity, and prevailing ocean currents. 

b. Calculate by how much (in milligrams) you are lighter when the full or new Moon 

is overhead or below, compared to when it is rising or setting, assuming your body 
weight is 50 kg. 

c. Calculate in dynes and in gram-force (i.e., in dynes divided by the gravitational 
acceleration g = 980 cm s−2) the tidal stretch exerted on your body by the Moon 

plus the Sun when you are standing up with the full or new moon overhead. Assume 

your body weight is 50 kg and your height is 180 cm. 

9.	 A spinning neutron star of mass M = 1.4 M�, constant density, and radius R = 10 km 

has a period P = 1 s. The neutron star is accreting mass from a binary companion 

through an accretion disk, at a rate of Ṁ = 10−9 M� yr−1. Assume that the accreted 

matter is in a circular Keplerian orbit around the neutron star until just before it hits 

the surface, and once it does then all of the matter’s angular momentum is transferred 

onto the neutron star. 
a. Derive a differential equation for	 Ṗ, the rate at which the neutron-star period 

decreases. 
b. Solve the equation to find how long will it take to reach P = 1 ms, the maximal spin 

rate of a neutron star. 
Hint: Calculate the Keplerian velocity of the accreted material a moment before it hits 

the neutron star surface, and use it to derive the angular momentum per unit mass 

of this material, J/m. The angular momentum of a rotating object with moment of 



Stellar Evolution and Stellar Remnants | 113 

inertia I is Iω. The rate of change of the star’s angular momentum is just the rate at 
which it receives angular momentum from the accreted matter, i.e., 

d J 
(Iω) = Ṁ . 

dt m 

The moment of inertia of a constant-density sphere is I = 5
2 MR2. Solve for the angular


acceleration ω̇, neglecting changes in the neutron star’s mass and radius. (This will

be justified by the result.) From the relation P = 2π/ω, derive Ṗ. This “spin-up”

process explains the properties of old, “millisecond pulsars,” some of which, indeed,

have negative Ṗ.

Answer: 2.6 × 108 yr. Over this time, the neutron star mass increases by 18%, and its


radius decreases by 5%, justifying the approximation of constant mass and radius.


10.	 A compact accreting object of mass M is radiating at the Eddington luminosity 
(Eq. 4.142) corresponding to that mass, 

LE = 
4πcGMmp = 1.3 × 1038 erg s−1 M 

. 
σT	 M� 

An astronaut wearing a white space suit is placed at rest at an arbitrary distance from 

the compact object. Assuming that the cross-sectional area of the astronaut’s body is 

A = 1.5 m2, find the maximum allowed mass m of the astronaut, in kg, if the radiation 

pressure is to support her from falling onto the compact object. 
Hint: By definition, a proton at any distance from this object will float, its gravitational 
attraction to the object balanced by the radiation pressure on nearby electrons. Consider 
the astronaut as a particle with mass m and cross section equal to her geometrical 
cross section, 2A (the factor of 2 is because her suit is white, so every photon reflection 

transfers twice the photon momentum). Compare m to mp and 2A to σT. 
Answer: 77 kg. 




