
DATA ACQUISITION

Project Report

Movable Temperature Sensing Unit. MTSU

By Preetika Jain, Chaitra Bhaskarachary, and Gari Ciodaro Guerra

Dec 9, 2019

1

Abstract

This document explains the development of the Movable Sensing Unit (MSU) as the final
project for the course Data Acquisition fall 2019. MSU is a wireless controlled car that is con-
stantly streaming sensing data to the internet. The controlling unit uses acceleration measurements
from the hand of the user to command the car to move in tree degrees freedoms, namely forward,
backwards, and axis rotation (both counter and clock-wise). MSU applications will depend on the
sensor connected to it, in the present project, we used it to measure temperature, therefore use
cases where focal temperature sensing is required and ambient conditions are harmful human are
ideal for its use.
Key Words: Micro controllers, Arduino, Acceleration sensor, Temperature sensor, XBee Mod-
ules, WIFI Module, PHP, SQL.

Figure 1: General diagram of MSU.

2

1 Introduction

In this era of technology, evolving domains such as Artificial Intelligence, Virtual and Augmented Re-
ality, Machine Learning has brought Automation into light. Robot interaction plays an important role
in human society due it is numerous advantages. Robot is a mechanical device designed in such a way
that its functioning depends on the series of code which allows it to perform complex tasks automati-
cally. A robot can be controlled in two ways. First, it can be controlled using an external device like
remote and second, the controls are embedded within itself. Robots are divided into two categories,
Autonomous and Semi-Autonomous or Human Controlled. Autonomous robots work automatically
and makes its own decisions based on the code written and are not controlled by humans. On the
other hand, as the name suggests Semi-Autonomous or Human controlled, are the robots controlled
by human activities like Voice recognition, Face recognition, Motion Control, Touch recognition and
others. One of the most common motion-controlled robots is Hand Gesture controlled Robot. This
system plays an important role in human-robot interactions as the gestures made by humans are one
of the most powerful way of communication. Some of the major areas of application includes remote
surveillance, military, spying, to control the vehicles used by physically challenged people to move their
wheelchairs etc.

Based on this idea of efficient hand recognition interaction with robot, the project is developed
using two Funduino Uno Arduino which is a 8-bit microcontroller board, A 3-axis Accelerometer
“MMA8451”, used to find the direction of the triple axis (X,Y,Z). A Wireless connector used to
transmit signals from transmitter to the receiver using two XBee modules. H-bridge, DC-Motors,
Temperature sensor, WiFi module, Arduino IDE software to load the instructions to the Arduino
microcontroller and Power Supply whose functioning and hardware descriptions are described in a
Components section.

The sensor recognizes the hand gestures made, to move the robot car forward, backward, left and
right and this bridging of interface between human and robot was implemented using two necessary
elements called transmitter and receiver. Here, Transmitter refers to the human hand which send the
data or signals to move the car in required directions and the receiver is the Robot Car. The working
of the transmitter and the receiver systems are described in the later sections in this report.

3

2 Components

2.1 Arduino

Arduino is an open-source platform consisting of both hardware and software. Hardware component
consists of circuit board referred as microcontroller and software being Arduino IDE, which is used to
write and upload code to the microcontroller chip.

2.1.1 Hardware

Funduino Uno Arduino is a 8-bit microcontroller board which can be powered using a USB cable or
with an external power supply. It is comprised of 14 digital input/output pins and 6 analog pins which
can be used to connect various components like LED’s, sensors, switches, etc.

2.1.2 Software

Arduino Integrated Development Environment(IDE) is used to connect to arduino hardware compo-
nent by sending set of instructions via USB cable in C++ programming language to communicate
with them. It mainly consists of two parts: editor and compiler. Editor is used to write the code and
is called as sketch and the compiler is used to upload the code to the arduino microcontroller board.
To allow serial communication on any of the pins on Uno SoftwareSerial library is used.

2.2 Accelerometer

Accelerometer is a device which is used for finding orientations in triple-axis(X,Y,Z) by measures ac-
celeration or gravitational force. The accelerometer used here is MMA8451 miniature accelerometer
with 14bit ADC resolution. It has built in orientation or tilt detection which helps us to identify if our
hand is tilted forward, backward, left or right in our project. This sensor senses the axis of direction
of movement of hand and the robotic car starts moving according to movement of the hand. It uses
I2C bus for data transfer and it requires repeated-start I2C[5].

Figure 2: Accelerometer MMA8451

2.3 XBee S2C

XBee S2C module is designed for the exchange of data or wireless communication, which works on
Zigbee mesh communication protocols. XBee modules are configured using X-CTU software developed
by Digi International before setting up a mesh network to avoid failure[1]. It is better than Bluetooth
device as it can transmit data for longer distance. We have used two XBee modules and configured
them as transmitter and receiver in our project. The communication with arduino is facilitated by
UART, the modules can be combined into the same personal area network(PAN) by configuring PAN
ID to the same values. Each XBee has a unique 64-bits serial number on their module. We need to

4

configure the destination address of the transmitter to the receiver’s serial number in order to send a
message to a XBee receiver[2].

We have used Arduino pin 11 as its TX and pin 12 as RX, then UART data communication between
Arduino and XBee module is connected as described in the table below :

Figure 3: Pin connection between XBee shield and Arduino

2.4 XBee Shield

Xbee Shield serves as an interface. The XBee module pins are too thick and cannot be plugged on to
the breadboard so XBee is plugged to the XBee shield. This connection was inbuilt for us to use in
our project. The Module connects to the sheet internally as described in the table below :

Figure 4: Pin connection between XBee module and Arduino/XBee Shield

2.5 Temperature sensor

Temperature sensors are used to measure the temperature of a medium accurately and efficiently un-
der a given set of requirements. It plays a significant role in various applications. In our project, we
have used temperature sensor to measure and record the temperature at sensitive areas by sending the
robotic car using our hand gestures to move the car in the required directions. These sensors are cali-
brated in Celsius, suitable for remote applications. While connecting a temperature sensor, one should

Figure 5: Temperature Sensor

5

Figure 6: ESP8266 Wifi Module

take extra care about the polarity, else the sensor gets burn out. We can find the polarity by keep-
ing the flat side facing towards us and pins facing down and the three terminals should be connected as :

• Left pin should be connected to 5V

• Right pin should be connected to Ground

• Middle pin receives the temperature signal and should be connected to A0 of the Arduino.

2.6 Wifi module

ESP8266 Wifi module is a standalone wireless transceiver which enables internet connectivity to em-
bedded applications. It uses TCP/UDP communication protocol to connect to client or server Arduino
communicates with wifi using UART with specific baud rate[4].

2.7 H-bridge

H-bridge is used to control the speed and direction of the two DC motors at the same time. The circuit
consists of four switches to control the flow of power to the load. In order to reverse a motor, the power
supply must be reversed, and this is accomplished using H-bridge. The typical usage of H-Bridge is in
motor control applications.

Figure 7: H-Bridge example

2.8 DC-Motors

Direct current (DC) Motors are one of the most important components used in our project. DC Motors
uses direct electrical energy supplied by the battery to rotate the drive shaft. It has two terminals pos-
itive and negative. The motor rotates when these terminals are connected to a battery, if the terminals
are switched, then motor rotates in the opposite direction. We have used two DC motors in our project.

2.9 Power supply

Power supply to the Arduino board can be done via USB connection or external power supply like
battery or AC-to-DC adapter. The recommended range of power supply to board is 7-12 Volts. The

6

Figure 8: DC motors

Figure 9: 9v Battery

5V pin may supply less power and the board can be unstable and if more than 12V power is supplied,
the voltage regulator may overheat and damage the board. The power pins are as follows :

• VIN : Input Voltage is supplied to the arduino through this pin.

• 5V : Outputs 5V from regulator to board. The board can be powered using DC power jack with
7-12 Volts, USB cable with 5V, or the VIN pin on board with 7-12 Volts.

• 3V3 : On board regulator generates a 3.3Volts

• GND : Pin which is used for grounding

The DC Motors used in our project are powered using 9V battery.

7

3 Connections

The Movable Sensing Unit (MSU) can be divided into tree main component: the arduino that sends
instructions regarding movement to the vehicle(The emitter), the arduino that actually controls the
vehicle and also senses the temperature(The receiver) and the data base that receives this information
(web interface). Let us go through each of these components.

3.1 The Emitter

This component contains an arduino, the accelerometer, and the XBEE emitter. In code 1 we can see
the logic inside this arduino. It sets the pin 11 and 12 as the emitter and the receiver of XBEE, these
two channels has to be set up in the same manner in the other arduino (The receiver). Using the
reading from the accelerometer decides whether to send instructions between still, forward-backward
and rotations. It gives priority to forward-backward as can be seem in the last part of the code 1,
where it will always send these instructions on that degree of freedom unless the y-acceleration goes
outside some boundaries. The exact values for the if statement had to be calibrated manually using
trial and error.

3.2 Receiver

This component contains an arduino, an H-bridge, XBEE receiver, two DC motors, one Wifi-module,
Temperature-sensor and external power supply (9V battery).

3.2.1 XBEE receiver and H-bridge interaction

In code 2 we can see how the input from the receiver XBee module is transformed into four binary
variables that serve as the input to the H-Bridge. The H-Bridge will decide based on the state of this
four variables in which direction to spin each DC Motor; producing the desired direction of movement.
When both motor spin in the same direction, we have forward or backward movement, when they spin
in opposite directions, we have rotation.

3.2.2 Temperature sensor and Wifi module interaction

In code 3 we can see the initialization of the Wifi module. In the current setup it requires a Mobile
phone (see 1) to serve as the Hotspot to get to the internet. Code 3 has to be run one time, since
the credentials for the network will be stored in the internal memory of the wifi Module. Once the
connection has been made, we proceed in reading and sending the data from the temperature sensor
to the internet. We achieved this by using a HTTP POST request to the public server garisplace.com,
specifically to the the end point /esppost.php, an php file that will eventuality connect to the server
database. Code 4 contains all this process. The principal loop can be observed in line 27. In line 83
we can see the most important auxiliary function, sendRequest, where we manually created the plain
text of the HTTP protocol to send the data.

3.3 web interface

Once the POST request is sent to garisplace.com/esppost.php, the temperature gets deposit into a
previously created data base. The php that handles the request in the server can be observed in code
5 where we first set up the parameter for the data base connection, that is, the DB name, the name

8

Figure 10: H-bridge Diagram taken from [3].

of the table, and the credentials to access it. The temperature value gets dumped in the php variable,
that is later inserted into a my sql insert statement.

Figure 11: My sql data base.

9

4 Conclusion and Future Scope of Work

This project deals with the recording of the temperature data using a robotic car whose sense of
direction is controlled by the hand gesture. The motive of this paper is to create a hand gestured
controlled robot, which can detect the temperature of its surroundings and store the temperature data
in the database. The initial step refers to the implementation of the transmitter, which is made using
the Arduino, Xbee, Accelerometer, Power Supply. Second, creation of receiver is done using Arduino,
Xbee, H-bridge, DC-motors, Power Supply, Temperature Sensor to sense the temperature of its sur-
roundings and wifi module to transfer the temperature data to the database created. The respective
codes are written and uploaded using Arduino IDE.

Figure 12: Full emitter Figure 13: Full Receiver

Along with temperature sensor, we can also use Camera, Ultra Distance Sensor, Sound Sensor,
Light Sensors to carry out the human computer interaction. This system could be used to send the
robot to sensitive location and fetch the required data. The gestures could be captured, stored and
could be used to train a model and apply machine learning to classify patterns could be considered as
future scope of work.

10

Appendix A Codes.

Listing 1: Emitter Arduino code. Used to read acceleration values form the sensor, and send the
calculated movement instruction to the vehicle using XBee.

1 #include <SoftwareSerial.h>

2 #include <Wire.h>

3 #include <Adafruit_MMA8451.h>

4 #include <Adafruit_Sensor.h>

5

6 Adafruit_MMA8451 mma = Adafruit_MMA8451();

7 char instruction_x= 's' ;

8 char instruction_y = 'k' ;

9

10 ////wireless

11 short xBeeTx = 11;

12 short xBeeRx = 12;

13 SoftwareSerial xBeeSerial(xBeeRx , xBeeTx) ;

14

15 void setup(void) {

16 xBeeSerial.begin (9600) ;

17 Serial.begin(9600);

18 Serial.println("Adafruit MMA8451 test!");

19 if (!mma.begin()) {

20 Serial.println("Couldnt start");

21 while (1);

22 }

23 Serial.println("MMA8451 found!");

24 mma.setRange(MMA8451_RANGE_2_G);

25 Serial.print("Range = "); Serial.print(2 << mma.getRange());

26 Serial.println("G");

27 }

28

29 void loop() {

30 // Read the 'raw' data in 14-bit counts

31 mma.read();

32 Serial.print("X:\t"); Serial.print(mma.x);

33 Serial.print("\tY:\t"); Serial.print(mma.y);

34 Serial.print("\tZ:\t"); Serial.print(mma.z);

35 Serial.println();

36

37 /* Get a new sensor event */

38 sensors_event_t event;

39 mma.getEvent(&event);

40

41 // move forwards, negative value x

42 if(mma.x<-1000){

43 //F

44 instruction_x='F';

45 Serial.print(" instruction_x F \t");

46 }

47

48 else if (mma.x > -1000 && mma.x < 500){

49 //digitalWrite(6,LOW);

50 //digitalWrite(7,LOW);

51 // s STOP_x

52 instruction_x='s';

53 Serial.print("instruction_x s \t");

54

55 }

11

56 else if (mma.x > 500) {

57 // MOVING_BACKWARD

58 instruction_x='B';

59 Serial.print(" instruction_x B \t");

60 }

61

62 // move forwards, negative value y

63 if(mma.y<-1000){

64 // L MOVING_LEFT

65 instruction_y='L';

66 Serial.print("instruction_y L \t");

67 }

68

69 else if (mma.y > -1000 && mma.y < 500){

70 // STOP_y k

71 instruction_y='k';

72 Serial.print("instruction_y k \t");

73 }

74 else if (mma.y > 500) {

75 // MOVING_RIGHT

76 instruction_y='R';

77 Serial.print("instruction_y R \t");

78 }

79 if(mma.y > -1000 && mma.y < 500){

80 xBeeSerial.print(instruction_x) ;

81 }

82 else{

83 xBeeSerial.print(instruction_y) ;

84 }

85 }

Listing 2: Receiver-control Arduino code. Used to read the instructions sent by the transmitter
to in term, control the H-bridge of the two DC Motors.

1 # include <SoftwareSerial.h>

2

3 short pin_a_R = 2;

4 short pin_b_R = 3;

5 short pin_a_L = 4;

6 short pin_b_L = 5;

7 short xBeeTx = 11;

8 short xBeeRx = 12;

9 char xBeeSerial_read='s';

10

11 SoftwareSerial xBeeSerial(xBeeRx ,xBeeTx);

12 void setup(){

13 Serial.begin(9600) ;

14 xBeeSerial.begin(9600);

15 pinMode(pin_a_R,OUTPUT);

16 pinMode(pin_b_R,OUTPUT);

17 pinMode(pin_a_L,OUTPUT);

18 pinMode(pin_b_L,OUTPUT);

19 }

20

21 void loop(){

22 if (xBeeSerial.available()>0) {

23 xBeeSerial_read = xBeeSerial.read();

24 //Serial.print(instruction_x);

12

25 if(xBeeSerial_read =='B'){

26 digitalWrite (pin_a_R,HIGH);

27 digitalWrite (pin_b_R,LOW);

28 digitalWrite (pin_a_L,HIGH);

29 digitalWrite (pin_b_L,LOW);

30 }

31 else if(xBeeSerial_read=='F'){

32 digitalWrite (pin_a_R,LOW);

33 digitalWrite (pin_b_R,HIGH);

34 digitalWrite (pin_a_L,LOW);

35 digitalWrite (pin_b_L,HIGH);

36 }

37 else if(xBeeSerial_read=='s'){

38 digitalWrite (pin_a_R,LOW);

39 digitalWrite (pin_b_R,LOW);

40 digitalWrite (pin_a_L,LOW);

41 digitalWrite (pin_b_L,LOW);

42 }

43

44 else if(xBeeSerial_read=='R'){

45 digitalWrite (pin_a_R,HIGH);

46 digitalWrite (pin_b_R,LOW);

47 digitalWrite (pin_a_L,LOW);

48 digitalWrite (pin_b_L,HIGH);

49 }

50 else if(xBeeSerial_read=='L'){

51 digitalWrite (pin_a_R,LOW);

52 digitalWrite (pin_b_R,HIGH);

53 digitalWrite (pin_a_L,HIGH);

54 digitalWrite (pin_b_L,LOW);

55 }

56 else if(xBeeSerial_read=='k'){

57 digitalWrite (pin_a_R,LOW);

58 digitalWrite (pin_b_R,LOW);

59 digitalWrite (pin_a_L,LOW);

60 digitalWrite (pin_b_L,LOW);

61 }

62 Serial.print(xBeeSerial_read);

63 Serial.println();

64 }

65 }

Listing 3: Receiver. WIFI one time configuration. Used to read to setup the network credential
in order to get access to the internet. We connected to hotspot configured in a cell phone. The code
used for configuration and usage of the WIFI module was extracted from here, thanks to Ralph Florent
for a fantastic explanation.

1 #include <SoftwareSerial.h>

2

3 #define DEBUG true

4

5 short pinTx = 7; // use pin 7 as Arduino TX pin

6 short pinRx = 6; // use pin 6 as Arduino RX pin

7 short chpd = 8;

8

9 SoftwareSerial WIFISerial(pinRx, pinTx);

10

11 char LED = 13;

13

https://github.com/ralflorent/smart-outlet.git

12 boolean LEDst = false;

13

14 void setup () {

15 WIFISerial.begin(115200);

16 Serial.begin(115200);

17 pinMode(LED, OUTPUT);

18

19 pinMode(chpd, OUTPUT);

20 digitalWrite(chpd, LOW);

21 delay(10);

22 digitalWrite(chpd, HIGH);

23

24 Serial.println("Initializing Wi-Fi Setup...");

25

26 // send command to ESP

27 sendWifiCommand("AT+RST\r\n", 1000, DEBUG); // reset module

28 sendWifiCommand("AT+CWLAP\r\n", 2000, DEBUG); // List of access points

29 sendWifiCommand("AT+CWQAP\r\n", 2000, DEBUG);

30 // Set connection to Access Point

31 sendWifiCommand("AT+CWJAP=\"gari_phone\",\"xxxxxx\"\r\n", 5000, DEBUG);

32 sendWifiCommand("AT+CIPSTA=\"192.168.43.10\"\r\n", 2000, DEBUG); // Set static IP

33

34 sendWifiCommand("AT+CWMODE=3\r\n", 1000, DEBUG);

35 sendWifiCommand("AT+CIFSR\r\n", 1000, DEBUG); // Display IP address

36 }

37

38 void loop () {

39 // while (WIFISerial.available() > 0) {

40 // char a = WIFISerial.read();

41 // Serial.println("Wi-Fi just received: " + a);

42 // digitalWrite(LED, LEDst = !LEDst);

43 // }

44 }

45

46 String sendWifiCommand(String command, const int timeout, boolean debug) {

47 String response = "";

48 long int time = millis();

49

50 WIFISerial.print(command); // send the read character to the esp8266

51

52 while ((time + timeout) > millis()) {

53 while (WIFISerial.available()) {

54 // The esp has data so display its output to the serial window

55 char c = WIFISerial.read(); // read the next character.

56 response += c;

57 }

58 }

59

60 if (debug) {

61 Serial.print(response);

62 }

63 return response;

64 }

Listing 4: Receiver. WIFI and temperature sensor. Used to read to read the temperature data
from the sensor. Connect to a WIFI network, and send an HTTP POST request to the server, so that
the measurements of temperature are stored in a database.

14

1 #include <SoftwareSerial.h>

2

3 #define DEBUG true

4 #define LED 13

5 #define CH_PD 4

6 #define BAUDRATE 115200

7 #define PIN_TX 7

8 #define PIN_RX 6

9

10 #define WIFI_IP "192.168.43.10"

11 #define SERVER_API "garisplace.com"

12 #define SERVER_PORT "80"

13 #define ENDPOINT "/esppost.php"

14

15 int pinTemp = A1;

16

17 SoftwareSerial WIFISerial(PIN_RX, PIN_TX);

18

19 void setup () {

20 pinMode(LED, OUTPUT);

21 digitalWrite(LED, HIGH);

22 Serial.begin(BAUDRATE);

23

24 setupWifi();

25 }

26

27 void loop () {

28 int reading = analogRead(pinTemp); //Read the analog pin

29 float voltage = reading * 5.0;

30 voltage /= 1024.0;

31 float temperatureC = (voltage - 0.5) * 100 ;

32 String string_temp;

33 string_temp = String(temperatureC);

34 Serial.println("Temperature: " +string_temp);

35

36 if (connect(0, SERVER_API)) {

37 String query = "?temp="+string_temp;

38 const int connectionId = 0;

39 bool isSent = sendRequest("POST", ENDPOINT + query, "{}", connectionId, SERVER_API);

40 if (isSent) {

41 if (DEBUG) Serial.println("Request has been sent successfully!");

42 } else {

43 if (DEBUG) Serial.println("Request couldn't be sent...");

44 }

45 disconnect(0);

46

47 } else {

48 if (DEBUG) Serial.println("Connection to the server " + String(SERVER_API) + " failed!");

49 }

50 }

51

52 bool connect(int connectionId, String server) {

53 String cipStart = "AT+CIPSTART=" +

54 String(connectionId)

55 + ",\"TCP\",\"" + server + "\"," + SERVER_PORT;

56 WIFISerial.println(cipStart);

57 if (DEBUG) Serial.println(cipStart);

58

59 delay(1000);

60

61 if (WIFISerial.available())

15

62 if (WIFISerial.find("OK"))

63 return true;

64

65 return false;

66 }

67 bool disconnect(int connectionId) {

68 String closeCmd = "AT+CIPCLOSE=" + String(connectionId);

69 WIFISerial.println(closeCmd);

70 if (DEBUG) Serial.println(closeCmd);

71 delay(1000);

72

73 if (WIFISerial.available() > 0) {

74 if (WIFISerial.find("CLOSED")) {

75 clearBuffer();

76 return true;

77 }

78 }

79 return false;

80 }

81

82

83 bool sendRequest(String method, String resource, String queryParams, int connectionId, String server) {

84 bool isPost = false;

85

86 // Prepare command to send http request

87 String cipCmd = "";

88 cipCmd += method + " " + resource + " HTTP/1.1\r\n";

89 cipCmd += "Host: " + server + ":" + SERVER_PORT + "\r\n";

90 cipCmd += "Content-Type: application/json\r\n";

91

92 if (method == "POST" && queryParams != NULL) {

93 cipCmd += "Content-Length: " + String(queryParams.length()) + "\r\n";

94 cipCmd += "Connection: close\r\n\r\n";

95 cipCmd += queryParams; // add json query parameters to the request

96 isPost = true;

97 } else {

98 cipCmd += "Connection: close\r\n\r\n";

99 }

100

101 // First, establish an HTTP connection/session

102 String cipSend = "AT+CIPSEND=" + String(connectionId) + "," + cipCmd.length();

103 WIFISerial.println(cipSend);

104 if (DEBUG) Serial.println(cipSend);

105 delay(1000); // wait until request is sent

106

107 // Now try to send the HTTP request

108 if (WIFISerial.available()) {

109 if (WIFISerial.find("OK")) {

110 if (isPost) {

111 sendWifiCommand(cipCmd, 1000, DEBUG);

112 } else {

113 sendWifiCommand(cipCmd, 1000, DEBUG);

114 }

115 if (DEBUG) Serial.println(cipCmd);

116 return true;

117 }

118 }

119

120 return false;

121 }

122

123 void clearBuffer() {

16

124 while (WIFISerial.available()) {

125 char a = WIFISerial.read();

126 if (DEBUG) Serial.write(a);

127 }

128 }

129

130 void setupWifi() {

131 WIFISerial.begin(BAUDRATE);

132

133 pinMode(CH_PD, OUTPUT);

134 digitalWrite(CH_PD, LOW);

135 delay(10);

136 digitalWrite(CH_PD, HIGH);

137

138 if (DEBUG) Serial.println("Initializing Wi-Fi setup...");

139 sendWifiCommand("AT+CIPSTA=\"" + String(WIFI_IP) + "\"\r\n", 2000, DEBUG);

140 sendWifiCommand("AT+CIFSR\r\n", 3000, DEBUG); // display ip address

141 sendWifiCommand("AT+CIPMUX=1\r\n", 1000, DEBUG); // configure for multiple connections

142 sendWifiCommand("AT+SLEEP=0\r\n", 500, DEBUG); // disable sleep mode

143 if (DEBUG) Serial.println("WIFI setup done!");

144 }

145

146 String sendWifiCommand(String command, const int timeout, boolean debug) {

147 String response = "";

148 long int time = millis();

149

150 WIFISerial.print(command); // send the read character to the esp8266

151

152 while ((time + timeout) > millis()) {

153 while (WIFISerial.available()) {

154 //if(WIFISerial.find("data")) digitalWrite(LED, LOW);

155 // The esp has data so display its output to the serial window

156 char c = WIFISerial.read(); // read the next character.

157 response += c;

158 }

159 }

160

161 if (debug) Serial.print(response);

162

163 return response;

164 }

Listing 5: PHP file on the server side (esppost.php). Used to read the request sent by the WIFI
module and write the temperature measurement to the data base.

1 <?php

2 define('DB_NAME','hallalo_bd');

3 define('DB_USER','gari');

4 define('DB_PASSWORD','XXXXX');

5 define('DB_HOST','localhost');

6 $link = mysql_connect(DB_HOST, DB_USER, DB_PASSWORD);

7 if (!$link){

8 die('could not connect:' . mysql_error());

9 }

10 $db_selected = mysql_select_db(DB_NAME, $link);

11 if (!$db_selected){

12 die('Can\'t use' . DB_NAME . ': ' . mysql_error());

13 }

17

14 $Temp = $_REQUEST["temp"];

15 if(!empty($Temp))

16 {

17 if(!$insert = mysql_query("INSERT INTO `temperature_table` (Temperature)

18 VALUES ('$Temp')"))

19 echo "Unable to register the temperature";

20 else{

21 echo "The temperature has been registered";

22 }

23 }

24 mysql_close();

25 exit();

26 ?>

18

References

[1] Components101. XBee S2C Module Pinout, Features & Datasheet. 2019. url: https://components101.
com/wireless/xbee-s2c-module-pinout-datasheet (visited on 12/04/2019).

[2] Fangning Dr.Hu. Data Acquisition and Sensor Network: Lab Manual Fall 2019. 2019. url: https:
//www.jacobs-university.de/directory/fhu (visited on 12/09/2019).

[3] Yasser Yousry Moursy. “A methodology for analysis and verification of the substrate noise coupling
in HV/HT integrated circuits for automotive applications.” PhD thesis. 2016.

[4] Electronicwings.com. (n.d.). ESP8266 WiFi Module — Sensors & Modules. 2019. url: https :
//www.electronicwings.com/sensors-modules/esp8266-wifi-module (visited on 12/04/2019).

[5] Adafruit Learning System. Adafruit MMA8451 Accelerometer Breakout. 2019. url: https://learn.
adafruit.com/adafruit-mma8451-accelerometer-breakout?view=all (visited on 12/04/2019).

19

https://components101.com/wireless/xbee-s2c-module-pinout-datasheet
https://components101.com/wireless/xbee-s2c-module-pinout-datasheet
https://www.jacobs-university.de/directory/fhu
https://www.jacobs-university.de/directory/fhu
https://www.electronicwings.com/sensors-modules/esp8266-wifi-module
https://www.electronicwings.com/sensors-modules/esp8266-wifi-module
https://learn.adafruit.com/adafruit-mma8451-accelerometer-breakout?view=all
https://learn.adafruit.com/adafruit-mma8451-accelerometer-breakout?view=all

	Introduction
	Components
	Arduino
	Hardware
	Software

	Accelerometer
	XBee S2C
	XBee Shield
	Temperature sensor
	Wifi module
	H-bridge
	DC-Motors
	Power supply

	Connections
	The Emitter
	Receiver
	XBEE receiver and H-bridge interaction
	Temperature sensor and Wifi module interaction

	web interface

	Conclusion and Future Scope of Work
	Codes.

