
Data-adapted Parallel Merge Sort

Johannes Holke1, Alexander Rüttgers1, Margrit Klitz1, and Achim Basermann1

German Aerospace Center (DLR), Simulation and Software Technology, Department
High-Performance Computing, Linder Höhe, 51147 Cologne, Germany

johannes.holke@dlr.de, alexander.ruettgers@dlr.de, margrit.klitz@dlr.de,
achim.basermann@dlr.de

Abstract. In the aerospace sciences we produce huge amounts of data.
This data must be arranged in a meaningful order, so that we can analyze
or visualize it. In this paper we focus on data that is distributed among
computer processes and then needs to be sorted by a single root process
for further analysis. We assume that the memory on the root process is
too small to hold all sorted data at once, so that we have to perform
the sorting and processing of data chunk-wise. We prove the efficiency
of our approach in weak scaling tests, where we achieve a near constant
bandwidth. Additionally, we obtain a considerable speed up compared to
the standard parallel external sort. We also demonstrate the usefulness
of our algorithm in a real-life aviation application.

Keywords: Parallel sorting, High-performance computing, Merge sort,
Data analysis, Aerospace sciences

1 Introduction

In the German Aerospace Center (DLR - Deutsches Zentrum für Luft- und
Raumfahrt) huge amounts of data arise day by day. On the one hand this data
is produced by scientific and engineering simulations, e.g. from the full numerical
simulation of an aircraft. On the other hand, lots of data is collected for Earth
observation or the exploration of other planets.

Very often the accumulated data needs to be sorted to become useful. In this
work, we focus on data that is at first distributed among different processes of
a supercomputer but then needs to be processed in a sorted order by a single
root process. Furthermore, we assume that the memory on the root process is
too small to hold all sorted data at once, so that we have to perform the sorting
and processing of data chunk-wise.

The contribution of this paper is as follows: We present a new parallel merge
sort algorithm that can skillfully handle arbitrary unsorted data sets that are
distributed on a large number of processes. We dynamically adjust the size of
the buffer for each process depending on the distribution of data. Compared to
a fixed buffer size, we reduce the number of necessary messages and can use the
dynamic buffer very efficiently. In particular we optimize the routine to account
for pre-sorted parts of the data and for imbalanced loads. In a benchmark study

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institute of Transport Research:Publications

https://core.ac.uk/display/335014655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. Holke et al.

on the JUWELS supercomputer at FZ Jülich [4] we test our algorithm on up to
768 MPI ranks sorting up to 240 GiB of data. In weak scaling tests, we achieve a
near constant bandwidth. Compared to the well-known parallel external sort [1,3]
we demonstrate an up to 2 times speed-up on randomized data sets and up to
4.6 times on partly sorted data. In the latter case, we reduce the number of
MPI messages to a constant that does not depend on the number of processes
anymore.

Furthermore, on the DLR internal C2A2S2E-2 cluster [2], we show that in-
troducing our new algorithm in the DLR application code CODA [9] reduces
the runtime of the complete mesh output operation by a factor of over 4 in the
average case and by a factor of 100 in the (previous) worst case.

The remainder of this paper is organized as follows: In Section 2 we introduce
the details of our data-adapted merge algorithm and point out the difference to
the parallel external merge algorithm. Section 3 presents benchmark results with
different sorting scenarios computed on JUWELS at FZ Jülich [4]. In addition, we
focus on a specific case CFD application for which the algorithm was developed.
For the scenario of a complete HDF5 export, we also show scaling results. We
conclude our paper in Section 4 with a summary and suggestions for further
research.

2 Data-adapted Merge Algorithm

Let I = { id0, . . . , idN−1 } ⊆ N0 be a set of N = |I| so called Ids (or keys) and
D = { d0, . . . , dN−1 } be a set of N data items. We say that idj is the Id of item
dj , writing idj = Id(dj). The sets I and D are distributed across P processes
{ p0, . . . , pP−1 } in an arbitrary order. Thus, for each 0 ≤ p < P we have a set
Ip ⊆ I, such that ⋃

p

Ip = I, and (1)

Ip ∩ Iq = ∅, for p 6= q, (2)

and each process p holds the index set Ip and the corresponding data set Dp =
{ dj ∈ D | Idj ∈ Ip }. We denote the number of items on process p by Np.

In this paper we are concerned with the following task:

Task 1 A single designated process r, which we call the root process, needs
to access all data items in D once in ascending order of their Ids. Thus, first
d0, then d1, and so on. Furthermore, we assume that due to limited memory
resources the number of Ids and data items that r can store simultaneously is
bounded and significantly smaller than N .

Our particular application is in the context of computational fluid dynamics.
Here, the Ids correspond to the elements of a computational mesh and the data
represents the state of the simulation. The j-th data item is associated with
the j-th mesh element and can for example store coordinates, fluid velocities,

Data-adapted Parallel Merge Sort 3

concentrations, or other relevant data 1. We then want to output this simulation
state to a file, for example to visualize the simulation or to have a checkpoint to
restart the simulation in the future. In order to have this output independent of
the partition, we want to store our data in order, sorted by the Ids. Furthermore,
in some situations we are limited to using serial file I/O through a single process
r. Therefore, we are in the setting described by the task above.

Of the different approaches to solve these kinds of sorting problems, we aim
for one similar to a parallel merge sort, where the data is sorted locally on the
processes and then merged to sorted data on the root2.

From now on we assume that the processes’ local sets Dp and Ip are sorted.

2.1 The parallel external merge sort

The parallel external merge sort algorithm is a common method [3, 7, 10] that
proceeds as follows. Given a chunk size C (divisible by P), the root process
allocates memory for C many data items and assigns each process a portion of
C/P many items. Each process then sends its next C/P items to the root. In a
P -way merge step, the root process merges the data from the P buffers into a
sorted array of size C, the output chunk. As soon as the root has merged all data
items from process p a new communication is requested and process p sends its
next C/P data items to the root. If the output chunk is full, this chunk of data
can be passed on for further processing (serial data analysis, file I/O, etc.) and
the root clears the output chunk to sort the next C items; see Figure 1.

P-way Merge

C/P C/P C/P C/P

p0 p1 p2 pP−1

process r

Fig. 1. In the classical external merge sort, the root allocates a buffer of size C/P for
each process and receives the current portion of data from each process into this buffer.
These buffers are then merged into the sorted output chunk. As soon as all C/P items
from one process are merged, this process sends its next C/P items to the buffer.

1 Data may also reside on a subset of the mesh elements, in which case gaps in the
Ids I occur.

2 A related problem is the so called external sort problem. Here the data resides
unsorted on a hard drive and has to be written back to the hard drive in sorted
order, while only a limited amount of data can fit into the memory of the calculating
process [10].

4 J. Holke et al.

We observe two drawbacks of this method.
First, the number of messages that each process sends to the root is always

the same, regardless of the distribution of the data. We can calculate this number
for a process p as the amount of data on p divided by the size of p’s buffer on
the root, C/P :

|{Messages from p to r }| = NpP

C
. (3)

In particular, this number increases with the number of processes P .
However, if large portions of the data on a process p are contiguous, we could

use much fewer messages. In the extreme case that the data is already sorted on
the processes. In this situation the optimal strategy is to send packs of C data
items from process 0 to the root until all items on process 0 are processed, then
continue with packs of C many items from process 1, and so on. Each process
then sends

Np

C messages, a reduction by a factor of P .
The second issue arises during the algorithm if a process p has sent all its

elements to the root, but other processes still have data left. In this situation
the segment of the root’s buffer associated to p is not used in the remaining
part of the algorithm, having the same effect as shrinking the buffer size and
thus increasing the effective runtime of the algorithm. This effect is of particular
interest when the data is not distributed evenly among the processes or, in the
extreme case, when some processes do not have any data at all.

2.2 The data-adapted parallel merge

We propose a new data-adapted parallel merge algorithm to overcome these
issues. Instead of assigning a fixed buffer on the root for each process we dynam-
ically adjust its size depending on the distribution of the data. Thus, we ensure
that the buffer on the root is utilized more efficiently and that fewer messages
have to be send for sorted parts of the data.

For a thorough understanding of our approach, we provide pseudo-code in
Algorithms 2.1, 2.2, and 2.3: In a setup step ‘InitNextID’ each process sends
the smallest element of Ip to the root, where these Ids are stored in an array
NextIDs. During the algorithm NextIDs[p] will be updated to always contain
the smallest Id on process p for which no data was sent to the root yet.

The algorithm then enters its main loop. In each iteration the root collects
data from the other processes to fill the output chunk with the next C many
data items. To achieve this, we proceed in three steps.

UpdateDataRange (see Algorithm 2.2): The root determines the Ids of the
data items that will be processed in this iteration. This range starts at the
smallest non-processed Id m := min NextIDs and ends at m + C. This range is
then broadcasted across all processes.

GatherData (see Algorithm 2.3): In this step, the root collects the data from
the processes. Each process whose next Id is within the data range, sends all data
in the data range to root. Thus, process p sends dj if and only if m ≤ idj < m+C.
In particular, processes with no data in the data range do not send messages

Data-adapted Parallel Merge Sort 5

Algorithm 2.1: data adapted parallel merge (ID Array Ip,
Data Array Dp, Chunk size C, root r)

1 pos← 0 /* Current position in Ip and Dp */

2 if p == r then
3 Allocate Id and data buffer to hold C items respectively.
4 Allocate Output chunk to hold C data items.

5 InitNextID()

6 while Data left on any process do
7 UpdateDataRange()

8 GatherData()

9 MergeData()

/* Application on r processes data in ouput chunk */

to the root. If a process sends data to the root it additionally sends its next
unprocessed Id to the root or, if no data is left, an End of data flag.

Algorithm 2.2: UpdateDataRange()

1 if p == r then /* This process is root */

2 minId ← min {NextIDs } /* Smallest next Id */

3 data range[0]← minId
4 data range[1]← minId + C
5 Broadcast data range to all other ranks

6 else
7 Receive data range from root

At the end of this routine the root process determines from which processes
it receives messages using the information in NextIDs and the data range, and
then receives the data into its receive buffer. For these processes the root also
updates the NextIDs array. If the sending process is the root itself (p == r), we
do not need to send an MPI message here, but instead copy the data locally.

MergeData: In GatherData, the root received k ≤ P messages of sorted data.
These are now merged in a k-way merge step into the output chunk.

After the MergeData step the output chunk represents the next sorted portion
of the complete data set and can be processed by the calling application.

In Figure 2 we depict the first two loop iterations of a small example with
three processes p0, p1, and p2. The first items of the sets Ip are given as

I0 = { 0, 3, 100, . . . } , I1 = { 1, 4, 7, 101, . . . } , I2 = { 5, 6, 110, . . . } , (4)

and the sets Dp contain the corresponding data items. As chunk size we choose
C = 4 (Certainly, C would be much larger in realistic applications; see Section 3).
We show the Ids and data of each process on the left hand side and the data on

6 J. Holke et al.

Algorithm 2.3: GatherData()

1 if Ip[pos] ≥ data range[1] then
2 return /* This process does not send data */

3 Find j, such that Ip[pos + j] < data range[1] ≤ Ip[pos + j + 1]
4 S0

p ← { Ip[pos], Ip[pos + 1], . . . , Ip[pos + j] }
5 S1

p ← {Dp[pos], Dp[pos + 1], . . . , Dp[pos + j] }
6 pos← pos + j + 1 /* Update position in Ip */

7 NextIDp ← Ip[pos] /* The next unused Id */

8 Send S0
p , S1

p and NextIDp to the root process.
9 if p == r then /* This process is root */

10 for q ∈ { q̂ |NextID[q̂] < data range[1] } do
11 Receive S0

q and S1
q and store into Id- and Data-Chunk.

12 Receive NextIDq

13 NextIDs[q] = NextIDq

the root on the right hand side of Figure 2. The initial InitNextID step is not
depicted and was already performed.

We observe that only the processes that hold data of the current requested
chunk send data to the root and that additionally the size of the messages may
differ. The root receives all data for the current chunk in one go and does not
need to wait for multiple sends from the same process.

By determining the minimum of the next Ids, gaps in the Id array can be
skipped. Observe that from step 2 to step 3 the requested data range jumps from
[4, 8) to [100, 104), since the root knows that there are no Ids in between 8 and
100. However, gaps in the Id range within the currently requested data range lead
to less than C items received on the root. We observe this in step 1 where one
slot in the chunk remains unused. Nevertheless, this drawback has only minor
influence on the runtime of our algorithm as we demonstrate in Section 3.1.

Remark 1. In our description of Task 1 we explicitly assume that different data
items have different Ids. We use this in the algorithm when we determine the
next data range. It is possible to adapt the algorithm to cope with duplicated
Ids if we know a bound n̂ on the number of usages of the same Id beforehand.
In this case, UpdateDataRange may request a range from m to m + C

n̂ instead.

3 Results and Discussion

3.1 Data-adapted Parallel Merge

In this section we test our algorithm for four scenarios. The first is a random
distribution of Ids, in the second the Ids are sorted, in the third blocks of 10,000
contiguous Ids are randomly distributed, and in the fourth the data is not dis-
tributed evenly among the processes and has large gaps (half the processes have
twice as much data as the others). The random distributions are generated by

Data-adapted Parallel Merge Sort 7

0 3 100
d0 d3 d100

p0

1 4
d1 d4

p1

5 6 110
d5 d6 d110

p2

0 3 1

d
0 , d

3
nextID

100

d1
nextID 4

0 1 5
root requests:

GatherData()

MergeData()0 1 3

NextIDs

d0 d3 d1

d0 d1 d3

data range [0, 4)

0 3 100
d0 d3 d100

p0

1 4
d1 d4

p1

5 6 110
d5 d6 d110

p2

4 5 6
d4, d7

nextID 101

100 4 5
root requests:

GatherData()

MergeData()4 5 6

NextIDs

d4 d5 d6

d4 d5 d6

data range [4, 8)

d5
, d6

ne
xt

ID
11

0

Step 1:

Step 2:

100 101 110
root requests:

NextIDs
data range [100, 104)Step 3:

...

101
d101

7
d7

1017
d7 d101

7
d7

7
d7

Fig. 2. Graphical description of our proposed data-adapted parallel merge algorithm.
We show the first two loop iterations of an example with three processes and chunk
size C = 4. On the left hand side we depict the Ids and data sets Ip and Dp of the
processes. On the right hand side, we show how the root process receives and stores
the different messages. Note that the root process will be one of p0, p1, p2.

using the random number generator from [8]. For the results in Table 1 and
Figure 3 we have 8.388.608 Ids per process, 4 double entries (4× 8 = 32 Byte)
per Id and a chunk size of C = 32.768 on the root process. Since we keep the
problem size per process constant while increasing the number of processes, this
can be seen as a weak scaling study. In a further step, we compare our algorithm
with a reference implementation of the external parallel merge sort.

Our results were obtained on JUWELS at FZ Jülich [4]. Each node consists
of a Dual Intel Xeon Platinum 8168 with 2× 24 = 48 cores at 2.7GHz each and
12× 8 = 96 GB of RAM.

Table 1 lists the results of our new data adapted parallel merge algorithm
with 48 to 768 processes on JUWELS for the first three scenarios. Since the
problem size per process is kept constant, the total amount of data to be merged
in GiB increases with the number of processes. In particular, we have a 15 GiB
per compute node throughout our tests.

If we compare the number of messages per process between our algorithm and
the external sorting algorithm in the second column of Table 2, we see that the
number of messages per process is distinctly lower for our algorithm than for the
external sorting algorithm in the scenarios Sorted and Contiguous. We achieve
this advantage by the dynamic chunk size in our algorithm. In the scenario
Random, the numbers of messages sent per process are exactly the same for
our algorithm and the classical external sorting algorithm. Here, the number of
messages is given by Equation (3). For this scenario, the advantage of a dynamic

8 J. Holke et al.

chunk size in our algorithm can not be exploited. In most application use cases,
however, we do not expect a totally random distribution of IDs.

32

64

128

256

512

1024

2048

48 96 192 384 768

R
u
n
ti
m
e
[s
]

Number of MPI Ranks (48 per node)

External
Random

Gaps
Contiguous

Sorted
Ideal scaling

0.125

0.25

0.5

48 96 192 384 768

B
a
n
d
w
id
th

[G
iB
/s
]

Number of MPI Ranks (48 per node)

External
Random

Gaps
Contiguous

Sorted

Fig. 3. Runtime (left) and bandwidth (right) for our four test scenarios compared with
the parallel external merge.

Figure 3 compares runtimes and bandwidths achieved for all four scenarios
between our algorithm and the external sorting algorithm for 48 to 768 pro-
cesses on JUWELS. In the scenarios Sorted and Contiguous the runtimes of our
algorithm are significantly shorter than the runtimes of the external sorting algo-
rithm. The main reason is the distinctly reduced number of messages per process
by exploiting a dynamic chunk size in our algorithm. In addition the number of
messages in our algorithm stays nearly constant with increasing process num-
ber, cf. Table 2. In the sorted case, we even have an exactly constant number of
messages, 256.

Runtime [s]
ranks GiB External Random Sorted Contiguous Gaps

48 15 92.3 58.0 29.1 31.9 55.8
96 30 198.8 152.3 57.3 66.5 90.3

192 60 399.7 258.0 115.6 133.6 264.8
384 120 873.8 417.9 225.0 275.8 440.5
768 240 2,118.0 2,604.3 457.6 561.7 511.6

Bandwidth [GiB/s]
External Random Sorted Contiguous Gaps

0.16 0.26 0.52 0.47 0.30
0.15 0.20 0.52 0.45 0.37
0.15 0.23 0.52 0.45 0.25
0.14 0.29 0.53 0.44 0.31
0.11 0.09 0.52 0.43 0.53

Table 1. Scaling results for our four test cases Random, Sorted, Contiguous, and Gaps
compared with the original parallel external sort. We show the runtimes (left) and
bandwidth (right) for our experiments for P = 48 up to P = 768 processes on JUWELS.

Note that we expect a linear increase in the total runtime for both algorithms
since the total amount of data rises and all data has to be processed on the root
process. This linear increase is indicated by the ’Ideal scaling’ line in Figure 3.
We also observe a clear advantage of our algorithm in the case of not evenly
distributed data, scenario Gaps. Here, the dynamic chunk size is of particular

Data-adapted Parallel Merge Sort 9

messages/proc
ranks External Random Sorted Contiguous

48 12,288 12,288 256 1,060.85
96 24,576 24,576 256 1,078.35

192 49,152 49,152 256 1,086.90
384 98,304 98,304 256 1,089.76
768 196,608 196,608 256 1,093.00

Runtime [s]
Chunk size External sort Data-adapted

32,768 2,118.0 2,601.0
131,072 1,909.6 1,572.8
262,144 1,866.9 1,358.0

Table 2. Left: Number of messages per process for the external sorting algorithms
and our algorithms for the first three scenarios (Random, Sorted, Contiguous). Right:
Runtimes for different chunk sizes with 768 MPI ranks of the external sorting algorithms
and our proposed algorithm for the Random scenario.

advantage, since with increasing process number more and more processes be-
come idle after some iterations due to the load imbalance in this scenario. For
the scenario Random, our algorithm still shows superior runtime behavior com-
pared with the external sorting algorithm except for 768 processes. In the latter
case the overhead of managing the parallel messages is a possible explanation
for the slower runtimes. However, if we increase the chunk size as in Table 2, we
can also for 768 processes achieve distinctly shorter runtimes with our algorithm
than with external sorting algorithm. Larger chunk sizes improve the computa-
tion to communication ratio and are advantageous for both algorithms, but can
be more efficiently exploited in our data-adapted parallel merge implementation.

Figure 3 displays the bandwidth behavior of our algorithm in comparison to
the external sorting algorithm. We observe that with increasing processor num-
bers the bandwidth stays more or less constant for our algorithm in the scenarios
Sorted and Contiguous, while the bandwidth of the external sorting algorithm
decreases. Moreover, the bandwidth of our algorithm is distinctly higher than
that of the external sorting algorithm, in the best case by a factor of about 5.
The only exception is again scenario Random with 768 processes, but as for the
runtime this can be changed by adapting the chunk size according to Table 2.

3.2 Application: File I/O with FlowSimulator

One of DLR’s ongoing goals in aviation is the virtual design of an aircraft. A
key element in the aerodynamic design process is the numerical flow simula-
tion for which the DLR develops its next-generation CFD (computational fluid
dynamics) software code CODA [9].

CODA is developed as part of the FlowSimulator (FS), which is an HPC
platform for the integration of multiple parallel components into a process chain.
All components (“plug-ins”) are integrated via a Python interface so that the
whole simulation process chain can be controlled by a Python script; see Figure 4,
left. For a detailed description of FS, we refer to [11] and [12].

The storage and the parallel management of data in FS is performed by an
HPC-library called FlowSimulator Data Manager (FSDM). FSDM stores data
in a collection of C++ container classes that are all wrapped to Python. It has
a wide range of import and export filters for the most common file formats such

10 J. Holke et al.

Fig. 4. Left: Basic architecture of the FlowSimulator framework. Right: Illustration of
an unstructured grid that is used for a CFD simulation around an airplane.

as HDF5, CGNS, NetCDF and Tecplot. After the import, FSDM decomposes
the data and distributes it over the different MPI domains. Here, FSDM makes
use of popular partitioning algorithms such as ParMETIS or RGB (Recursive
Graph Bisection) [5,6]. Other ingredients of FSDM include geometry operations,
mesh deformation and interpolation to only name a few.

Due to the various export formats that are supported by FSDM, we often
encounter a situation as described in Task 1 in the case that the export filter
only supports sequential file I/O. In the following, we benchmark the file I/O of
a CFD simulation into an HDF5 file using FSDM. Note that we are aware of the
fact that the HDF5 library [13] supports parallel file I/O. However, the current
HDF5 export is performed by the root process only.

In the following, we consider an unstructured mesh that models an airplane
as illustrated in Figure 4 and that contains various simulation datasets, e.g. the
velocity and the pressure field. The mesh is adaptively refined at the region
of interest close to the airplane’s wing and consists of nodes, surface elements
(triangles, quadrangles) and volume elements (tetrahedrons, hexahedrons). Each
mesh element is identified by a unique Id integer number. As an example, the
color of the mesh elements in Figure 4 represent their associated Id number.
Here, on the one hand the mesh elements that model the airplane have low Ids
(colored in blue) and on the other hand the mesh elements of the far field have
high Ids (colored in red).

Table 3 shows the results of the HDF5 file export in FS on the DLR C2A2S2E-
2 [2] cluster. Each cluster node consists of two Intel Xeon E5-2695v2 processors
with 2 × 12 = 24 cores, 2.4GHz per core and 8 × 16 = 128 GiB of RAM.
The exported dataset has a size of 7.2 GiB and consists of a mesh with 17
CFD subdatasets that are exported one after another. The table compares the
runtime of the original file I/O implementation in FSDM with the proposed new
algorithm described in Section 2. In this case, the chunk size of the new algorithm
is C = 106. We explicitly note that file I/O is performed by the root process r
in all cases so that the increase in runtime with larger processor numbers is to
be expected.

Data-adapted Parallel Merge Sort 11

Runtime [s]
#ranks old export old export

+ Ids invert.
new export

24 742 19,536 182
48 1,104 32,907 278
96 1,575 34,602 356

192 2,126 - 534
384 2,995 - 803
768 4,524 - 1,052

Table 3. Runtime comparison of the original HDF5 file export with the proposed
algorithm in FlowSimulator.

In the old export routine, r performs the data exchange with one process after
another and then writes a contiguous block of m data elements
{ dj , dj+1, . . . , dj+m } with m as large as possible to file. Since the dataset Dp on
each process p has been sorted locally, we usually obtain contiguous block sizes
m in the order of several thousand elements. The runtime results for this case are
listed in the second column of Table 3. The third column considers the situation
that the local order on each process has been destroyed since we deliberately
invert the list of local Ids. This reduces the number of elements m that can be
written in one operation by r and increases the total runtime by a factor of 20-
30. Due to the enormous increase in runtime, we have only computed the results
up to four nodes on C2A2S2E-2. Finally, the last column states the results with
our proposed new algorithm. In this case, there is always a local sort on each
process so that the runtime results do not depend on the initial local order. We
observe that the new implementation reduces the runtime compared to the old
export (second column) by a factor of four. This underlines the usefulness of the
algorithm for sequential file I/O on moderate processor numbers.

4 Conclusion

In this paper we introduce a new algorithm to solve a parallel sorting problem,
where data resides on distributed processes and needs to be accessed by a single
root process in sorted order. Due to limited memory resources the root can
only access this data chunk-wise. We optimize our network communication to
automatically adapt to the data distribution among the processes. Compared to
the common parallel external sort approach, we obtain speed-ups of factors 2 to
4. With our method we are able to exploit pre-sorted parts of the data and can
handle unbalanced loads.

Additionally to our results in benchmark studies, we applied our approach
to sequential file I/O in the DLR FlowSimulator environment. Here, we demon-
strated speed-ups of the complete I/O routine of a factor of 4 in the general
case and up to 100 in our previous worst case. We are certain that many more
applications can benefit from our work, especially in the areas of data-analysis
and visualization, and in situations where parts of a tool-chain are serial. Future
work on the techniques presented in this paper may include improved handling

12 J. Holke et al.

of duplicated keys and a generalization of the algorithm to multiple root pro-
cesses. The latter could be promising on clusters with many compute nodes and
a limited number of I/O nodes.

Acknowledgments

This research was carried out under the project Virtual Aircraft Technology
Integration Platform (VicToria) by the German Aerospace Center (DLR).

The authors gratefully acknowledge the Gauss Centre for Supercomputing
e.V. (www.gauss-centre.eu) for funding this project by providing computing time
through the John von Neumann Institute for Computing (NIC) on the GCS
Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).

References

1. Bitton, D., DeWitt, D.J., Hsiao, D.K., Menon, J.: A taxonomy of parallel sorting.
Tech. rep., Cornell University (1984)

2. CASE-2: Sgi ice x, intel xeon e5-2695v2 12c 2.4ghz, inifiniband, fdr,
https://www.top500.org/system/178196, last accessed: April 16, 2019

3. Friedland, D.B.: Design, Analysis, and Implementation of Parallel External Sorting
Algorithms. Ph.D. thesis (1981), aAI8206830

4. JUWELS: http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers-
/JUWELS/JUWELS node.html, last accessed: April 15, 2019

5. Karypis, G., Schoegel, K., Kumar, V.: ParMETIS – Parallel Graph Partitioning
and Sparse Matrix Ordering Library, Version 3.1 (2013)

6. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell system technical journal 49(2), 291–307 (1970)

7. Knuth, D.E.: The art of computer programming: sorting and searching, vol. 3.
Pearson Education (1997)

8. Langr, D., Tvrd́ık, P., Dytrych, T., Draayer, J.P.: Algorithm 947: Paraperm—
parallel generation of random permutations with mpi. ACM Trans.
Math. Softw. 41(1), 5:1–5:26 (Oct 2014). https://doi.org/10.1145/2669372,
http://doi.acm.org/10.1145/2669372

9. Leicht, T., Jägersküpper, J., Vollmer, D., Schwöppe, A., Hartmann, R.,
Fiedler, J., Schlauch, T.: DLR-Project Digital-X - Next generation CFD solver
’Flucs’. In: Deutscher Luft- und Raumfahrtkongress 2016 (Februar 2016),
https://elib.dlr.de/111205/

10. Leu, F.C., Tsai, Y.T., Tang, C.Y.: An efficient external sorting algorithm. Infor-
mation processing letters 75(4), 159–163 (2000)

11. Meinel, M., Einarsson, G.O.: The FlowSimulator framework for massively parallel
CFD applications. In: PARA 2010 conference: state of the art in scientific and
parallel computing. Citeseer (2010)

12. Reimer, L.: The FlowSimulator—a software framework for CFD-related multidisci-
plinary simulations. In: European NAFEMS Conference Computational Fluid Dy-
namics (CFD) – Beyond the Solve (Dezember 2015), https://elib.dlr.de/100536/

13. The HDF Group: Hierarchical Data Format, version 5 (1997-NNNN),
http://www.hdfgroup.org/HDF5/

